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FreguentPattern Mining in Multiple Trajectories
of Football Players

Yuto Suzuki and Tomonobu Ozaki

Abstract—Recently, it has been regarded as important in introduction makes the miner possible to extract patterns
many sports fields to evaluate the tactics and athletes using py absorbing the difference of concrete player sets. The
actual play records. In this paper, as a first step towards ,.,n456d enumeration algorithm can extract frequent patterns

a quantitative evaluation of the strategies in football games, ithout duplication b lovi f t of
we propose an algorithm for discovering frequent patterns on without duplicalion by employing a frequency count ot a

simultaneous trajectories of multiple football players. In the Pattern in a long sequence as well as a representation of
algorithm, given trajectories are firstly converted into a set temporal relationship among interval-based events.

of labeled sub-trajectories corresponding to the interval-based  The proposed algorithm is evaluated quantitatively and

events. A pattern enumeration algorithm is then applied to the ot ; ; ;
: ) ; > . ualitatively by using real trajectory datasets on nine matches
obtained interval-based events with a consideration of the order q y oy 9 J Y

of events, the time difference and the spatial spread of sub- in Japanese professional football league. Through the ex-

trajectories. We introduce variables for subjects of events (sub- Periments, we confirm the effectiveness of the proposed
trajectories) in the pattern. By using variables, we can recognize algorithm from the aspects of the computation time and

which events were played by the same player and which eventsthe number of extracted patterns. In addition, patterns for

were played differently. In addition, it is possible to extract yonresenting offensive and defensive tactical movements can
a pattern which absorb the difference of concrete players. be successfully extracted

To evaluate the proposed algorithm, we conduct experiments . . . ) )
using real trajectory datasets on nine matches in Japanese The rest (_)f this paper I1s organ_lz_e_d as f0"0W_'5- As _prellm-
professional football league. The results on the computation inary, we give notation and definitions on trajectories and

time and the number of extracted patterns show the feasibility their derived events in section II. In section Ill, we define a
and effectiveness of the algorithm. In addition, we succeeded fraqyent pattern to capture meaningful combinations of sub-
in extracting meanlngf_ul patterns representing certain offensive traiectories by multinle subiects. An enumeration aldorithm
and defensive strategies formed by multiple football players. | y . P | . . X g'

for the pattern is also proposed in this section. Experimental
results using datasets on nine matches in Japanese profes-
sional football league are reported in section IV. Finally, in
section V, we summarize the paper and describe future work.

Index Terms—trajectory mining, frequent patterns, sequen-
tial patterns, football

|. INTRODUCTION

N recent years, in various sports fields typified by vol- Il. PRELIMINARIES

leyball, basketball and football, it is widely recognized In this section, we give notation and definitions on a
as important to analyze the ability of the players and theajectory, which is the input of our pattern enumeration
team tactics based on not experience or intuition, but @noblem in this paper.
the actually recorded play data. To evaluate the abilities
quantitatively, various studies have been conducted. In the Trajectory database
field of football for example, Kang[1] reports a quantitative
evaluation of athletes’ performance and Lucey[2] analyses
the difference in tactics between home matches and awgy = (o, (29,4, a9),-- -, (z2,92,a9),--- , (z5,9¥%,a%)) ),

matches. In addition, Bialkowski[3] proposes an unsuper- . o o o 0 o
vised method to learn a formation template. is a pair ofo and a sequence ¢y, yy, a7)s where(z7, y7)

