



Abstract—We developed a configuration to place a cash

storage called Cloud on-Ramp (CoR) with small capacity

between client terminals at remote offices and a cloud storage

connected by a wide area network. A CoR is placed in each

remote office, and applications access them via a local area

network, guaranteeing access performance. A CoR synchronizes

the data with the cloud storage by copying updated data from

the client terminal at regular intervals. It is necessary that a

window to carry out the bulk-copy function be shortened and

repeated many times to keep the latest data in the cloud storage.

A method of maintaining consistency of data at a CoR is

necessary, even if the data are updated in the copy by the client

terminal. Therefore, we propose the "intermittent snapshot

method", with which a snapshot is taken during bulk-copy

execution and released as soon as the bulk copy is over. We

evaluated the proposed method from the perspective of an

implementation design. We formalized the method by using a

stochastic Petri-net model and considered the proper size of the

bulk-copy window that optimizes both the synchronization delay

and application-access performance through simulation.

Index Terms— Cloud Storage, Cloud on-Ramp (CoR), Data

Synchronization, Intermittent Snapshot, Stochastic Petri-net

I. INTRODUCTION

Cloud storage [1][2] has begun to be used for collaboration

between remote offices in a company. The configuration to

place a cash storage with small capacity between a client

terminal and cloud storage has been suggested because the

problem of delay arises from the client terminal in a

distributed environment connected to the cloud storage

through a wide area network (WAN) [3]–[5]. A cash storage

is placed in each remote office, and applications access them

via a local area network (LAN), guaranteeing access

performance. We call such a cash storage Cloud on-Ramp

(CoR) [3]–[5].

A CoR synchronizes the data with the cloud storage by

copying updated data from the client terminal to the cloud

storage based on the write-back cash algorithm in a lump at

regular intervals. We call this a "bulk-copy" function. This

function should not affect the access performance from the

client terminals and their applications. Therefore, this

Yuichi Yagawa, Mitsuo Hayasaka, Nobuhiro Maki and Shin Tezuka are

with the Hitachi, Ltd., Research & Development Group, Kokubunji-shi,

Tokyo 185-8601, Japan (corresponding author to provide phone:

+81-42-327-7885; fax: +81-42-327-7687;

e-mail: yuichi.yagawa.bh@hitachi.com, mitsuo.hayasaka.hu@hitachi.com,

nobuhiro.maki.vg@hitachi.com, shin.tezuka.xs@hitachi.com).

Tomohiro Murata is with Graduate School of Information, Production

and Systems, Waseda University, Kitakyusyu-shi, Fukuoka 808-0315.

(e-mail: t-murata@waseda.jp).

function is executed when work in the remote office usually

finishes, including nighttime.

The demand of placing the latest data into the cloud storage

has recently increased. For example, there is a need of sharing

the data that have accumulated in many CoRs at remote

offices and of referring them through the cloud storage

immediately. It is also necessary to place as much of the latest

data into the cloud storage as possible because the data need

to be recovered from the cloud storage at the time of data

access errors in a CoR. We call the difference in the

synchronization time in the cloud storage determined from a

CoR "synchronization delay". The shorter the

synchronization delay, the fresher the data users can access

through the cloud storage.

It is necessary that the distance to execute the bulk-copy

function be shortened and repeated many times to shorten the

synchronization delay. We call this distance the “bulk-copy

window". However, the time required to execute bulk copy is

prolonged for the time it takes all copies of the data to update

because a re-copy runs when a file is updated in the bulk-copy

window [6].

A method of maintaining consistency of data is necessary

even if the data are updated in the copy by the client terminal

to shorten the bulk-copy window and repeated many times.

Generally, a method of maintaining the consistency of data

copying includes a snapshot method [7]. In a CoR, a snapshot

of the update data is taken from the client terminal and copied

to the cloud storage. In this study, we assumed office

applications and data processing applications through the

sharing of data among remote offices, but there are more read

commands (reading of data from a CoR) than write

commands (writing data to a CoR) in the input/output (IO) of

those applications. Therefore, we decided to adopt the Copy

On Write snapshot method (COW), with which the effect on

read performance is zero [7].

