

Abstract — For remove noise digital filters are used which in

the last decades have taken great impetus for the treatment of

images in different fields of science and in the case of the

medical image processing better results are obtained in order to

make better interpretations. Medical images can contain some

noise therefore it makes sense to suppress noise on

preprocessing stage. For the research we used digital filters

such as mean filter, Gaussian filter and median filter. The speed

performance comparison of optimized and classical

implementations of these filters was conducted. It shows great

speed improvement of optimized implementation.

The possibilities of modern hardware allow using parallel

technology for image processing. The parallel implementations

of noise reduction filters algorithms taking into account the

data parallelism were made utilizing OpenMP technology. The

comparison of parallel implementation of filters algorithm with

sequential and classic implementation show great increase in

performance. Thus the parallel implementation gives a

performance boost in 2-3 times for optimized version of

algorithms.

Index Terms — medical image, image processing, denoising,

Mean Filter, Median Filter, Gaussian 2D filter, parallel

programing, OpenMP.

I. INTRODUCTION

Image noise is random variation of brightness or color

information in images, and is usually an aspect of electronic

noise. It can be produced by the sensor and circuitry of a

scanner or digital camera. Image noise can also originate in

film grain and in the unavoidable shot noise of an ideal

photon detector. Image noise is an undesirable by-product of

image capture that adds spurious and extraneous information.

Medical images are often contaminated by impulsive,

additive or multiplicative noise due to a number of

non-idealities in the imaging process.

Filtering is a technique for modifying and enhancing an

image. Various filters are used for image preprocessing. The

primary purpose of these filters is a noise reduction, but filter

can also be used to emphasize certain features of an image or

remove other features. In image processing, 2D filtering

techniques are usually considered an extension of 1D signal

processing theory. For this work we used following filters:

Manuscript received December 08, 2017; this work was supported by

Universidad de las Fuerzas Armadas ESPE, Av. Gral Ruminahui s/n,

Sangolqui Ecuador.

L. Cadena, is with Electric and Electronic Department at Universidad de

las Fuerzas Armadas ESPE, Av. Gral Ruminahui s/n, Sangolqui Ecuador.

(phone: +593997221212; e-mails: ecuadorx@gmail.com).

A. Zotin is with Department of Informatics and Computer Techniques,

Reshetnev Siberian State University of Science and Technology, 31

krasnoyarsky rabochу av., Krasnoyarsk 660037, Russian Federation (e-mail:

zotinkrs@gmail.com)

F. Cadena is with College Juan Suarez Chacon, Quito, Ecuador (e-mail:

fcfc041@gmail.com)

Classic Mean filter, Mean filter optimized, classical 2D

Gauss filter and double 1D Gaussian filter, Classic Median

filter, Median filter optimized.

Parallel processing is a process used to accelerate the

execution time of a program by dividing it into multiple

pieces that will be executed at the same time, each one on its

own processors or core. The main reason for creating and

using parallel computing is that parallelism is one of the best

ways to bridge the bottleneck problem that signifies the speed

of a single-core processor. The rationale for parallel

processing is to speed up the resolution of a problem. Thus

the acceleration that can be achieved depends on both the

problem itself and the computer architecture. For the

implementation of parallel algorithms widely spread

OpenMP standard. The parallelization according to OpenMP

standard is performed by inserting special directives into the

text of the program, as well as call of support functions.

OpenMP standard implements parallel processing using

multithreading. Thus the "main" thread creates a set of

subordinate threads, between which the task is distributed.

The program is executed with sequential code – first running

one process (thread), at the entrance to a parallel region are

generated multiple threads, between which workload are

distributed in the following code. If a forked thread

completes its work before any other forked thread, it will

block. Once all forked threads complete their work, the

master thread then resumes execution. At the end of the

parallel region, all threads except the "main", terminated, and

starts another sequential region of a program. OpenMP

standard also supports embedding of parallel regions. To

improve the performance of image processing algorithms

(Filters) is expedient to carry out parallelization for external

loops (height of image).

II. CLASSIC AND OPTIMIZED FILTERS

CLASSIC MEAN FILTER

The filter is a simple slidingwindow spatial filter that

replaces the center value in the window with the average

(mean) of all the pixel values in the window [1-4, 6].

 
 


RH

RHdy

RW

RWdx

old

size

new dxxdyy
K

xy),(
1

),(CC ,

where Cnew, Cold – new and old values of the image pixels

spectrum, respectively; RH, RW – constants defining the

rank of the filter vertically and horizontally; Ksize – kernel size

is equals (2×RH+1)×(2×RW+1).

