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Abstract—We developed a configuration to place a cash 

storage called Cloud on-Ramp (CoR) with small capacity 

between client terminals at remote offices and a cloud storage 

connected by a wide area network. A CoR is placed in each 

remote office, and applications access them via a local area 

network, guaranteeing access performance. A CoR synchronizes 

the data with the cloud storage by copying updated data from 

the client terminal at regular intervals. It is necessary that a 

window to carry out the bulk-copy function be shortened and 

repeated many times to keep the latest data in the cloud storage. 

A method of maintaining consistency of data at a CoR is 

necessary, even if the data are updated in the copy by the client 

terminal. Therefore, we propose the "intermittent snapshot 

method", with which a snapshot is taken during bulk-copy 

execution and released as soon as the bulk copy is over. We 

evaluated the proposed method from the perspective of an 

implementation design. We formalized the method by using a 

stochastic Petri-net model and considered the proper size of the 

bulk-copy window that optimizes both the synchronization delay 

and application-access performance through simulation.  

 
Index Terms— Cloud Storage, Cloud on-Ramp (CoR), Data 

Synchronization, Intermittent Snapshot, Stochastic Petri-net 

 

I. INTRODUCTION 

Cloud storage [1][2] has begun to be used for collaboration 

between remote offices in a company. The configuration to 

place a cash storage with small capacity between a client 

terminal and cloud storage has been suggested because the 

problem of delay arises from the client terminal in a 

distributed environment connected to the cloud storage 

through a wide area network (WAN) [3]–[5]. A cash storage 

is placed in each remote office, and applications access them 

via a local area network (LAN), guaranteeing access 

performance. We call such a cash storage Cloud on-Ramp 

(CoR) [3]–[5]. 

A CoR synchronizes the data with the cloud storage by 

copying updated data from the client terminal to the cloud 

storage based on the write-back cash algorithm in a lump at 

regular intervals. We call this a "bulk-copy" function. This 

function should not affect the access performance from the 

client terminals and their applications. Therefore, this 
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function is executed when work in the remote office usually 

finishes, including nighttime. 

The demand of placing the latest data into the cloud storage 

has recently increased. For example, there is a need of sharing 

the data that have accumulated in many CoRs at remote 

offices and of referring them through the cloud storage 

immediately. It is also necessary to place as much of the latest 

data into the cloud storage as possible because the data need 

to be recovered from the cloud storage at the time of data 

access errors in a CoR. We call the difference in the 

synchronization time in the cloud storage determined from a 

CoR "synchronization delay". The shorter the 

synchronization delay, the fresher the data users can access 

through the cloud storage. 

It is necessary that the distance to execute the bulk-copy 

function be shortened and repeated many times to shorten the 

synchronization delay. We call this distance the “bulk-copy 

window". However, the time required to execute bulk copy is 

prolonged for the time it takes all copies of the data to update 

because a re-copy runs when a file is updated in the bulk-copy 

window [6].  

A method of maintaining consistency of data is necessary 

even if the data are updated in the copy by the client terminal 

to shorten the bulk-copy window and repeated many times. 

Generally, a method of maintaining the consistency of data 

copying includes a snapshot method [7]. In a CoR, a snapshot 

of the update data is taken from the client terminal and copied 

to the cloud storage. In this study, we assumed office 

applications and data processing applications through the 

sharing of data among remote offices, but there are more read 

commands (reading of data from a CoR) than write 

commands (writing data to a CoR) in the input/output (IO) of 

those applications. Therefore, we decided to adopt the Copy 

On Write snapshot method (COW), with which the effect on 

read performance is zero [7]. 

However, there is problem with COW in which the 

effective performance of the write judgment from the 

applications degrades. Therefore, we propose the 

"intermittent snapshot method", with which a snapshot is 

taken during the bulk-copy execution and released as soon as 

the bulk copy is over. The performance penalty in the write 

from the applications is reduced by limiting the time to take 

the snapshot. 

There is a problem in the implementation to appropriately 

determine the bulk-copy window. Users request to shorten the 

window and place the latest data into the cloud storage. 