However, there is problem with COW in which the

effective performance of the write judgment from the

applications degrades. Therefore, we propose the

"intermittent snapshot method", with which a snapshot is

taken during the bulk-copy execution and released as soon as

the bulk copy is over. The performance penalty in the write

from the applications is reduced by limiting the time to take

the snapshot.

There is a problem in the implementation to appropriately

determine the bulk-copy window. Users request to shorten the

window and place the latest data into the cloud storage.

However, the number of bulk-copy execution times increases;

in other words, it becomes easy for the applications to incur a

performance penalty due to the increased time of snapshots to

Intermittent Snapshot Method for Data

Synchronization to Cloud Storage

Yuichi Yagawa, Mitsuo Hayasaka, Nobuhiro Maki, Shin Tezuka, Tomohiro Murata

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

mailto:yuichi.yagawa.bh@hitachi.com
mailto:mitsuo.hayasaka.hu@hitachi.com
mailto:nobuhiro.maki.vg@hitachi.com
mailto:shin.tezuka.xs@hitachi.com

be taken. There are also cases in which a bulk-copy window

increases when the preceding bulk copy-function is not

finished before the next one is started. Conventionally, this

bulk-copy window was determined from experience.

For this technical problem, we formalize our intermittent

snapshot method in the stochastic Petri-net model and

calculate a suitable bulk-copy window through simulation.

II. BULK-COPY FUNCTION AND ITS PROBLEM IN COR

A. System architecture

In this chapter, we give an overview of and the problem

with the bulk-copy function in a CoR.

The system architecture we assumed for this study is based

on that of a CoR that we previously proposed [3]–[5]. As

shown in Figure 1, the system is composed of CoRs placed in

remote offices, applications in client terminals accessing the

CoRs, and a cloud storage connected from the CoRs.

Remote office

WAN

CoR

File system

File

clients/applications

Cloud storage

LAN

Stub

Tenant

Namespace

File File

Remote office

CoR

File system

File

clients/applications

LAN

Stub

Tenant

Namespace

File File

Copy Refer Copy Recall

UpdateUpdate

Fig. 1. Assumed System Architecture

End users operate the application programs in the client

terminals, which generate file data. A write request to store

the data in a CoR and a read request to obtain the data that

have been stored away by the CoR are published. The request

is made in general file-sharing protocols such as CIFS or NFS.

In addition, the client terminals are connected to a CoR by

high-speed LAN.

A CoR is a cash storage that temporarily stores file data.

The request received from the client terminals are handled,

and data are stored or provided. Furthermore, the bulk of data

is regularly copied to a cloud storage to protect the stored data.

Regarding the file data on a CoR where bulk copying ended,

the use situation is checked regularly. Because a CoR has

small capacity, the data with a small access frequency leave

only a reference to the replicated data written in the cloud

storage, and the CoR deletes those data. When a read request

for the data is received, the data are first recovered from the

cloud storage to the CoR then returned to the client terminals.

Please refer to a previous study [5] regarding this process.

A cloud storage is an object storage that permanently stores

file data. A replication request received from a CoR is

handled, and data are stored. The HTTP/HTTPS suitable for

communication in a wide area is used for the request. The data

are reproduced at several inter-nodes constituting the cloud

storage and are protected. In addition, the network to connect

CoRs and the cloud storage is assumed to be a WAN, which is

slower than a LAN, because such a network is used with a

system that is applied to remote offices located over a wide

geographic area.

The bulk-copy function by a CoR is regularly executed

based on the bulk-copy window. A system manager can set

the bulk-copy window, which is determined depending on the

demand from the end users. For example, the window is kept

short if the end users want to keep the latest data shared in the

cloud storage.

B. Bulk-copy function

The bulk-copy function is composed of the following three

processes.