The mean filter can also be implemented as a convolution

with coefficients 1/Kzise.

The window, or kernel, is usually square but can be any

shape. An example of mean filtering of a single 3×3 window

Luis Cadena, Alexander Zotin, Franklin Cadena.

Enhancement of Medical Image using Spatial

Optimized Filters and OpenMP Technology

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

of values is shown below.

unfiltered values

7 4 5

4 11 8

6 13 14

7 + 4 + 5 + 4 + 11 + 8 + 6 + 13 + 14 = 72 72 / 9 = 8

mean filtered

* * *

* 8 *

* * *

Center value previously 11 is replaced by the mean of all

nine values, i.e. 8.

MEAN FILTER OPTIMIZED

The accumulation of the neighborhood of pixel P(y,x),

shares a lot of pixels in common with the accumulation for

pixel P(y,x+1). This means that there is no need to compute

the whole kernel for all pixels except only the first pixel in

each row. Successive pixel filter response values can be

obtained with just an add and a subtract to the previous pixel

filter response value [5, 7]. Thus, the filter computation can

be considered the following way:





























 





 

RH

RHdy

old

Hs

RH

RHdy

old

Hs

new

RH

RHdy

RW

RWdx

old

WsHs

new

otherwiseRWxdyy
K

RWxdyy
K

xy

xifdxxdyy
KK

xy

),,(
1

)1,(
1

)1,(

0),,(
1

),(

C

CC

C

C

where Cnew, Cold are the new and old values of the image

pixels spectrum, respectively; RH, RW are the constants

defining the rank of the filter vertically and horizontally.

CLASSIC MEDIAN FILTER

The median filter is also a slidingwindow spatial filter, but

it replaces the center value in the window with the median of

all the pixel values in the window [4].

 ),(med),(
),(

dxdyxy old
Kdxdy

new
xy

CC




where Cnew, Cold are the new and old values of the image

pixels spectrum, respectively; Kxy is the kernel window.

Usually the kernel of median filter is usually square but it

can take any shape. An example of median filtering of a

single 3×3 window of values is shown below.

unfiltered values

7 4 5

4 11 8

6 13 14

in order: 4, 4, 5, 6, 7, 8, 11, 13, 14

median filtered

* * *

* 7 *

* * *

Center value previously 11 is replaced by the median of all

nine values 4.

MEDIAN FILTER OPTIMIZED

In image processing the histogram of spectrum for median

calculation can be far more efficient because it is simple to

update the histogram from window to window, and finding

the median of a histogram is not particularly onerous. Thus

the histogram used for accumulating pixels in the kernel and

only a part of it is modified when moving from one pixel to

another [8, 12-13]. As illustrated in Figure 1, 2×RH+1

additions and 2×RH+1 subtractions need to be carried out for

updating the histogram.

Figure 1. Median filter algorithm, 2RH+ 1 pixels must be added to and

subtracted from the kernel’s histogram when moving from one pixel to the

next. In this figure, RH = 2.

CLASSIC GAUSSIAN 2D FILTER

The Gaussian filter uses a Gaussian function (which also

expresses the normal distribution in statistics) for calculating

the transformation to apply to each pixel in the image. In two

dimensions, it is the product of two such Gaussians, one in

each dimension:

2

22

2
22

1
),(



yx

exyG







where x is the distance from the origin in the horizontal axis,

y is the distance from the origin in the vertical axis, and σ is

the standard deviation of the Gaussian distribution.

Images during processing are usually represented as a

collection of discrete pixels. Thus it is necessary to produce a

discrete approximation to the Gaussian function before

perform the convolution. Since the Gaussian distribution is

theoretically non-zero everywhere, so the kernel would

require an infinitely large size. We can say that depends on σ

and kernel size some of non-zero coefficients, having very

small values and do not have a significant effect on the result,

can be outside of kernel. Thus it is possible to truncate the

kernel. Usually kernel size equals 3σ, but in some cases

Gaussian kernel can be truncated even more. After generation

of Gaussian kernel with desirable size and σ, all coefficients

must be corrected in the way that the sum of all coefficients

equals 1. Once a suitable kernel has been calculated, then the

Gaussian smoothing can be performed using standard

convolution methods.

IMPROVED GAUSSIAN FILTER 1D ×2

The convolution of Gaussian filter can be performed much

faster since the equation for the 2D isotropic Gaussian is

separable into y and x components [6, 9] Figure 2.

