
 

  
Abstract—Extensive proportions of active water distribution 

networks are situated in urban regions with very high service 
demands that subject them to lots of external pressure. This 
means that they are exposed to higher risks-of-failure. Within 
urban regions, however, water pipelines are lined in different 
city locations with varied risk levels. Pipelines are bound to fail 
despite their location. Nonetheless, additional location 
dependent risk elements may either heighten or lower the 
failure process. In this paper therefore, we evaluate failure 
trends of pipelines in a region characterized with two soil 
types; regular and volatile Dolomitic grounds, outlining how 
the different soil types affect water pipeline failures. We also 
assess failure variations in two major pipe alignment zones 
identified during the study. To achieve this, we used data from 
a selected metropolitan region in South Africa and applied 
Bayesian Networks to accommodate inherent data uncertainty 
while modeling failure causal properties. Findings from the 
assessment indicate that risk-of-failure is higher along exit 
sections that experience additional external pressure. 
 

Index Terms—water distribution networks, leakage, water 
pipeline failure, Bayesian networks, risk-of-failure. 

I. INTRODUCTION 
Ortable water infrastructure varies from small 
straightforward rural gravity systems to more 

complicated and computerized schemes with numerous 
distribution networks in larger cities [1]. In urban regions, 
however, distribution networks are exposed to increased 
levels of operational pressure considering the magnitude of 
workload in these areas. In South Africa, practically all the 
metropolitan regions undergo rapid population growth rates 
of about 4.3% on an annual basis. In addition to this, there is 
an even higher increase in the number of water dependent 
economic activities [2]. Besides the build up of demands in 
urban areas; pipelines are also subjected to a continuous 
decomposition process that is heavily influenced by 
surrounding environmental conditions [3]. Consequently, as 
a steady pipeline disintegration process carries on in the 
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midst the ever increasing urban pressure, increased pipeline 
failures are witnessed. This has increased awareness about 
the need for better management of water infrastructure, 
which in turn, results to the development of research based 
and techniques of assessing pipeline operation, maintenance 
as well as pipeline failure [3], [4]. 

Pipeline failures are generally referred to as the 
‘unintended loss of pipeline contents’ [5], Pipeline failures 
are inevitable [1], [4] and appear in different forms [1], 
including pipe breaks [4], [6], [7], cracks along the pipelines 
[8], pipe bursts [9] –[12] or even total collapse after 
extended exposure to extreme conditions [13]. Regardless of 
the type of failure, their effects stretch over the entire 
community, its environment and even affect human health 
and wellness [1], [3], [14], and [15]. If these failures occur 
in unstable Dolomitic grounds like in our study area, then 
the effects could be fatal. Active preventative measures are 
therefore encouraged to assist in minimization of pipeline 
failures. This can be achieved through prediction of failure 
possibilities along the distribution networks. 

II. DOLOMITIC GROUNDS AND PIPELINE FAILURES 
Dolomitic grounds are regions with an undercover of 

dolomite rocks [16], [17]. These regions are highly unstable 
(volatile) and are generally considered as high-risk locations 
[17], [18]. Dolomite rocks can dissolve in water [16]-[19], 
and when this happens, hollow spaces are created within 
them. Top soil coverage is then compelled to cave in to fill 
the hollows leading to massive ground movements that 
cause immense structural damage [16], [17]. This makes 
them potentially dangerous locations in cases of pipeline 
leakage. On the other hand, with their composition of a 
carbonate of magnesium and calcium, the rocks act as 
neutralizing agents with only 4% corrosion effect on 
pipelines [20]. Given that corrosion is a major contributor to 
pipeline failure [1], [7], [21], and [22], dolomite rocks 
therefore, have a possibility of minimizing pipeline failure. 
This however, does not dismiss the collapsible tendencies of 
soil in such regions [16]-[19], which may result in cracking 
and breaking of pipelines. In addition, longitudinal and 
circumferential deflections as well as the safe span space of 
pipelines are also considered to greatly influence failure in 
these grounds [14], [23]-[25]. For this reason, it is very 
important to identify the trends of failure in such regions, 
with the aim of utilizing these trends in constructive leakage 
prediction modeling. 
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III. UNCERTAINTY IN HISTORICAL FAILURE RECORDS 
During the process of modeling, uncertainty can be 