In the pre-process, the data for the bulk-copy function are

extracted. A CoR sorts updated data targeted for existence

confirmation, a copy of a file, and directory and outputs a

copy-entity list. Therefore, the CoR records the operation

history of the client for a file and directory using the operating

system function beforehand [8].

In the replication process, the CoR transfers the data of a

file and the directory listed in the copy-entity list to a cloud

storage. The cloud storage receives the data and stores it.

In the post-process, the result of every bulk-copy function

being executed repeatedly is recorded, for example, when a

process is not finished in a bulk-copy window when the data

for a large quantity of copies exist. In this case, the current

iteration continues and the next iteration is skipped, but the

results are recorded. It will be confirmed whether the manager

can keep the bulk-copy window the end users require with

reference to this record.

It is necessary that the bulk-copy function be executed to

maintain the data consistency of the IO requests from

applications. Therefore, a snapshot method is used. The

applications access a primary volume, and the bulk-copy

function accesses a snapshot volume while maintaining data

consistency.

C. Conventional snapshot methods and their challenges

There are generally two methods of taking a snapshot, i.e.,

redirection on write method (ROW) and COW [7]. The

overview of the two methods and the challenges when applied

to the bulk copy are explained below.

Redirection On Write snapshot method (ROW)

ROW is a snapshot method using log-structured data

management. Every chunk of new data is added to a physical

volume as the log structure, and a logical address refers to the

address in the physical volume. The chunk is first written to

add a postscript to the physical volume when an application

writes in a file and directory (postscript data). The primary

volume manages the physical address of each chunk logically

in B+tree. The snapshot volume manages the snapshot equally

as an aggregate of the physical address. The snapshot is

converted into a data array that should be read with postscript

data by converting the logic address of the chunk the

application requires into a physical address.

When ROW is applied to the bulk-copy function, there are

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

problems in performance. In both primary and snapshot

volumes, performance always degrades regarding the address

translation of the chunk at the time of the read. Particularly, it

is easy to follow that the data of one file are located at the

far-off position on the physical disk, and the performance

penalty at the time of the read is large. The write performance

to the primary volume also degrades. Because address

translation and chunk allocation must be assigned regardless

of the write size, write performance always degrades.

Copy On Write snapshot method (COW)

COW is implemented as a function of the logical volume

manager (LVM) and takes a snapshot by using the snapshot

volume and COW table for a reference prepared for

separately from the primary volume. When a client overwrites

with a file and directory, the LVM first detects a chunk of data

to be overwritten and copies it in the snapshot volume.

Furthermore, an address of the copy is recorded on the COW

table. COW overwrites with new data in the overwrite chunk

afterwards, and the COW table is stored in the fixed position

of the snapshot volume.

There are also problems in performance when COW is

applied to the bulk-copy function. Write performance to the

primary volume largely decreases at the time of taking a

snapshot (snapshot period). This is because the number of

reading and writing requests of the volume increases 3-fold,

compared with the normal IO. In addition to the write of the

new chunk, the read of the chunk to be overwritten, write of

the chunk to the snapshot volume, and write of the COW table

occur. In addition, the read performance of the snapshot

degrades. This is because the data in the snapshot are detected

from the COW table and searched from the snapshot volume.

On the other hand, the read performance of the primary

volume by the application does not degrade.

D. Problems in implementing bulk-copy function

As explained above, ROW and COW cause problems in

read/write performance. The frequency of the bulk-copy

function increases and it is expected that the synchronization

delay is shortened to reflect the latest data in the cloud storage.

However, it becomes easy for an application to incur a penalty

in read or write performance degradation due to implementing

the conventional snapshot methods because the snapshot

period increases. Also, a bulk-copy window increases when

the processing of the bulk-copy function in front does not

finish before the next one is started.

In contrast, choosing the appropriate snapshot method in

the assumed use environment and the appropriate

copy-window size (time width) are systematic problems.