In this paper, as a first step towards a quantitative evall§tneo's position in the 2-D space and is a set of attributes
tion of the tactical movements among multiple players sim® ¢ at timet (1 < ¢ < T), respectively. In this paper, we
taneously, we propose a framework for extracting frequeﬂ?sume that the positions and attributes can be obtained in
patterns in multiple trajectories in football matches. As wiffonstant time interval. o .
be described in detail later, in the framework, we first convert A Sub-trajectory oftr from starting timee™ to ending
a set of trajectories into a set of labeled sub-trajectoriddne ¢ (1 < et <e” <T)is apair of the subject and
or interval-based events. We then apply an extended v&rPart ofo's trajectory frome™ to ™. It is defined formally
sion of frequent sequential pattern miner to the obtain&¥ follows:
events for _extracting frequent c_ombinatior_15 of interval-basegh o+ . ¢—] = (o, (204,40, als ), -+, (2%, y0-,a2-)) ).
events satisfying time and spatial constraints among the sub-
trajectories. We introduce variables for subjects of each event® 1abeled sub-trajectorytre[e* : e~} of a sub-trajectory
into the pattern to distinguish the events played by the safféle’ : e7] is defined as a five-tuple
player from those by difference ones. In addition, the variable ;s o[c+ . ¢—] =

A trajectory of lengthT" by a subjecb, represented as
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a labeling function or a mode/M which gives a label Given a maximum threshold, a degreed; (i € {1,2})

for trele™ : e~] based on a certain information anand of spatial spread, and a set of labeled sub-trajectdifes
(x2,y?, a9)s. Motif discovery algorithms[4], [5], [6], [7] and if the conditiond;(ITr) < p holds, then we say thdfl'r
sub-trajectory clustering algorithms[8], [9], [10] are typicakatisfies the constraints on spatial spread and denote it as
examples of such model. From technical reasons, a specidll'r, d;, p).

label nil is introduced to show that the labeling model

determines that the given sub-trajectery[e™ : e~ has no  Given a setiTr = {ltr°i[ef : e ], -, ltron[el : e;]}
special information. of n labeled subtrajectories, the starting and ending time of
A setTR = {tr°t,--- ,tr°N} of N trajectories is called {Tr is defined as
a t_rajectory database. By using a Iab_ellng functiof, a start(ITr) = Mingofero-jcrrr e
trajectory databas€R can be converted into a set of labeled _ _
: - : : - end(ZTT) = MaXjroletie—]elTr €
sub-trajectories. The obtained set is formally defined as
follows: respectively. For a non-negative numberand a set/7T'r,
o€ {01, on) if {Tr satisfies the conditiomnd(ITr) — start(ITr) < T,
M(TR) = {itrfet s ]| 1 # nil _ denpted a;(lTn 7), theniT'r is said to satisfy the constraint
l<et<e—<T on time difference.

q Wg pe_rform frequg nt patterr_l dlscqvery O(TR). The C. Temporal relationship in a set of sub-trajectories
etails will be described later in section lIl.

An event having time duration such as a labeled sub-
trajectory is called an interval-based event in general. The
temporal relationship among a set of interval-based events
In this subsection, we introduce constraints on Spgieans the temporal relationship among endpoints. While

tial spread and time difference for a set of labeled sub- formal definition is provided later, the endpoint is a
trajectories. These constraints are utlized to define the S@mrting or ending poin[ of events. In a naive way, the

B. Constraints for a set of sub-trajectories

port count of a pattern. - . temporal relationship among interval-based events can
For a labeled sub-trajectori¢r?[e* : e, its center of pe represented by using,C» binary relationships on the
gravity is defined as all combination of endpoints. In contrast, Wu[11] proposes
o o a sequence representation for temporal relationship among
- 5 _ | L o 1 0 interval-based events usity endpoints an@®n — 1 binary
(meJr:e*’ye*:e*) - Z Lty Z Y . . . - . .
ot L~ relationships only. We essentially utilize this nonambiguous

representation to introduce a temporal sequence for a set
whereL = e~ —e™ + 1. As similar, the center of gravity of labeled sub-trajectories. The temporal sequence plays an
of a setiTr = {ltroifef : e], - ,ltrofe) : e,]} of n  essential role in the enumeration of frequent patterns.
labeled sub-trajectroies is defined as The starting and ending points of a Iabeled sub-trajectory