However, the number of bulk-copy execution times increases; 

in other words, it becomes easy for the applications to incur a 

performance penalty due to the increased time of snapshots to 
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be taken. There are also cases in which a bulk-copy window 

increases when the preceding bulk copy-function is not 

finished before the next one is started. Conventionally, this 

bulk-copy window was determined from experience. 

For this technical problem, we formalize our intermittent 

snapshot method in the stochastic Petri-net model and 

calculate a suitable bulk-copy window through simulation.  

II. BULK-COPY FUNCTION AND ITS PROBLEM IN COR 

A. System architecture 

In this chapter, we give an overview of and the problem 

with the bulk-copy function in a CoR. 

The system architecture we assumed for this study is based 

on that of a CoR that we previously proposed [3]–[5]. As 

shown in Figure 1, the system is composed of CoRs placed in 

remote offices, applications in client terminals accessing the 

CoRs, and a cloud storage connected from the CoRs. 
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Fig. 1. Assumed System Architecture 

 

End users operate the application programs in the client 

terminals, which generate file data. A write request to store 

the data in a CoR and a read request to obtain the data that 

have been stored away by the CoR are published. The request 

is made in general file-sharing protocols such as CIFS or NFS. 

In addition, the client terminals are connected to a CoR by 

high-speed LAN. 

A CoR is a cash storage that temporarily stores file data. 

The request received from the client terminals are handled, 

and data are stored or provided. Furthermore, the bulk of data 

is regularly copied to a cloud storage to protect the stored data. 

Regarding the file data on a CoR where bulk copying ended, 

the use situation is checked regularly. Because a CoR has 

small capacity, the data with a small access frequency leave 

only a reference to the replicated data written in the cloud 

storage, and the CoR deletes those data. When a read request 

for the data is received, the data are first recovered from the 

cloud storage to the CoR then returned to the client terminals. 

Please refer to a previous study [5] regarding this process. 

A cloud storage is an object storage that permanently stores 

file data. A replication request received from a CoR is 

handled, and data are stored. The HTTP/HTTPS suitable for 

communication in a wide area is used for the request. The data 

are reproduced at several inter-nodes constituting the cloud 

storage and are protected. In addition, the network to connect 

CoRs and the cloud storage is assumed to be a WAN, which is 

slower than a LAN, because such a network is used with a 

system that  is applied to remote offices located over a wide 

geographic area. 

The bulk-copy function by a CoR is regularly executed 

based on the bulk-copy window. A system manager can set 

the bulk-copy window, which is determined depending on the 

demand from the end users. For example, the window is kept 

short if the end users want to keep the latest data shared in the 

cloud storage. 

B. Bulk-copy function 

The bulk-copy function is composed of the following three 

processes. 

In the pre-process, the data for the bulk-copy function are 

extracted. A CoR sorts updated data targeted for existence 

confirmation, a copy of a file, and directory and outputs a 

copy-entity list. Therefore, the CoR records the operation 

history of the client for a file and directory using the operating 

system function beforehand [8]. 

In the replication process, the CoR transfers the data of a 

file and the directory listed in the copy-entity list to a cloud 

storage. The cloud storage receives the data and stores it. 

In the post-process, the result of every bulk-copy function 

being executed repeatedly is recorded, for example, when a 

process is not finished in a bulk-copy window when the data 

for a large quantity of copies exist. In this case, the current 

iteration continues and the next iteration is skipped, but the 

results are recorded. It will be confirmed whether the manager 

can keep the bulk-copy window the end users require with 

reference to this record. 

It is necessary that the bulk-copy function be executed to 

maintain the data consistency of the IO requests from 

applications. Therefore, a snapshot method is used. The 

applications access a primary volume, and the bulk-copy 

function accesses a snapshot volume while maintaining data 

consistency. 

C. Conventional snapshot methods and their challenges 

There are generally two methods of taking a snapshot, i.e., 

redirection on write method (ROW) and COW [7]. The 

overview of the two methods and the challenges when applied 

to the bulk copy are explained below. 