However, the bulk-copy window size is conventionally

determined from experience and an appropriate bulk-copy

window size and performance limit of the bulk-copy function

based on the size has not been studied.

III. INTERMITTENT SNAPSHOT METHOD

We developed our intermittent snapshot method to limit the

snapshot period. In other words, a snapshot starts to be taken

just before the replication handling of net-net start, i.e., a file

data transfer, and finishes just after the replication process

ends. This makes it possible to mitigate the performance

degradation in the remaining time of the bulk-copy window

after the snapshot. This process is repeated at every bulk-copy

function. General office applications and data-processing

applications are assumed through the data sharing among

remote offices, and COW is used to determine the effect on

read performance, which is zero in consideration that there

are more read requests than write requests in the IO of such

applications.

A. Overview of intermittent snapshot method

This method involves the bulk-copy function, write process

from applications with taking a snapshot, and normal write

process without taking a snapshot. Though a bulk-copy

function is executed repeatedly, these processes are executed

alternately, as explained in the following paragraph. In

addition, other processes including read from applications are

not changed from conventional processes.

In the bulk-copy function, the CoR repeatedly replicates

collective file data in the copy-entity list to the cloud storage.

These file data are received in the cloud storage and stored.

At replication start, a snapshot starts to be taken first. Then,

the write process from applications with taking a snapshot

replaces the normal write process. When a write request

occurs, the CoR begins to read the current data and writes in

the current data at the snapshot volume and renews the COW

table. The new data are then written in a primary volume. At

this time, the penalty for one read and three writes occurs in

comparison with a normal write.

At replication end, the snapshot stops being taken. Then,

the normal write process replaces the write process with

taking the snapshot. When a write request occurs from the

application, the CoR writes in the write request data at the

primary volume.

The impact on application-write performance can be

reduced by limiting the time to take the snapshot. The method

is particularly effective with applications mainly composed of

reads because the effect on read performance is zero with

COW. It is also possible to reduce the cost of the cash storage

because only the domain of the snapshot for one generation is

needed in the CoR, whereas the snapshot domain of many

generations is always necessary in the ordinary

network-attached storage due to backup.

B. Design criteria for implementing intermittent snapshot

method

With the proposed method, the relationship between the size

of the bulk-copy window and synchronization delay needs to

be addressed. For example, each bulk-copy function is started

every hour or 30 minutes when a bulk-copy window is set for

one hour or 30 minutes. In addition, each snapshot starts to be

taken in sync with the bulk-copy function and completed

when all data replications in the copy-entity list are finished.

This snapshot period is the same as the bulk-copy-execution

time, which expresses the synchronization delay, and must be

shorter than the bulk-copy window. Particularly, it is expected

that the snapshot period is further shortened because the

performance penalty of write requests from applications to a

CoR occurs with COW. This depends on the number of data

replications and WAN transfer bandwidth, and the number of

transfers is based on the number of files updated by the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

applications and their data size during the bulk-copy window

in front.

The synchronization delay is expected to decrease because

the latest data should be placed in the cloud storage.

Therefore, it is necessary to shorten the bulk-copy window,

but the number of starts of the bulk-copy function increases at

the same time. As a result, it becomes easy for the applications

to incur a performance penalty because the snapshot period

increases. In addition, a bulk-copy window promised for the

end users cannot be protected when the current bulk-copy

function does not complete before the next one begins.

In a design implementation, it becomes necessary to

appropriately determine how much the bulk-copy window can

be shortened regarding the statistical frequency of read and

write requests under the assumed application environment.

Specifically, under the assumed write performance and

WAN-transfer bandwidth, the smallest bulk-copy window,

which is 100% of snapshots completed, will be necessary.

IV. IMPLEMENTATION DESIGN

For the design criteria explained in Section III, we discuss a

model of our intermittent snapshot method and a simulation

experiment.