Figure 2. Isotropic Gaussian is separable into Gy and Gx components.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

Therefore to improve 2D Gaussian filter we propose to use

two Gauss single-dimensional filters, which leads to a

reduction in the number of processed elements (Table I). In

some cases the approximation of Gaussian filter can be used

instead of classic version [10, 11].

TABLE I.

REDUCTION OF PROCESSED ELEMENTS FOR

GAUSS FILTER 1D ×2

Kernel Type Kernel size Kernel elements

count

Reduction of

processed elements

2D 5×5 25
in 2,5

1D ×2 5×1 & 1×5 5+5=10

2D 7×7 49
in 3,5

1D ×2 7×1 & 1×7 7+7=14

2D 9×9 81
in 4,5

1D ×2 9×1 & 1×9 9+9=18

2D 11×11 121
in 5,5

1D ×2 11×1 & 1×11 11+11=22

PARALLEL IMAGE PROCESSING

For the implementation of parallel algorithms widely

spread OpenMP standard for the parallelization of programs

in languages C, C ++ and Fortran [14-16]. The parallelization

according to OpenMP standard is performed by inserting

special directives into the text of the program, as well as call

of support functions. OpenMP standard implements parallel

processing using multithreading. Thus the "main" thread

creates a set of subordinate threads, between which the task is

distributed. The program is executed with sequential code –

first running one process (thread), at the entrance to a parallel

region are generated multiple threads, between which

workload are distributed in the following code. If a forked

thread completes its work before any other forked thread, it

will block. Once all forked threads complete their work, the

master thread then resumes execution. At the end of the

parallel region, all threads except the "main", terminated, and

starts another sequential region of a program. OpenMP

standard also supports embedding of parallel regions.

To improve the performance of image processing

algorithms (Filters) is expedient to carry out parallelization

for external loops (height of image) – Loop level parallelism.

To do this, in OpenMP can be used directive:

#pragma omp parallel for

It is offers a simple way to achieve loop-level parallelism,

often existing in image processing algorithms (Data

parallelism). The parallelization of loops is the most common

use of OpenMP. Consider the following code, which

represent a basis of any filter:

for (int y=0; y< Image_Height; y++)

 for (int x=0; x< Image_Width; x++)

 {

 // do some processing

 }

With OpenMP, this code can be parallelized according

data parallelism in a simple way:

#pragma omp parallel for

for (int y=0; y< Image_Height; y++)

 for (int x=0; x< Image_Width; x++)

 {

 // do some processing

 }

Here, the directive instructs the compiler that the next for

loop is to be parallelized. The compiler will then distribute

the work among a set of forked threads. Thus we can divide

image into lines which will be processed independently.

III. EXPERIMENTAL RESULTS

For our experimental study we used 50 medical images

with different size. During experiments were conducted

estimation of processing time of optimized filtering

algorithms (Mean filter, Median filter, Gaussian Filter) and

evaluation of noise suppression. For the experiment used PC

based on Intel Core i5 3.1 GHz with 8 GB RAM.

At first we conducted a study that shows the advantage of

optimized implementation of algorithms. Thus were

generated map of acceleration with kernel changing in range

3×3 – 11×11 for each filters. This map shows acceleration

coefficient which based on average processing time (200

calculations for each kernel size).

(a)

(b)

(c)

Figure 3. Maps of acceleration of optimized filters implementation: (a) Mean

filter; (b) Gaussian filter; (c) Median filter.

Also we conducted comparison of Mean, Median,

Gaussian filters for optimized variant of algorithms

implementation. Thus Figures 4-7 demonstrate an

acceleration of optimized algorithms, which were

parallelized using OpenMP and utilizing 2-4 threads, versus

classical implementation for different kernel size.

The dependence of the processing time of filters and used

threads for image size 1056×2148 and kernel size 9×9 is

demonstrated on Figure 7.

The comparison of time taken for the image processing

using the classic and optimized implementation of filters with

the kernel size 5×5 pixels (RH=2 RW=2) is shown in Table

II. For the experimental study images having different

orientation and with size from 0.26 MP (512×512 pixels) to

2.89 MP (1396×2168 pixels) were taken.

Additionally, we evaluated the acceleration of processing

using OpenMP for different kernel sizes at two, three and

four threads. During evaluation were used images with size

1056×2148 pixels. The experimental results reveal that the

increase in the processing speed for different kernel sizes is

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

Figure 4. The computation sped up of optimized Mean filter utilizing OpenMP technology compare to classic sequential implementation

Figure 5. The computation sped up of optimized Gaussian filter utilizing OpenMP technology compare to classic sequential implementation

Figure 6. The computation sped up of optimized Median filter utilizing OpenMP technology compare to classic sequential implementation

Figure 7. The dependence of the filters processing time from used threads.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

almost the same (Table III).