encountered in various ways, including irregularities in 
analysis and parameterization [26], [27], model extraction 
and integration processes [28], as well as uncertainty with 
the data itself [26], [27], [29]. This study, however, focuses 
on the aspect of data uncertainty. Historical records about 
failures and maintenance procedures are used for model 
creation and testing purposes. These records, mostly 
obtained from water utilities have the tendency of being 
deficient or full of flawed information, or sometimes, both 
[23], [28]. In addition, different techniques used for data 
acquisition may also produce results with a number of 
assumptions that may threaten the integrity of the data 
collected [30]. Therefore, historical data may be highly 
uncertain, causing substantial complications during 
estimation of pipeline failure trends [28], [31]. In extreme 
situations, some utilities may not even have data completely 
[23], [31], and [32]. These uncertainties can however, be 
accommodated into modeling, through the use of dynamic 
models that can assimilate both prior knowledge and 
collected data [28], [33]. One such technique is Bayesian 
Networks (BNs). Other techniques, fit for handling data 
uncertainty are highlighted in the following Sub Section 3.1.  

A. Techniques for Handling Data Uncertainty 
Effective manipulation of historical data with uncertainty 

in a predictive modelling process ought to capture every 
single aspect of data dependency, especially based on causal 
perspective; an aspect assumed by most models [30], [33], 
and [34]. Utilization of network-based models may 
therefore, be effective for capturing data dependency, 
making it easier to deal with inherent data uncertainty. Some 
of these network based modelling techniques, as discussed 
in [33] include: Cradle Networks (CNs), Cognitive Maps, 
also called Fuzzy Cognitive Maps (CM/FCM), Bayesian 
Belief Networks (BBNs), Fuzzy Rule Based Models 
(FRBM), Analytic Network Process (ANP) and Artificial 
Neural Networks (ANN). Additionally, a comparison of 
these techniques based on their ability to handle data 
uncertainty and several other modelling qualities such as 
complexity, scalability, ability to handle different inputs 
among others, is also performed [33]. In consideration to the 
techniques highlighted herein, this research makes use of 
Bayesian Networks (BNs).  

B. Bayesian Network for Pipeline Failure 
 Bayesian Networks (BNs) are sometimes referred to as 

Belief Networks or Directed Acyclic Graphs (DAG). They 
are built using nodes that symbolize practical variables in a 
system; and arcs that join the nodes, demonstrating 
probabilistic relationships among them [27], [35]. The nodes 
and arcs are ordered and connected strategically indicating 
causal relationships between the variables, which creates 
generational problem solutions, whereby a node is referred 
to as a child or parent of another node [28].A parent node is 
a node that directly influences the occurrence of another 
node, which becomes its child. Parent nodes are, considered 
as the event originators in a BN domain [28], [36]. If a node 
does not have any children however, it is given the name 
‘leaf node’ and it stands out as a symbol of the eventual 

result [36]. Non-root and non-leaf nodes are known as 
intermediate nodes. 

Causal dependency in a BN domain is effected through 
direction of connectivity between the nodes in the sense that 
the node to which an arc is extended become the child of a 
node from where the arc is extended [28], [33]. Uncertainty 
is accommodated through assignment of relevant 
probabilities to the model variables [36], which are 
computed to achieve the overall result using Bayes theorem 
as given by equation (1). A BN model for leakage detection 
is illustrated in Fig.1. 

)(
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yP
yPPyP θθ

θ =
                      (1) 

Where θ is the unknown variable under estimation, P 
(θ|y),the posterior probability of θ, P(θ) giving the prior 
likelihood θ and P(y|θ) as the likelihood function for any 
chance of occurrence of state y considering available alleged 
causal dependencies and the predictive parameters. 