A. Stochastic Petri-net model of intermittent snapshot method

We first formalize our intermittent snapshot method using

the stochastic Petri-net model to solve an implementation

problem because the structure and behavior of a system can be

expressed visually. Also, the stochastic Petri-net model can

express random characteristics of write requests from

applications and uncertainty of WAN data transmission.

The stochastic Petri-net model consists of a main process

and a timing control, as shown in Figure 2. Each component is

explained as follows.

Main process

In applications, stochastic transition T0 expresses write

requests and publishes a write-request token based on

probability distribution. It is assumed that the random nature

of the write requests obeys an exponential distribution. Place

P0 expresses divergence to T1 expressing the normal write

processing without taking a snapshot and to T12 expressing

the write processing with taking a snapshot.

In a CoR, T1 and T12 are connected from P6 by a

permission arc or inhibitor arc respectively, then either T1 or

T12 will be chosen based on the condition of P6. Transition

T1 requires the processing time that is equal to normal

write-request performance. Transition T12 requires the

processing time based on the performance penalty of a COW

snapshot. In addition, the write-request tokens from T1 or

T12 are collected in P1.

Place P2 expresses a wait buffer for a bulk-copy function

from a CoR to a cloud storage, and T2 controls the flow of

tokens from P1 to P2. Transition T2 is connected by an

inhibitor arc from P7 that expresses a state of a snapshot under

the bulk-copy execution, and this transition is inhibited during

the bulk-copy execution time. When the bulk-copy execution

is completed (i.e. all data replications complete), T2 fires, and

the write-request tokens that have become the candidates of

the next bulk copy will be collected in P2.

In T3, the write-request tokens to the same files are

adjusted. The mean probability of unique files updated among

all write requests is denoted as X. Then, the number of unique

files is multiplied by a data-set conversion ratio Y and

converted into data-set tokens that will be replicated. Here, Y

is calculated in Formula (1). The value necessary for

calculating X and Y to use in simulation is determined from a

real environment. In addition, T3 is connected in a permission

arc by P7, so T3 fires during the bulk-copy execution and the

data-set tokens for the bulk-copy execution will be collected

in P3.

Y = average file size ÷ data-set size (1)

In the cloud storage, stochastic transition T4 expresses

WAN transfer delay, and its condition is the same as that in

our previous study [5]. Place P4 is where all data-set tokens

have been transferred in the cloud storage.

Application/
Client

T0

T1

P1

P0

CoR

: Immediate transition
: Timed transition
: Stochastic transition

: Inhibitor arc

T5

P5

T12

T3

Cloud Storage

P3

T4

P4

T6

P7

P6

T7
Y

: Permission arc

T2

P2

X

<Legend>

<Timing control> <Main process>

Fig. 2: Stochastic Petri-net model of proposed intermittent

snapshot method

Timing control

Transitions T5–T7 and P5–P9 control each timing of the

main process by delivering a token to each.

Time transition T5 expresses a bulk-copy window and

publishes a token with a regular period of the window. Place

P5 expresses waiting for completion of the bulk-copy

function. If the previous bulk-copy function is not completed,

a token remains in P5 and inhibits publishing by the token

from T5. Transition T6 expresses a bulk-copy start when it

fires. Place P6 expresses the state of normal write, permits T1

and inhibits T12 when there is a token, and inhibits T1 and

permits T12 when there is no token. When there is a token in

P5 and P6, T6 fires, and each token is removed from P5 and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

P6. Then, T12 fires, and taking a snapshot is started. (T1 is

inhibited, and the normal write is terminated.)

Transition T7 expresses the bulk-copy completion when it

fires, and it is connected to P3 by an inhibitor arc. In other

words, T7 does not fire unless all transfer tokens of P3

disappear. Place P7 expresses a state of the bulk-copy

execution, and a token will wait until all transfer tokens of P3

disappear and T7 fires. Transition T2 is inhibited in the state

with a token in P7, and write-request tokens are accumulated

in P1. On the contrary, T3 is permitted to fire in the state with

the token in P7. All tokens in P2 are transferred to P3 for

replication.