To evaluate noise suppression of filters were generated test

data set emulating noise which may occur in the equipment.

The following noise characteristics were used. Thus we used

noise which covers from 5% to 25% (noise level). The

generated noise map consists 15% of the impulse noise

component and 85% of the additive noise component. The

value of the additive noise component considered as 15% of

the dynamic range of the experimental data.

Figure 8 shows the results obtained when processing an

image with 15% noise by Gaussian (sigma 2), mean and

median filters with kernel size 5×5.

The evaluation of noise suppression for filters with

different kernel size is shown in Table IV. It demonstrates

average PSNR values for image with noise (size of image is

1056×2148) and images processed by filters. During

experimental study were generated 300 images with noise.

(a) (b)

(c) (d)

Figure 8. Results of image processing: (a) original image with 15% noise 15;

(b) processed by Gaussian filter kernel 5×5 sigma 2; (c) processed by mean

filter kernel 5×5; (d) processed by median filter kernel 5×5.

TABLE II.

PROCESSING TIME OF FILTERS FOR DIFFERENT IMAGE SIZE

(4 THREAD OPENMP), ms

Image size

Filter

Mean Filter Gaussian filter Median Filter

classic optimized classic optimized classic optimized

512×512

(0,26 MP)
16,351 8,133 18,980 9,317 166,003 22,272

640×480

(0.31 MP)
21,915 9,281 28,780 11,657 189,979 27,877

768×768

(0.59 MP)
35,802 14,807 42,470 20,872 329,367 42,199

1024×768

(0.79 MP)
44,090 20,581 53,309 24,797 453,629 46,211

1280×720

(0.92 MP)
55,682 29,079 59,238 34,911 523,766 53,756

1440×1080

(1.56 MP)
80,516 41,719 109,943 45,306 850,261 98,906

1920×1080

(2.07 MP)
120,490 50,264 148,818 66,429 1084,792 129,491

1056×2148

(2.17 MP)
120,123 61,804 156,094 86,268 1176,891 134,528

1396×2168

(2.89 MP)
178,179 92,056 255,100 128,221 1632,550 203,446

TABLE III.

EVALUATION OF THE ACCELERATION STABILITY FOR

OPTIMIZED FILTERS FOR DIFFERENT KERNEL SIZE

Filter Threads

Kernel Size

3×3 5×5 7×7 9×9 11×11

Mean optimized

2 1,97 2,01 2,03 2,03 1,98

3 2,70 2,76 2,73 2,65 2,64

4 3,08 3,12 3,55 3,23 2,95

Gaussian optimized (1Dx2)