C. Why Bayesian Networks? 
Based on a comparison of the techniques discussed in 

Section 3.1, BNs stand out as a suitable candidate for 
modelling pipeline failures based on its qualities such as 
ability to express data causality even in qualitative inputs. In 
addition to this, BNs also have the ability to handle small 
and incomplete data sets. Using BNs, it is possible to model 
scalable complex systems; but at the same time, allow 
speedy outlay of results. Most importantly however, is their 
ability to combine knowledge from several sources and how 
well they accommodate explicit treatment of uncertainty. 
BNs, however, require data to be effective and also require 
skill and knowledge to work with. Although BNs have been 
used to model pipeline failures in a number of instances, 
majority of the models produced somehow lack location 
specificity, especially in high-risk zones. This is adequately 
addressed in this study. 

D. Overview of application of Bayesian Networks to 
Model Pipeline Failures 
BNs have been applied in several ways to model different 

aspects of pipeline failures in general [26], [27], [37]-[40]. 
While undertaking a research aimed at assessing the risk of 
failure of metal pipelines, BNs were used to accommodate 
the combination of a number of dissimilar factors of failure 
in [33]. Bayesian inference was then used to evaluate and 
determine possibility of failure in these pipes. Similarly, a 
research aimed at identifying the extent to which various 
causal factors influence failure was conducted in [37]. In 
this research, BNs was used to compute the weight of 
influence of these factors to failure, after which, the results 
were used to calculate the deterioration rates of water 
pipelines. 

In yet another study, BNs together with Fuzzy Logic were 
collectively used to determine how pipeline safety could be 
enhanced to minimize risks caused by failure [40]. 
Likewise, another combination of BNs with the Scoring 
technique was performed in [39], where an exclusively data 
oriented scoring model and BN models were used to assign 
scores to failure parameters, which were then weighted to 
produce possible leakage estimations. These two 
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combinations showcase the flexibility of BNs indicating 
various possibilities on how BNs can be employed in 
leakage prediction. 

IV. DATA DESCRIPTION AND FINDINGS IN THE STUDY AREA 
Situated in a moderately populated urban setting, 

Doringkloof suburbs in Gauteng Province, South Africa 
have a number of activities underweight, including an active 
process of pipeline rehabilitation activities. Data pertaining 
to pipeline failure and maintenance for a period of 5 years, 
as well as data about the pipeline (asset) details in the region 
were obtained from the municipal water department. The 
sets of data were then analyzed and merged together so as to 
obtain the variables used in the BN model in Fig. 1. From 
the data, we identified that selected area has over 1,000 
pipeline connections. Over the stated duration, 
approximately 335 leakage episodes were recorded, with 
58% of the failures requiring repairs of water distribution 
pipes. An illustration of this observation is given in Fig. 2, 
in Section 5. 

Majority of the repairs were conducted on small pipes 
with diameters of about 100mm. On the other hand, the least 
number of repairs were conducted on large pipes, with 
diameters of between 350-600mm, confirming that small 
diameter pipes are more prone to failure than pipes with 
larger diameters [9], [41], and [42] as illustrated in Fig. 3 in 
Section 5. Pipe age was found to considerably affect failure, 
derived from the fact that majority of pipe failures was 
observed in pipes that were laid down in the period between 
the late 1960s and late 1970s. This is the period when the 
oldest pipes in the region were identified. 

We also discovered that majority of failures recorded 
were concentrated along street corners and road 
intersections, also referred to as Exit Roads. This element 
may be as a result of added external stress imposed on the 
pipes [20]-[22]. This is the hypothesis that we seek to prove 
in this paper through the use of Bayesian Networks. 

A. The Failure Prediction Model 
For model creation, we made use of 8 factors that 

adequately exhibit causal tendencies including: Location 
(Lo), Strain (Sn), Soil-type (St), Material (Mt), Corrosion 
(Cr), Diameter (Di), Damage (Dg), and Defects (Df). Based 
on literature, their ability to influence favourable conditions 
that either cause, or lead to pipeline deterioration and 
eventual failure were determined. Although pipe Age may 
highly influence pipeline failure, it does not reveal direct 
causal effect to other variables; hence it is excluded from the 
model. 