By using ROW or COW all the time, the stochastic

Petri-net model has a configuration without T1 and the

permission and inhibitor arcs from P6. The write-request

tokens always go through T12 with a snapshot penalty. The

other configuration of these conventional methods is the same

as that in Figure 2.

B. Simulation experiments and results

We developed a simulator based on the model in Figure 2.

With the simulator, the synchronization delay was measured

while changing the bulk-copy window (time transition T5) to

evaluate a suitable bulk-copy window size with the

intermittent snapshot method.

Experimental conditions

The control settings of the experiment were as follows. We

first measured the mean file size, mean file update rate, and

mean write-request performance from the actual system in our

workplace. The measurement period was from 8:00 to 20:00

on weekdays from June 22nd through September 5th, 2017.

The mean file size was 1 MB, mean file update rate (X) was

33% (the rate except the write requests issued to the same file),

and mean write-request performance (T0) was 6 operations

per second (OPS), (the number of write requests issued for

381 OPS of all IO requests). We also assumed that the write

requests (T0) occurred at random and in exponential

distribution.

Regarding the WAN-data-transmission delay, stochastic

transition T4 set a parameter by Pareto distribution based on a

previous study published in 2005 [9]. We assumed that the

WAN-data-transmission delay had not changed since 2005,

so we used the same average and dispersion as that study.

However, the bandwidth of the WAN varies according to

use environment. Therefore, we assumed that the data-set size

in Formula (1) was 36 times larger than 9 KB, which was used

in 2005, based on our environment. The Y was calculated as 3

tokens.

Each delay time of a normal write (T1) and a write with a

COW snapshot (T12) was set to 8 and 17 ms respectively, as

determined in a previous study [7]. Note that we assumed the

delay time under the condition of a 100% write-request ratio

in the previous study [7].

Applications were assumed to run from 8:00 to 20:00, and

the measurement time was set to 12 hours. The bulk-copy

window size was changed from 1 second to 15360 seconds.

The number of simulation executions was 10, and we

calculated the average of all results in the simulation

executions.

Calculations in simulation

We investigated the relationship between the size of the

bulk-copy window and synchronization delay. Specifically,

we made sure of how much the bulk-copy window can be

shortened under the condition in which the effectiveness for

the write-request and 100% copy-success ratio to finish the

bulk-copy execution in the copy window is maintained. The

following formulas were calculated using the stochastic

Petri-net model shown in Figure 2.

Effective performance of application-write requests (%) =

(T1 number of fire times +T12 number of fire times)

÷ T0 number of fire times) × 100 (2)

All tokens fired by T0 should go through either T1 or T12

within the measurement time, and no tokens should remain in

P0.

Copy-success ratio (%) =

(1 – Number of inhibited times in T5

÷ assumed number of bulk-copy-execution times) × 100 (3)

Transition T5 should fire regularly to meet the bulk-copy

window. However, T5 cannot fire if there is a token left in P5.

Synchronization delay =

Σ(T7 fire time –T5 fire time)

÷ T7 number of fire times (4)

The fire of T5 means the start of taking a snapshot as well

as executing the bulk-copy function, and the fire of T7 means

end of taking a snapshot. We assume that T5 and T6 fire at the

same time if there is a token in P6 when the regular fire time is

in time transition T5.

Experimental results

As a result, the effective performance of application-write

requests was maintained at 100% even when the bulk-copy

window was changed from 1 second to 15360 seconds. Also,

the copy-success ratio was maintained as 100%, except the

case in which the bulk-copy window was 1 second.

Bulk-copy window (seconds)

Synchronization delay (seconds)

0

200

400

600

800

1000

1200

1400

1600

1 3 7 15 30 60 120 240 480 960 1920 3840 7680 15360

Fig. 3: Bulk-copy window and synchronization delay

The synchronization delay was measured, as shown in

Figure 3. The synchronization delay rapidly increased from

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

1920 seconds of the bulk-copy window, which indicates the

limit of the bulk-copy window under given conditions. An

appropriate bulk-copy window should be set below this limit.