Lo Lo (0,1,e™, 8 ~,(--+)) are denoted as(o;,l;,ej,e; )T and
(Xirr, Yirr) = (n _, nzy:+p> (04,15, ,e; ). For a setTr of n labeled sub-trajectories
1:1 k3 k2

ITr = Ovlae+56_a y Ty Onalnaejy,_7e7:7 )
By using the above definitions, the degrée of spatial {(onhelsers () ( )
spread oflT'r is defined as a maximal distance between thee introduce a set of endpoints

center of gravity of each labeled sub-trajectory and that OEP (ITr) = {{os, liy e, e ) | (0 liet e ) € 1Tr}
lT’l”. - 29 17771 29 1177 )

i=1

U{{oi, i, e, e; )™ | (oz,l“e;r elTr}
di(ITr) = and four related functions(ep) = o, l(ep) =, m(ep) =
2 3 andt(ep) = ™) onep = (o,1,ete™)™ € EP(ITr). For
max ) (Kirr —2%,) 4 (Virr — 000 e, givercp — + b
lirolet o |elTr Tetiem etiem example, givenep = (0;,1;,e},e;)*, m(ep) becomes+

and thust(ep) becomes:!?) = e

In addition, we consider another measure for the spatlalUnder the above preparation, given a &Bt, a sequence
spread without the center of gravities. Given two labeled

sub-trajectoriegtri[ej : ;] and [tr®s [e;',ej_} in {Tr, the seq(ITr) = (ep1,€ep2, - ,€P2n—1,€Pan)
distance between the two is defined as the shortest distance N
between positions ittri e} : e; ] andltroifef, e ]: satisfying the condition
mdist (Zt'roi [e+ : ] ltroi [ e; ,ej D = {61717 o 7€P2n} = EP(ZTT) /\Vivj(lgi<j§2n) [Epl' =< €pj}
min (x9" —2)7)2 + (y) —yy?)? - is called a temporal sequence lGfr. A binary relationship
et<t;<er,ef<t:<er ‘ ’ ‘ 7 : :
i 006 =G ~< between two endpointsp; andep; becomes true if one
The maximum value of the shortest distances between a#fythe following condition holds:
two labeled sub-trajectories T is employed as a degree 1) t(ep;) < t(ep;)
dy of spatial spread of'r. It is formally defined as: 2) tep;) = t(epj) Am(ep;) = + Amlep;) =
3) t(eps) = tlep;) Amlep;) = mlep;) A
o(ep;) alphabetically precedes o(ep;)

do(ITr) = xglgl)%rmdzst(x,y).
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L L L L R R (multiple) subject(s) with temporal relationship. Note that,

} } } “ o } | | “ } a combination of (abstracted) labeled sub-trajectories can be
\ | ‘ ‘ B obtained by its temporal sequence. We show an example of
} | } | | Pﬁ || pattern below. A temporal sequence

| \ :

| || [ [ < <Oa,T, Ea;Eb>+7 <Obay7EbaEc>+a
<Oa»raEa>Eb>77 <Ob7yaEb7EC>7 >

is a pattern which represents that: a subfegtstarts an event
r at time E, and ends it at timer,. At the same time),,
finishesr, a subjectO, starts an eveny and finishes it at
E..

Fig. 1. An example of sequence of labeled sub-trajectories

4) t(ep;) = t(ep;) Am(ep;) = m(ep;) Ao(ep;) = o(ep;)
l(ep;) alphabetically precedes I(ep;)
This representation can be regarded as a natural extensiow

of that by [11] to handle the subjects of events. Therefore N mtroduce a general-to spguflc rela.tlonshlp .among
. . : o atterns. Given two pattermsandg, if there exists a variable
while the proof is not provided in this paper, the temporal s¢-"" . o o ; X
. ; -To yariable substitutiofl under the object identity assumption
guence of a set of labeled sub-trajectories can be determine

uniquely. Please refer to the original paper[11] for details.SUCh thatng L §, then we say that is more general than

 for d i [TOTS
We show an example of labeled sub-trajectories iy @nd denote itv < 5. Conversely,3 is said to be more