Using these variables, the BN structure was developed as 
shown in Fig. 1; with the Conditional Probability Tables of 
the root nodes as well as the conditional probability 
distributions for the intermediate variables specified as 
indicated in the Conditional Probability Tables (CPTs) 
shown in Tables I to IV. 

Material
P	
  (Mt)

Diameter
P	
  (Di)

Soil	
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P	
  (St)

Defects	
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Leakage	
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  (Sn|Lo)

Location
P	
  (Lo)

Soil Type (St)
Dolomite = 0.078
Regular = 0.922

Material (Mt)
ACD = 0.057

HDPE  = 0.340
Steel = 0.157
uPVC = 0.446

	
  

	
  	
  

	
  

	
  

	
  

Diameter (Di) 
Small  = 0.546

Medium  = 0.350
Large  = 0.104

Location (Lo)
Erf  = 0.633
Exit  = 0.367

Defects  (Df)
True = 0.020
False  = 0.980

	
   	
  

 
Fig. 1. Bayesian Network Model 

In Fig. 1, the uppermost parameters (Soil-Type, Material, 
Diameter, and Location) as well as Defects; are the 
independent root nodes. The type of Material that the pipe is 
made up of as well as the Soil Type where the pipe is laid 
influences the occurrence of corrosion in a pipe. The 
location of a pipe on the other hand, determines how much 
Strain it would undergo. Strain acts collectively with 
Diameter to cause pipeline Damage. A walk through the 
genealogical causal relationship leads us to leakage, which 
is the ultimate goal of the system. Leakage is influenced by 
the presence of Damage in a pipe, Corrosion as well as 
Defects. Initial probability distributions for all the nodes, 
also referred to as prior probabilities, were generated from 
the data set, literature and in some instances, through expert 
elicitation. 

Based on the number of present variables, the joint 
probability P (XI, X2,…, Xn) of any set of variables in the 
domain is generated for effective evaluation of the target 
node. This is achieved by getting the product of all available 
distributions for every variable in the in the domain [36, 43]. 
However, if variables {Xi,…..Xk} ∈ {X1, X2,…,Xn} constitutes 
a particular set of variables Y⊂X and takes on the 
arrangement y = {Xi =xi,…Xk = xk}, then the probability of y 
is obtained by getting the sum of all the joint probabilities of 
X in the distribution of Xi =xi,… Xk =xk [43], [44]. 

Because BN are updated based on acquisition of new 
evidence pertaining to the variables, then if we acquire a 
new group of evidence e, given as e = {Xi =xi,…Xk = xk}, 
that are contained by all the acknowledged values of the 
random variables in a BN, of which {Xi, …, Xk} ⊂ {X1, 
X2,…, Xn}, then computation of the probability of a variable 
Xt, when Xt ∉{Xi, …, Xk} assumes the value xt as shown in 
equation (2), which is basically derived from equation (1) 
[43]- [46]. 
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eP
xxePxxPexxP tttt

tt
=×=

==      (2) 

For instance, in Fig. 1, if we observe evidence that a pipe 
is made of Dry Asbestos Cement (ACD) pipe material, our 
evidence e = {Mt = ACD}, then belief that there is corrosion 
would be given as: 
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   (3) 

If we know that a pipe with properties: small diameter, 
ACD material, soil type Dolomite and location Erf, chances 
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of failure given the conditions is computed as in equation 
(4) 

TABLE I: Conditional Probability Table (CPT) for Strain (Sn) 

Location (Lo) Probability of Strain (Sn) 
 High  Low  NoStrain 
Erf 0.120 0.520 0.360 
Exit 0.640 0.200 0.160 

TABLE II: Conditional Probability Table (CPT) for Corrosion (Cr) 