2 1,78 1,84 1,90 1,92 1,92

3 2,38 2,55 2,56 2,45 2,45

4 2,83 2,82 2,85 2,86 2,86

Median optimized

2 1,92 1,95 1,96 1,96 1,96

3 2,64 2,70 2,75 2,66 2,72

4 2,98 3,05 3,09 2,99 2,95

TABLE IV: PSNR VALUES

Filters

Kernel Size

3×3 5×5 7×7 9×9 11×11

 Noise Level 5% / Noise image PSNR:51,4244039962383

Mean 68,4842 72,4898 72,3296 70,927 69,2666

Gaussian 68,518 72,6628 73,3734 73,4386 73,8396

Median 88,7094 84,6942 81,5822 79,1196 76,7496

 Noise Level 10% / Noise image PSNR:45,5018127600979

Mean 63,2286 68,8242 70,0816 69,517 68,3272

Gaussian 63,1616 68,276 69,4224 69,591 69,9044

Median 88,2476 84,5432 81,6126 79,1476 76,7498

 Noise Level 15% / Noise image PSNR:41,9414738268637

Mean 59,9406 66,0944 68,0394 68,0304 67,2288

Gaussian 59,8356 65,2282 66,5362 66,7478 67,268

Median 87,9284 84,3688 81,4928 79,0522 76,7666

 Noise Level 20% / Noise image PSNR:39,5352640898964

Mean 57,4892 63,8614 66,1734 66,5362 66,0318

Gaussian 57,3658 62,8288 64,2 64,8324 65,4566

Median 87,5268 84,2286 81,439 79,0578 76,712

 Noise Level 25% / Noise image PSNR:37,634963500737

Mean 55,5328 61,9578 64,4476 65,0418 64,7528

Gaussian 55,3988 60,8406 62,2282 62,4686 62,4946

Median 87,1142 84,0664 81,188 78,8754 76,6108

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

IV. CONCLUSIONS

Digital filters were used which in the last decades have

taken great impetus for the treatment of images in different

fields of science and in the case of the medical image

processing better results are obtained in order to make better

interpretations. Various filters are used for medical image

preprocessing such as classic and optimized: mean filter,

Gaussian 2D filter and median filter. The primary purpose of

these filters is a noise reduction, but filter can also be used to

emphasize certain features of an image or remove other

features. Most of image processing filters can be divided into

linear filters and nonlinear filters. Nonlinear filters include

order statistic filters and adaptive filters. The choice of filter

is often determined by the nature of the task and the type and

behavior of the data.

Using of OpenMP we made parallel implementation of

optimized algorithms, which gives performance boost up in

almost two times for two threads and around 3 times for 3 and

4 threads. Experimental results show that the optimized

version of filter algorithms can well do with the relationship

between the effect of the noise reduction and the time

complexity of the algorithms. The most increase of

processing speed was gained for median filter. Thus for small

kernel (3×3) the acceleration is about 8 times and for large

kernel (11×11) 70 times. Optimized version of Mean filter

and Gaussian filter give us acceleration about 3 times for

small kernel (3×3) and around 13 times for large kernel

(11×11).

ACKNOWLEDGMENT

Very thanks to Jorge Quinga medical technologist from

Hospital IESS Sangolqui Ecuador for the medical X-ray

images.

REFERENCES
[1] Davies E. Machine Vision: Theory, Algorithms and

Practicalities, Academic Press, 2012.

[2] Szeliski R. Computer vision. Algorithms and applications.

Springer-Verlag London Limited, 2011.

[3] Ramesh J, Rangachar K, Brian G Schunck. Machine Vision.

McGraw-Hill, Inc., ISBN 0-07-032018-7, 1995.

[4] Gonzalez RC, Woods RE. Digital Image Processing 3rd

edition, Prentice-Hall, 2008. ISBN-13: 978-0131687288,

2008.

[5] Zotin A., Simonov K., Kapsargin F., Cherepanova T.,

Kruglyakov A., Cadena L. Techniques for Medical Images

Processing Using Shearlet Transform and Color Coding. In:

Favorskaya M., Jain L. (eds) Computer Vision in Control

Systems-4. Intelligent Systems Reference Library, vol 136.

Springer, Cham. Chapter First Online: 27 October 2017 DOI

https://doi.org/10.1007/978-3-319-67994-5_9

[6] Chandel et al. Image Filtering Algorithms and Techniques: A

Review // International Journal of Advanced Research in

Computer Science and Software Engineering 3(10), pp.

198-202, 2013.

[7] Gupta B, Singh Negi S Image Denoising with Linear and

Non-Linear Filters: A REVIEW // International Journal of

Computer Science Issues, Vol. 10, Issue 6, No 2, pp. 149-154,

2013.

[8] Lukin A. Tips & Tricks: Fast Image Filtering Algorithms.

17-th International Conference on Computer Graphics

GraphiCon'2007: 186–189, 2007.

[9] Pascal G. A Survey of Gaussian Convolution Algorithms.

Image Processing On Line 3: 286–310, 2013.

[10] Young IT, Van Vliet LJ. Recursive implementation of the

Gaussian filter. Elsevier Signal Processing 44: 139–151, 1995.

[11] Zing A. Extended Binomial Filter for Fast Gaussian Blur.

Vienna, Austria, 2010.

[12] Cline D, White KB, Egbert PK. Fast 8-bit median filtering

based on separability. In Image Processing ICIP 2007 IEEE

International Conference 5: V-281–V-284, 2007.

[13] Perreault S, Hebert P. Median filtering in constant time. IEEE

Transactions on Image Processing 16(9): 2389–2394, 2007.

[14] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J,

Menon R Parallel programing in openmp. Academic Press.

USA. 249p ISBN 1-55860-671-8, 2001.

[15] Kiessling A. An Introduction to parallel programming with

OpenMP. A Pedagogical Seminar. The University of

Edinburgh. UK, 2009.

[16] Shameem A, Jason R Multi-Core Programming. Digital

Edition Intel Press. USA. 362p ISBN 0-9764832-4-6, 2006.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

https://doi.org/10.1007/978-3-319-67994-5_9