. . , ecific thana. The binary relationship: C y means that
its temporal sequence. Given a set of five labeled su%? : S0
trajectories all elements inz appear iny in the same order they appear

in x.
(01,9,1,5,(---)),  (02,6,2,4,(---)), For example, a pattern
ITr = { (03,7,6,10,(---)), (04,y,10,13,(---)),
(05,b,12,14, (- --)) o = ( (Oa,r,Eq, B\, (O, y, Ey, E)Y,

<Oaar7Ea7Eb>7v <ObayaEbaEc>7 >

shown in Fig.1, a temporal sequencel®% becomes .
is more general than a pattern

<<01ay7175>+7 <02ab7274>+7 <027b72a4>_7 <015y7175>_7
<037T767 1O>+7 <O4ay710713>+v <03ara6310>_a ﬂ = <<Oa7r7EaﬂEb>+7 <Ob7yaEbaEC>+7<OG7T’EG’E5>7
(05,b,12,14)F, (04,7,10,13)~, (05,b,12,14)7). (Oc,b,Eq, Ee)™,(Op,y, By, Ec) ™, (Oc, b, Eg, Ec) ™).

lIl. FREQUENT PATTERNS IN TRAJECTORY DATABASES B- Occurrence and frequency of patterns

In this section, we give a formal definition of our patterns Given a trajectory databaséR and a patterrp, a set

and data mining problem. We also propose an enumeratigi® & M(T'R) of label sub-trajectories is said to be an
algorithm for the problem. occurrence ofp in TR, if there exists an substitutiof of

variables such thateq(ITr) = p6.

A. Pattern For example, a set of two labeled sub-trajectories

An abstracted labeled sub-trajectqi®,, E*, E~) con- occ = {(03,7,6,10,(---)), (04,y,10,13,{---})}
sists of a concrete labéland three variable® for subject,
ET for starting time and2~ for ending time. It represents
a proposition “the label of)’s sub-trajectory fromE™ to p={ (Oar, Es, Ep)T, (Oy,y, Eyp, E)T,
E~ is I". We use the term “abstracted” since an abstracted (Oas7, Eqy Ey)~, (O, y, By, E)™ )
labeled sub-trajectory can be obtained from a labeled sub-

trajectory by introducing variables and ignoring the concrefdCe @ substitutiord = {03/O4,04/0y,6/E,, 10/ Ep.-
sub-trajectory. 13/E.} makespf be identical with

is an occurrence of a pattern

Given a set ofn abstracted sub-trajectories$?™r, its set seq(oce) = { {os,7,6,10)%, (04,y,10,13)+,
of all endpoints is denoted as (03,7,6,10)~, (04,7,10,13)~ ).
aEP(alTr) = | ) {(0,, EY,E")*,(0,,LE*,E")"}. A set of all occurrences of a pattegnin TR is denoted
(O,l,E+,E-)€alTr as

A sequenc€EP,--- , EP,,) is called a temporal sequence ) ...rr ) = {ITr C M(TR) | 30 s.t ITr) = O
of alTr. if {EPy.-- EPw} = aEP(alTr) holds, we CcclTor) = (T C M(TR) |30 st seq(UTr) = po}.

interpret the conditionvii<;<2,—1 [EP; < EP,41] holds We consider the occurrences satisfying the constraints
in the sequence. Note that, different abstracted labeled spatial spread and time difference. Given a maximum
sub-trajectories and their endpoints use same variablesthnesholdp and the degreé€; (i € {1,2}) of spatial spread,
common to represent the same subjects, starting timesaoset of all occurrences satisfying the spatial constraint is
ending times. In addition, all variables are required to satisfienoted as
the object identity assumption[12], and thus the different
variables represent different instances. Occ?(TR, P) = {ITr € Oce(TR, p) | s(IT'r,d;, p)}-