 

Redirection On Write snapshot method (ROW) 

ROW is a snapshot method using log-structured data 

management. Every chunk of new data is added to a physical 

volume as the log structure, and a logical address refers to the 

address in the physical volume. The chunk is first written to 

add a postscript to the physical volume when an application 

writes in a file and directory (postscript data). The primary 

volume manages the physical address of each chunk logically 

in B+tree. The snapshot volume manages the snapshot equally 

as an aggregate of the physical address. The snapshot is 

converted into a data array that should be read with postscript 

data by converting the logic address of the chunk the 

application requires into a physical address. 

When ROW is applied to the bulk-copy function, there are 
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problems in performance. In both primary and snapshot 

volumes, performance always degrades regarding the address 

translation of the chunk at the time of the read. Particularly, it 

is easy to follow that the data of one file are located at the 

far-off position on the physical disk, and the performance 

penalty at the time of the read is large. The write performance 

to the primary volume also degrades. Because address 

translation and chunk allocation must be assigned regardless 

of the write size, write performance always degrades. 

 

Copy On Write snapshot method (COW) 

COW is implemented as a function of the logical volume 

manager (LVM) and takes a snapshot by using the snapshot 

volume and COW table for a reference prepared for 

separately from the primary volume. When a client overwrites 

with a file and directory, the LVM first detects a chunk of data 

to be overwritten and copies it in the snapshot volume. 

Furthermore, an address of the copy is recorded on the COW 

table. COW overwrites with new data in the overwrite chunk 

afterwards, and the COW table is stored in the fixed position 

of the snapshot volume. 

There are also problems in performance when COW is 

applied to the bulk-copy function. Write performance to the 

primary volume largely decreases at the time of taking a 

snapshot (snapshot period). This is because the number of 

reading and writing requests of the volume increases 3-fold, 

compared with the normal IO. In addition to the write of the 

new chunk, the read of the chunk to be overwritten, write of 

the chunk to the snapshot volume, and write of the COW table 

occur. In addition, the read performance of the snapshot 

degrades. This is because the data in the snapshot are detected 

from the COW table and searched from the snapshot volume. 

On the other hand, the read performance of the primary 

volume by the application does not degrade. 

D. Problems in implementing bulk-copy function 

As explained above, ROW and COW cause problems in 

read/write performance. The frequency of the bulk-copy 

function increases and it is expected that the synchronization 

delay is shortened to reflect the latest data in the cloud storage. 

However, it becomes easy for an application to incur a penalty 

in read or write performance degradation due to implementing 

the conventional snapshot methods because the snapshot 

period increases. Also, a bulk-copy window increases when 

the processing of the bulk-copy function in front does not 

finish before the next one is started. 

In contrast, choosing the appropriate snapshot method in 

the assumed use environment and the appropriate 

copy-window size (time width) are systematic problems. 

However, the bulk-copy window size is conventionally 

determined from experience and an appropriate bulk-copy 

window size and performance limit of the bulk-copy function 

based on the size has not been studied. 

III. INTERMITTENT SNAPSHOT METHOD 

We developed our intermittent snapshot method to limit the 

snapshot period. In other words, a snapshot starts to be taken 

just before the replication handling of net-net start, i.e., a file 

data transfer, and finishes just after the replication process 

ends. This makes it possible to mitigate the performance 

degradation in the remaining time of the bulk-copy window 

after the snapshot. This process is repeated at every bulk-copy 

function. General office applications and data-processing 

applications are assumed through the data sharing among 

remote offices, and COW is used to determine the effect on 

read performance, which is zero in consideration that there 

are more read requests than write requests in the IO of such 

applications. 

A. Overview of intermittent snapshot method 

This method involves the bulk-copy function, write process 

from applications with taking a snapshot, and normal write 

process without taking a snapshot. Though a bulk-copy 

function is executed repeatedly, these processes are executed 

alternately, as explained in the following paragraph. In 

addition, other processes including read from applications are 

not changed from conventional processes. 

In the bulk-copy function, the CoR repeatedly replicates 

collective file data in the copy-entity list to the cloud storage. 

These file data are received in the cloud storage and stored. 