TABLE III: Conditional Probability Table (CPT) for Damage (Dg) 
 

 

 

 

 

 

 

 

 

 

 

TABLE IV: Conditional Probability Table (CPT) for Leakage (Lk) 

),,,(
),,,,(

ErfLoSmallDiACDMtDolStP
ErfLoSmallDiACDMtDolStPosLkP

====
===== (4) 

Equation (4) is used to compute failure probabilities for 
different locations, that is, in Erfs and Exit roads. Erfs are 
pipe alignment regions found within residential areas that 
are less prone to several activities. Exit locations on the 
other hand, are regions often exposed to a lot of eternal 
pressure due to proximity to traffic intersections, round 
about areas or even busy highways. 

V. TESTING AND RESULTS 
In this Section, we give two sets of results. Firstly, a brief 

description of some of the observations made from the data 
set is outlined, and last but not least, we present the BN 
computation results regarding the effects of location on 
pipeline failures. There are a number of components that 
make up a water distribution system including hydrants, 
valves, and pipelines among others, which are all prone to 
failure. Of all the leakage related repairs recorded in our 
data set, their distributions were as illustrated in Fig.2. 
Majority of repairs were on small diameter pipelines, 
followed by repairs in the utilities’ service pipes. Least 
repairs were performed on air valves as well as on large 
diameter water pipelines. 

 
Fig. 2. Ration of leakage related repairs in the distribution network. 

Collectively, most failures were seen on the distribution 
pipelines, with smaller diameters of between 50mm to 
100mm. The larger diameter pipelines of between 300mm to 
600mm experienced the least number of leakage related 
repairs as illustrated in Fig. 3. 

 
Fig. 3. Distribution of leakage repairs based on diameter size of the 
pipelines 

According to Fig. 3, leakage repairs along small diameter 
pipes accounts for 93% of the total repairs conducted water 
pipelines only. On the other hand, large diameter pipe 
failure accounted for just 1% of the total pipeline network 
repairs recorded.  

To determine the failure distribution based on pipeline 
location, a sample space of about 60 pipelines of different 
sizes in the network were evaluated. From the sample size, 

failure distribution with regards to the pipe alignment zones 
was as shown in Fig. 4. This could be explained based on 
the relationship between external pressure and pipeline 
failures; in that the greater the exposure to more external 
pressure, the higher the probability of risk-of-failure [45]-
[46]. There were no large diameter pipelines aligned in Exit 
regions from the sample space, thence the absence of failure 
record in exit the location. 

Material 
( Mt) 

Soil type 
 (St) 

Probability of 
Corrosion (Cr) 

  Yes  No  
ACD Dolomite 0.040 0.960 
ACD Regular 0.290 0.710 
HDPE Dolomite 0.000 1.000 
HDPE Regular 0.000 1.000 
Steel Dolomite 0.040 0.960 
Steel Regular 0.290 0.710 
uPVC Dolomite 0.000 1.000 
uPVC Regular 0.000 1.000 

Strain 
( Sn) 

Diameter  
 (Di) 

Probability of 
Damage (Dg) 

  Yes   No 
NoStrain Small 0.120 0.880 
NoStrain Medium 0.027 0.973 

NoStrain Large 0.025 0.975 

Low Small 0.160 0.840 

Low Medium 0.120 0.880 

Low Large 0.080 0.920 

High Small 0.640 0.360 

High Medium 0.520 0.480 

High Large 0.440 0.560 

Damage 
( Dg) 

Corrosion 
 (Cr) 

Defects 
(Df) 

Probability of 
Leakage (Lk) 

   Positive 
 (Po)  

Negative 
(N) 

No No False 0.000 1.000 
No No True 0.020 0.980 
No Yes False 0.012 0.988 
No Yes True 0.050 0.950 
Yes No False 0.500 0.500 
Yes No True 0.500 0.500 
 Yes Yes False 0.512 0.488 
Yes Yes True 0.980 0.020 
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Fig. 4. Distribution of failures based on pipeline location. 