In this paper, the temporal sequence of abstracted labejgd similar,
sub-trajectories is employed as a pattern language, since
it captures a combination of labeled sub-trajectories by Oce (TR, P) = {ITr € Occ(TR,p) | t(ITr,7)}
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. . . TR
denotesa set of all occurrences satisfying the constraint _1P_LS” (TR, 0,7, p)
on time differencer. By using the two sets, a set of all Input
occurrences satisfying both constraints is defined as TR : a trajectory database

o . minimum support threshold
Occ?(TR, P) = Oce’(TR, P) N Ocer (TR, P). 7 : maximum threshold on time difference

Several frequency measures for sequential patterns in p - maximum threshold on spatial spread
a long single sequence of point-based events have been Output
proposed[13], [14], [15] in the past. Among them, we employ F i a set of frequent patterns
the measure in [13], and apply it to define the frequency of 1: P <-set of frequent events
our patterns using a set of occurrences. 2: F< D
Given a patternp and a trajectory databasgR, the 3: TP_LS™(TR,o,7,p, P, F)
unconditional head frequency ofin TR is defined as 4: return F

TP_LS™(TR,o,7,p,C, F)

if C' = 0 then return

¢ {}

for eachp e C

for each p’ € extension(p)
if T_Freq.(TR,p') >0
then ¢’ « C" U {p'}

if T_Freq?(TR,p') >0

H_Freq(TR,p) = | {start(ITr)|ITr € Occ(TR,p)} |.

In other words, we regard the number of starting times the set
of labeled sub-trajectories begins as a frequency. As similar,
head frequency under spatial and temporal constraints can
be defined as follows:

H_Freq?(TR,p) = |{start(ITr) | ITr € Occ?(TR,p)}|
H_Freq:(TR,p) = |{start(ITr) | ITr € Occ;(TR,p)}|
H_Freq?(TR,p) = |{start(ITr) | ITr € Occ?(TR,p)}| then F «— FU {p'}

While H_Freq® and H_Freq. are frequencies under the TP_LS™™(TR,0,7,p,C", F)
spatial and temporal constraint respectively, we consider ba@th. 2. The algorithmiTP_LST® for the enumeration of frequent patterns
constraints inH_Freq?.

The total frequency of a patterp is defined as the

minimum value of the head frequency of arbitrary patterqgst(p,_) denotes a elemenO;, l;, E;*, ;)= in p which is

which are more general thgn We consider four total fre- another endpoint corresponding to last(p,+). If two patterns
quencies based on the combinations of spatial and tempqggal_ (EP?,.-- ,EPS) and B = (EP{,.-- ,EP] )

O©CoO~NOOOUTPA,WNBE

constraints. They are formally defined as follows: satisfy the conditiony — 3\ (last(3,+), last(ﬁ’, _)>2(ﬁg|as'
T_Freq(TR,p) = min,<, (H_Freq(TR,p)) thena is called a parent of, and g is said to be a child of
T_Freq’(TR,p) = miny<, (H_Freq’(TR,p)) a conversely wherg denotes a subtraction of elements.
T _Freq;(TR,p) = miny<, (H_Freq.(TR,p)) We can obtain a child of a pattem using the parent-
T_Freg?(TR,p) = miny<, (H_Freq?(TR,p)) children relationship inversely. A child of a patterna

can be derived by inserting two endpoints of one abstracted

_ .. labeled sub-trajectory into any position after last). At
H_Freq7(TR, P) < H_Freq,(TR, P) must hold, and it this time, we consider all combinations of variables for the

= ; o
implies the relationl_Freq?(T'R, P) < T_Freq, (TR, P). subject, starting and ending time from a set of existing

T [\]Ir(feeqthigswmf etx?]i}i-ﬂgggtlgnzoggg\:r?;dc;r;[ht?]efrf)gltjtzrr]rf sariables ina and new variable_s. Note that, this gxtension
ggneraIiTty and the following relatioship holds: can be reggrded as an_extensmn of the expansion straFegy

' in the TPrefixSpan algorithm[11] for enumerating sequential
Va,Bla = 8 — T_Freq,(TR,«) > T_Freq, (TR, 5)]. patterns in a long single interval-based events.