At replication start, a snapshot starts to be taken first. Then, 

the write process from applications with taking a snapshot 

replaces the normal write process. When a write request 

occurs, the CoR begins to read the current data and writes in 

the current data at the snapshot volume and renews the COW 

table. The new data are then written in a primary volume. At 

this time, the penalty for one read and three writes occurs in 

comparison with a normal write. 

At replication end, the snapshot stops being taken. Then, 

the normal write process replaces the write process with 

taking the snapshot. When a write request occurs from the 

application, the CoR writes in the write request data at the 

primary volume. 

The impact on application-write performance can be 

reduced by limiting the time to take the snapshot. The method 

is particularly effective with applications mainly composed of 

reads because the effect on read performance is zero with 

COW. It is also possible to reduce the cost of the cash storage 

because only the domain of the snapshot for one generation is 

needed in the CoR, whereas the snapshot domain of many 

generations is always necessary in the ordinary 

network-attached storage due to backup. 

B. Design criteria for implementing intermittent snapshot 

method 

With the proposed method, the relationship between the size 

of the bulk-copy window and synchronization delay needs to 

be addressed.  For example, each bulk-copy function is started 

every hour or 30 minutes when a bulk-copy window is set for 

one hour or 30 minutes. In addition, each snapshot starts to be 

taken in sync with the bulk-copy function and completed 

when all data replications in the copy-entity list are finished. 

This snapshot period is the same as the bulk-copy-execution 

time, which expresses the synchronization delay, and must be 

shorter than the bulk-copy window. Particularly, it is expected 

that the snapshot period is further shortened because the 

performance penalty of write requests from applications to a 

CoR occurs with COW. This depends on the number of data 

replications and WAN transfer bandwidth, and the number of 

transfers is based on the number of files updated by the 
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applications and their data size during the bulk-copy window 

in front. 

The synchronization delay is expected to decrease because 

the latest data should be placed in the cloud storage. 

Therefore, it is necessary to shorten the bulk-copy window, 

but the number of starts of the bulk-copy function increases at 

the same time. As a result, it becomes easy for the applications 

to incur a performance penalty because the snapshot period 

increases. In addition, a bulk-copy window promised for the 

end users cannot be protected when the current bulk-copy 

function does not complete before the next one begins. 

In a design implementation, it becomes necessary to 

appropriately determine how much the bulk-copy window can 

be shortened regarding the statistical frequency of read and 

write requests under the assumed application environment. 

Specifically, under the assumed write performance and 

WAN-transfer bandwidth, the smallest bulk-copy window, 

which is 100% of snapshots completed, will be necessary. 

IV. IMPLEMENTATION DESIGN 

For the design criteria explained in Section III, we discuss a 

model of our intermittent snapshot method and a simulation 

experiment. 

A. Stochastic Petri-net model of intermittent snapshot method 

We first formalize our intermittent snapshot method using 

the stochastic Petri-net model to solve an implementation 

problem because the structure and behavior of a system can be 

expressed visually. Also, the stochastic Petri-net model can 

express random characteristics of write requests from 

applications and uncertainty of WAN data transmission. 

The stochastic Petri-net model consists of a main process 

and a timing control, as shown in Figure 2. Each component is 

explained as follows. 

 

Main process 

In applications, stochastic transition T0 expresses write 

requests and publishes a write-request token based on 

probability distribution. It is assumed that the random nature 

of the write requests obeys an exponential distribution. Place 

P0 expresses divergence to T1 expressing the normal write 

processing without taking a snapshot and to T12 expressing 

the write processing with taking a snapshot. 

In a CoR, T1 and T12 are connected from P6 by a 

permission arc or inhibitor arc respectively, then either T1 or 

T12 will be chosen based on the condition of P6. Transition 

T1 requires the processing time that is equal to normal 

write-request performance. Transition T12 requires the 

processing time based on the performance penalty of a COW 

snapshot. In addition, the write-request tokens from T1 or 

T12 are collected in P1. 