For example, if we choose 480 seconds as the bulk-copy

window, the average synchronization delay becomes 45

seconds, which will meet end users’ request in our workplace.

However, further study is required to define an optimal

bulk-copy window.

V. CONCLUSION

We proposed the intermittent snapshot method for a CoR to

regularly synchronize data with cloud storage. The method

adopts a COW snapshot to maintain consistency of data at a

CoR, even if the data are updated in the copy by the client

terminals, but limits the snapshot period. The snapshot is

taken only during the bulk-copy execution and released as

soon as the execution is over.

We also evaluated the proposed method from the

perspective of an implementation design. It is necessary that

the bulk-copy window be shortened and repeated many times

to keep the latest data in cloud storage. We formalized the

method by using the stochastic Petri-net model, and

considered the proper size of bulk-copy window that

optimizes both synchronization delay and application-access

performance through simulation.

We also found that there is a limit of the bulk-copy window

under given conditions. However, we need to consider the

following points for future work.

The overheads of both the pre-processing and

post-processing of the bulk-copy function may impact the

overall throughput of the method. We assume that there is a

tradeoff between synchronization delay and overhead, and

that an optimal bulk-copy window can be determined from

this tradeoff.

The intermittent snapshot method should be compared with

the conventional methods of ROW and COW that always

takes snapshot. We assume that our method should perform

better from the applications perspective.

ACKNOWLEDGMENTS

We thank Mr. Yoshiyuki Fujita and Mr. Tatsuya

Matsumoto of Hitachi Ltd., IT Services Division for their

support during the experiments.

REFERENCES

[1] M. Alam and K. A. Shakil: "Recent Developments in Cloud Based

Systems: State of Art," arXiv:1501.01323 (2015)

[2] V. Venkatesakumar, R. Yasotha and A. Subashini: "A brief survey on

hybrid cloud storage and its applications," World Scientific News, Vol.

46, pp. 219-232 (2016)

[3] Y. Yagawa, A. Sutoh, K. Matsuzawa, Y. Fujita, O. Matsuo, and T.

Murata: “A Cloud Storage Cache System to Improve Data Access

Performance through WAN”, The 29th International Technical

Conference on Circuits/Systems, Computers and Communications

(2014)

[4] Y. Yagawa, A. Sutoh, E. Malamura, T. Murata: “Modeling and

Performance Evaluation of Cloud On-Ramp by Utilizing a Stochastic

Petri-Net”, 5th IIAI International Congress on Advanced Applied

Informatics, pp. 995-1000 (2016)

[5] Y. Yagawa, A. Sutoh, E. Malamura, T. Murata: “Implementation

Design and Performance Evaluation of Partial Recall Method”, IEEJ

Transactions on Electronics, Information and Systems, Vol. 137 No.

10 pp. 1414-1421 (2017)

[6] J. Nemoto, A. Sutoh, and M Iwasaki, “File System Backup to Object

Storage for On-Demand Restore,” Proc. 5th IIAI International

Congress on Advanced Applied Informatics, pp. 946-952, Kumamoto,

Japan, Jun. 2016.

[7] W. Xiao, Q. Yang, J. Ren, C. Xie, and H. Li: “Design and Analysis of

Block-Level Snapshots for Data Protection and Recovery”, IEEE

Transaction on Computers, Vol. 58 (2009)

[8] M. Takata and Atsushi Sutoh, Event-notification-based Inactive File

Search for Large-scale File systems, Proc. Asia-Pacific Magnetic

Recording Conference, TA-3, 2012.”

[9] T. Kashima, S. X. Kato, T. Akiyama, K. Nozaki, Y. M. Matsumoto,

and S. Shimojo, “A Method for the Estimation of Collective

Communication Time Using Probability Distribution of

Communication Latency in Grid Environment”, Vol. 46, No. SIG16

(ACS12) (2005)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