The proposed algorithm namebP_LS™ is shown in
Fig.2. In the algorithm, “extension” returns a set of children
of given patternp. While the value ofl"_Freq. is utilized
' - . . as a pruning criterion because of its anti-monotone property,
Here, we define our data mining problem in this PaPYhe value ofT"_Freq? is just used for determining whether

lee_n a trajectory databaser, a_labellng modelM » @ or not the pattern is frequent. The derived frequent patterns
maximum thresholdp for the spatial spread, a maximum

: : . re stored inF.
thresholdr for the time difference, and a minimum threshold’jl
o for the frequency, our data mining problem is to enumerate
all patternsp satisfying the conditiol”_F'req?(TR,p) > o.

Since a setOcc? (TR, P) is a subset ofOcc, (TR, P),

However, the frequencie¥_Freq’ and T_Freq? do not
have such property unfortunately in general.

IV. EXPERIMENTS AND CONSIDERATION
A. Data set
C. Enumeration algorithm In order to evaluate the effectiveness of the proposed

gmework, we implement our algorithP_LS™® using
To enumerate all frequent patterns, we employ a brea ava language and conduct experiments using nine matches
first search strategy since the total frequefityF'req? of a guag b 9

atterna reauires all head frequenci@s Frea?s of ~ such in the J. League (Japanese professional football league) held
P q . qu A " in 2015 and 2016. The original dataset is provided by Data
that v < a. In addition, we utilize the idea of the revers

. 1 .
search[16] to constract a tree-shaped pattern space. isr;agg':(r)?ielgc(;f t;aﬁn:n(\jlv elaij eer:\éeinzg\jer(:(%); 32():0710? )in(t)érval
The last elemenEP; = (0;,1;, B, E; )T in a patterrp ! piay y o '

such thatm(EP;) = + is denoted as last(p). In addition,  !htps://www.datastadium.co.jp
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2500
Fig. 3. Area on the field 2000
1500
1000
TABLE
500
NUMBER OF LABELS AND LABELED SUB-TRAJECTORIES 0 - _ i . I -
time width [ 3 4 5 1 3 2 13 ;‘ 5
# of labeled sub-trajectorie$ 429,169 387,513 218,485 Mo=100 #o=150 mo=200
# of labels 13 15 23

Fig. 4. Distribution of the number of abstracted labeled sub-trajectories in
a pattern (topdi, k = 10, bottom:dz, k = 10)

In the experiments, each trajectory is divided into sub-
trajectories with a time width of3, 4,5} seconds and a slide
width of 2 seconds. After the division, the COIN clusterin

approach[4] is applied to extract meaningful movements ) e : :
motifs. A labeling functionM is built as a combination of pattern enumeration within a reasonable computation time.

the id of motifs and that of the area in the field shown iII‘P ad_dri]tion, we recoghnizeha similgr tindencybbetwfderand d
Fig.3 where the (sub-) trajectory is observed. We prepa‘ilé with respect to the change in the number of extracte

nine areas by dividing the whole football field vertically an(ﬁ)attems. for pgrameters and.
horizontally into three, respectively. In the vertical direction, 1he distributions of the numbers of abstracted labeled sub-

we prepare three labels “D” for the defensive area, “M” folrajectories in a pattern are shown in Fig.4 under the settings

the area near from the center circle, and “O” for the attacking 7 — 10 ando € {100,150,200}. As th_e results show,
area. On the other hand, in the horizontal direction, thrdle€@n be seen that many patterns having three and four
labels “L", “C” and “R” represent the left, center and rightabstracted labeled sub-trajectories are obtained regardless of
area, respectively. The combination of vertical and horizontgl¢ valué ofc and the definitiond; for the spatial spread.
labeled are used to represent the area. For example, Tihis result seems to represent the diversity of actions and
leftmost and uppermost area is denoted as “DL”. relationships among players in football. In addition, we

The number of obtained labels and labeled sub-trajectorfd&/€Ve that many basic but important relationships such as
are summarized in TABLE |. third man running” are extracted.