Place P2 expresses a wait buffer for a bulk-copy function 

from a CoR to a cloud storage, and T2 controls the flow of 

tokens from P1 to P2. Transition T2 is connected by an 

inhibitor arc from P7 that expresses a state of a snapshot under 

the bulk-copy execution, and this transition is inhibited during 

the bulk-copy execution time. When the bulk-copy execution 

is completed (i.e. all data replications complete), T2 fires, and 

the write-request tokens that have become the candidates of 

the next bulk copy will be collected in P2. 

In T3, the write-request tokens to the same files are 

adjusted. The mean probability of unique files updated among 

all write requests is denoted as X. Then, the number of unique 

files is multiplied by a data-set conversion ratio Y and 

converted into data-set tokens that will be replicated. Here, Y 

is calculated in Formula (1). The value necessary for 

calculating X and Y to use in simulation is determined from a 

real environment. In addition, T3 is connected in a permission 

arc by P7, so T3 fires during the bulk-copy execution and the 

data-set tokens for the bulk-copy execution will be collected 

in P3. 

 

Y = average file size ÷ data-set size                                              (1) 

 

In the cloud storage, stochastic transition T4 expresses 

WAN transfer delay, and its condition is the same as that in 

our previous study [5]. Place P4 is where all data-set tokens 

have been transferred in the cloud storage. 
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Fig. 2: Stochastic Petri-net model of proposed intermittent 

snapshot method 

 

Timing control 

Transitions T5–T7 and P5–P9 control each timing of the 

main process by delivering a token to each. 

Time transition T5 expresses a bulk-copy window and 

publishes a token with a regular period of the window. Place 

P5 expresses waiting for completion of the bulk-copy 

function. If the previous bulk-copy function is not completed, 

a token remains in P5 and inhibits publishing by the token 

from T5. Transition T6 expresses a bulk-copy start when it 

fires. Place P6 expresses the state of normal write, permits T1 

and inhibits T12 when there is a token, and inhibits T1 and 

permits T12 when there is no token. When there is a token in 

P5 and P6, T6 fires, and each token is removed from P5 and 
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P6. Then, T12 fires, and taking a snapshot is started. (T1 is 

inhibited, and the normal write is terminated.) 

Transition T7 expresses the bulk-copy completion when it 

fires, and it is connected to P3 by an inhibitor arc. In other 

words, T7 does not fire unless all transfer tokens of P3 

disappear. Place P7 expresses a state of the bulk-copy 

execution, and a token will wait until all transfer tokens of P3 

disappear and T7 fires. Transition T2 is inhibited in the state 

with a token in P7, and write-request tokens are accumulated 

in P1. On the contrary, T3 is permitted to fire in the state with 

the token in P7. All tokens in P2 are transferred to P3 for 

replication. 

By using ROW or COW all the time, the stochastic 

Petri-net model has a configuration without T1 and the 

permission and inhibitor arcs from P6. The write-request 

tokens always go through T12 with a snapshot penalty. The 

other configuration of these conventional methods is the same 

as that in Figure 2. 

B. Simulation experiments and results 

We developed a simulator based on the model in Figure 2. 

With the simulator, the synchronization delay was measured 

while changing the bulk-copy window (time transition T5) to 

evaluate a suitable bulk-copy window size with the 

intermittent snapshot method. 

 

Experimental conditions 

The control settings of the experiment were as follows. We 

first measured the mean file size, mean file update rate, and 

mean write-request performance from the actual system in our 

workplace. The measurement period was from 8:00 to 20:00 

on weekdays from June 22nd through September 5th, 2017. 

The mean file size was 1 MB, mean file update rate (X) was 

33% (the rate except the write requests issued to the same file), 

and mean write-request performance (T0) was 6 operations 

per second (OPS), (the number of write requests issued for 

381 OPS of all IO requests). We also assumed that the write 

requests (T0) occurred at random and in exponential 

distribution. 

Regarding the WAN-data-transmission delay, stochastic 

transition T4 set a parameter by Pareto distribution based on a 

previous study published in 2005 [9]. We assumed that the 

WAN-data-transmission delay had not changed since 2005, 

so we used the same average and dispersion as that study. 