A. Computation based Results 
To illustrate how the joint distribution is used to compute 

new beliefs about a variable, we make use of Fig. 1, taking 
into consideration only a small portion of network. We 
consider a domain made of Soil-Type (St), Material (Mt) 
and Corrosion (Cr). The joint distribution is given as P (St, 
Mt, Cr). If expanded, the distribution is expressed as: 

),|()()(),,( MtStCrPMtPStPCrMtStP ××=          (5) 

Therefore, if we know that the Soil-Type is Regular, 
Material is Steel, and Corrosion Positive, then the joint 
probability of the domain under any circumstances is 
computed as follows indicated below. It is important to note 
that P (Cr = Yes| St = Regular and Mt = Steel) = 
<0.290>given a direct reading from the CPTs for 
intermediate node (Corrosion). 

P (St = Regular, Mt = Steel, Cr = Yes) = P (St = Regular) ×  

P (Mt = Steel) × P (St = Regular, Mt = Steel, Cr =Yes)  

= 0.922 × 0.157 × 0.290 = 0.04198 ≈ 4.198% 
In this instance, the probability of occurrence of 

Corrosion in a pipeline when pipe material is made of steel 
and it is installed in a regular piece of land, collectively, 
becomes 4.198%. The joint probability in this case presents 
the probability of occurrence of the query node under any 
circumstance, but within the specified states of the local 
domain. 

During the computation process, the probability of failure 
in an internal location (Erf) produced the results below: 
Note that due to the very lengthy nature of the 
extrapolations of the conditional probability distributions of 
the variables, entire calculation is not indicated in this paper. 

),,,(
),,,,(

ErfLoSmallDiACDMtDolStP
ErfLoSmallDiACDMtDolStPosLkP

====
=====  

0.0001783 / 0.0015366 
= 0.11604 ≈ 11.604% 
On the contrary, probability of failure in a pipeline with 

the same properties under similar conditions, but in an Exit 
location with more external pressure resulted to: 

),,,(
),,,,(

ExitLoSmallDiACDMtDolStP
ExitLoSmallDiACDMtDolStPosLkP

====
=====  

=0.00022325 / 0.0008909 
= 0.25059 ≈ 25.059% 

A visual comparison of the two computations is 
illustrated in Fig. 5. 

 
Fig. 5. Risk-of-failure margin between Exit and Erf Locations 
 

Based on the comparison of failure probabilities in the two 
regions as observed from the computations and the chart 
illustration in Fig.5, there is a 13.455% margin between 
failure in an Erf and Exit location. This computational 
outcome verifies the observe outcome in our data analysis 
process in Section 4, backed up by the illustration in Fig. 4, 
concerning the differences in failure risk based on location 
of a pipeline. Additionally risk-of-failure is found to be 
higher in regions with regular soil types compared to those 
with dolomite soil type. 

VI. CONCLUSIONS 
In this paper, an assessment on how the aspect of location 

affects failure of water pipelines was presented. The process 
was achieved through an examination of a data set 
accompanied by predictive investigation through Bayesian 
Networks. Results from both analyses indicate that majority 
of pipeline failures arise in regions that are more exposed to 
higher external pressure.  

Besides the findings regarding pipe location and failure, 
we also realized that the issue of data ambiguity seemed 
quite unavoidable even though the set of data used was 
derived from a specific environmental background with the 
aim of minimizing potential data variations. The noticeable 
absence of both asset information and maintenance records 
in some instances showcase the importance of tracking 
historical failures by respective pipeline utilities. 

The model developed herein, made use of only the 
noticeable causal aspects of pipeline failures. However, to 
achieve more effectiveness in development of failure 
prediction models, inclusion of the consequence index that 
adequately captures the severity of pipeline failures together 
with tangible estimations of the cost of pipeline failures 
ought to be considered. This would ensure optimization of 
the prediction models. We therefore campaign for future 
research focused on the inclusion of the impacts of pipeline 
failures to enhance the performance of the failure prediction 
models.  
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