From the results, regardless of the parameter settings,
can confirm that the proposed algorithm achieved the

B. Quantitative evaluation C. Qualitative evaluation

We measure the number of obtained patterns and executiod hrough the experiments, we successfully obtained two
times by using a Linux machine (CPU: Intel Xeon 3.20 GHAatterns which capture certain defensive and offensive tacti-
main memory: 24 GB). In the experiments, the minimuraal movements. The patterns are shown below:
frequency threshold, the maximum time difference, and
the maximum spatial spreadare set tar € {100, 150,200}, —
7 € {10,15,20} seconds ang € {20m in dy,10m in do}, 1P
respectively. In addition, we restrict that the patterns must

(A, 1:CD, By, E9)*,(B,3:CD, By, E2) ™,
(
have less than or equal to five abstracted labeled sub- — 2
(
(

C,1:LD, Ey, E’5>+7 <A, ].ZCD, FEr, E2>7,
B,3:CD, E1, Es) — (C,1:LD, Ey, E5)~ )
A, 12L]\47 E17 E2>+, <B,9ZLM, Eg,E4>+,
C,9:LM, Es, £2(5>—"_7 <A, 12:LM, Ey, E2>_,
B,9:LM, Es, Es)~, (C,9:LM, Es, Eg)~ )

trajectories. The results are summarized in TABLE II.

THE NUMBER OF OBTAWETSEIXTETIEIRNS AND EXECUTION TIME In the patterns, each lab&¥: A represents that a movement,
numberof patterns execution time(minuts) or motif M, is performed in the ared.

E\o 100 150 20] 100 150 200 An example of the occurrence of the pattern is shown
(1%' s :323214 5300 10! 30 33 o in Fig.5 and Fig.6, respectively. The patteps, can be
15| 72411 44019 25538 152 116 83 interpreted as that three defensive playérs$3 and C' work
20 | 667,943 509,126 22,7310/ 529 354 264 together in their own team territory and move forward to raise
d2, s = 10m the defensive line. On the other hand, we can obseryg)in
101 4571 2,951 837 57 37 22 that a player4 overlaps from own team territory (12:LM
15 | 76,985 56,381 31,388 438 232 152

20 | 724,605 591723 282654 699 556 413 and other playe3 moves toward center (9:L)4o open the

space for the playeA.
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ﬁ 5 [31
1
attacking = H 4
1 . :
i X [4]

direction
C1:LD A1:CD B3:CD

(5]

™

6]
Fig. 5. An occurrence opp

(7]
attacking direction——) side line

e 22M (8]

El

[10]

Center line
Fig. 6. An occurrence opo [11]

[12]
V. CONCLUSION

In this paper, we proposed a frequent pattern enumeration
algorithm in a trajectory database as a first step towardé!
the extraction of meaningful tactical movements in football
matches. The algorithm first converts the trajectory database
into a set of labeled sub-trajectories, and then performs
enumeration based on the pattern expansion for the interval-
based events and the frequency count with the consideration
of spatial and temporal constraints. The effectiveness of t &l
proposed algorithm was evaluated quantitatively and quali-
tatively using trajectories in nine real professional football6l
matches.

The proposed algorithm requires the parameters on time
and spatial spread. However, the tactical behaviors in football
have various temporal and spatial scales, and it is difficult
to set the parameters appropriately in advance. Therefore, as
one of our future work, it is necessary to prepare a certain op-
timization algorithm for the parameter. In addition, due to the
characteristics of the frequent pattern discovery, many similar
patterns can be extracted. It is also an important research
direction to evaluate the obtained patterns quantitatively and
to perform pattern filtering by statistical significance.
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