However, the bandwidth of the WAN varies according to 

use environment. Therefore, we assumed that the data-set size 

in Formula (1) was 36 times larger than 9 KB, which was used 

in 2005, based on our environment. The Y was calculated as 3 

tokens. 

Each delay time of a normal write (T1) and a write with a 

COW snapshot (T12) was set to 8 and 17 ms respectively, as 

determined in a previous study [7]. Note that we assumed the 

delay time under the condition of a 100% write-request ratio 

in the previous study [7]. 

Applications were assumed to run from 8:00 to 20:00, and 

the measurement time was set to 12 hours. The bulk-copy 

window size was changed from 1 second to 15360 seconds. 

The number of simulation executions was 10, and we 

calculated the average of all results in the simulation 

executions. 

 

Calculations in simulation 

We investigated the relationship between the size of the 

bulk-copy window and synchronization delay. Specifically, 

we made sure of how much the bulk-copy window can be 

shortened under the condition in which the effectiveness for 

the write-request and 100% copy-success ratio to finish the 

bulk-copy execution in the copy window is maintained. The 

following formulas were calculated using the stochastic 

Petri-net model shown in Figure 2. 

 

Effective performance of application-write requests (%) = 

(T1 number of fire times +T12 number of fire times) 

÷ T0 number of fire times) × 100                                         (2) 

 

All tokens fired by T0 should go through either T1 or T12 

within the measurement time, and no tokens should remain in 

P0. 

 

Copy-success ratio (%) = 

(1 – Number of inhibited times in T5 

÷ assumed number of bulk-copy-execution times) × 100    (3) 

 

Transition T5 should fire regularly to meet the bulk-copy 

window. However, T5 cannot fire if there is a token left in P5. 

 

Synchronization delay = 

Σ(T7 fire time –T5 fire time) 

÷ T7 number of fire times                                                            (4) 

 

The fire of T5 means the start of taking a snapshot as well 

as executing the bulk-copy function, and the fire of T7 means 

end of taking a snapshot. We assume that T5 and T6 fire at the 

same time if there is a token in P6 when the regular fire time is 

in time transition T5. 

 

Experimental results 

As a result, the effective performance of application-write 

requests was maintained at 100% even when the bulk-copy 

window was changed from 1 second to 15360 seconds. Also, 

the copy-success ratio was maintained as 100%, except the 

case in which the bulk-copy window was 1 second.  
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Fig. 3: Bulk-copy window and synchronization delay 

 

The synchronization delay was measured, as shown in 

Figure 3. The synchronization delay rapidly increased from 
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1920 seconds of the bulk-copy window, which indicates the 

limit of the bulk-copy window under given conditions. An 

appropriate bulk-copy window should be set below this limit. 

For example, if we choose 480 seconds as the bulk-copy 

window, the average synchronization delay becomes 45 

seconds, which will meet end users’ request in our workplace. 

However, further study is required to define an optimal 

bulk-copy window. 

V.  CONCLUSION 

We proposed the intermittent snapshot method for a CoR to 

regularly synchronize data with cloud storage. The method 

adopts a COW snapshot to maintain consistency of data at a 

CoR, even if the data are updated in the copy by the client 

terminals, but limits the snapshot period. The snapshot is 

taken only during the bulk-copy execution and released as 

soon as the execution is over. 

We also evaluated the proposed method from the 

perspective of an implementation design. It is necessary that 

the bulk-copy window be shortened and repeated many times 

to keep the latest data in cloud storage. We formalized the 

method by using the stochastic Petri-net model, and 

considered the proper size of bulk-copy window that 

optimizes both synchronization delay and application-access 

performance through simulation. 

We also found that there is a limit of the bulk-copy window 

under given conditions. However, we need to consider the 

following points for future work. 

The overheads of both the pre-processing and 

post-processing of the bulk-copy function may impact the 

overall throughput of the method. We assume that there is a 

tradeoff between synchronization delay and overhead, and 

that an optimal bulk-copy window can be determined from 

this tradeoff. 

The intermittent snapshot method should be compared with 

the conventional methods of ROW and COW that always 

takes snapshot. We assume that our method should perform 

better from the applications perspective. 
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