
  

Abstract — For remove noise digital filters are used which in 

the last decades have taken great impetus for the treatment of 

images in different fields of science and in the case of the 

medical image processing better results are obtained in order to 

make better interpretations. Medical images can contain some 

noise therefore it makes sense to suppress noise on 

preprocessing stage. For the research we used digital filters 

such as mean filter, Gaussian filter and median filter. The speed 

performance comparison of optimized and classical 

implementations of these filters was conducted. It shows great 

speed improvement of optimized implementation. 

The possibilities of modern hardware allow using parallel 

technology for image processing. The parallel implementations 

of noise reduction filters algorithms taking into account the 

data parallelism were made utilizing OpenMP technology. The 

comparison of parallel implementation of filters algorithm with 

sequential and classic implementation show great increase in 

performance. Thus the parallel implementation gives a 

performance boost in 2-3 times for optimized version of 

algorithms. 

Index Terms — medical image, image processing, denoising, 

Mean Filter, Median Filter, Gaussian 2D filter, parallel 

programing, OpenMP. 

 
I. INTRODUCTION 

Image noise is random variation of brightness or color 

information in images, and is usually an aspect of electronic 

noise. It can be produced by the sensor and circuitry of a 

scanner or digital camera. Image noise can also originate in 

film grain and in the unavoidable shot noise of an ideal 

photon detector. Image noise is an undesirable by-product of 

image capture that adds spurious and extraneous information. 

Medical images are often contaminated by impulsive, 

additive or multiplicative noise due to a number of 

non-idealities in the imaging process. 

Filtering is a technique for modifying and enhancing an 

image. Various filters are used for image preprocessing. The 

primary purpose of these filters is a noise reduction, but filter 

can also be used to emphasize certain features of an image or 

remove other features. In image processing, 2D filtering 

techniques are usually considered an extension of 1D signal 

processing theory. For this work we used following filters: 
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Parallel processing is a process used to accelerate the 

execution time of a program by dividing it into multiple 

pieces that will be executed at the same time, each one on its 

own processors or core. The main reason for creating and 

using parallel computing is that parallelism is one of the best 

ways to bridge the bottleneck problem that signifies the speed 

of a single-core processor. The rationale for parallel 

processing is to speed up the resolution of a problem. Thus 

the acceleration that can be achieved depends on both the 

problem itself and the computer architecture. For the 

implementation of parallel algorithms widely spread 

OpenMP standard. The parallelization according to OpenMP 

standard is performed by inserting special directives into the 

text of the program, as well as call of support functions. 

OpenMP standard implements parallel processing using 

multithreading. Thus the "main" thread creates a set of 

subordinate threads, between which the task is distributed. 

The program is executed with sequential code – first running 

one process (thread), at the entrance to a parallel region are 

generated multiple threads, between which workload are 

distributed in the following code. If a forked thread 

completes its work before any other forked thread, it will 

block. Once all forked threads complete their work, the 

master thread then resumes execution. At the end of the 

parallel region, all threads except the "main", terminated, and 

starts another sequential region of a program. OpenMP 

standard also supports embedding of parallel regions. To 

improve the performance of image processing algorithms 

(Filters) is expedient to carry out parallelization for external 

loops (height of image). 

 

II. CLASSIC AND OPTIMIZED FILTERS 

CLASSIC MEAN FILTER 

The filter is a simple slidingwindow spatial filter that 

replaces the center value in the window with the average 

(mean) of all the pixel values in the window [1-4, 6].  
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where Cnew, Cold – new and old values of the image pixels 

spectrum, respectively; RH, RW – constants defining the 

rank of the filter vertically and horizontally; Ksize – kernel size 

is equals (2×RH+1)×(2×RW+1). 

The mean filter can also be implemented as a convolution 

with coefficients 1/Kzise. 

The window, or kernel, is usually square but can be any 

shape. An example of mean filtering of a single 3×3 window 
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of values is shown below. 

unfiltered values 

7 4 5 

4 11 8 

6 13 14 

7 + 4 + 5 + 4 + 11 + 8 + 6 + 13 + 14 = 72           72 / 9 = 8 

mean filtered 

* * * 

* 8 * 

* * * 

 

Center value previously 11 is replaced by the mean of all 

nine values, i.e. 8. 

 

MEAN FILTER OPTIMIZED 

The accumulation of the neighborhood of pixel P(y,x), 

shares a lot of pixels in common with the accumulation for 

pixel P(y,x+1). This means that there is no need to compute 

the whole kernel for all pixels except only the first pixel in 

each row. Successive pixel filter response values can be 

obtained with just an add and a subtract to the previous pixel 

filter response value [5, 7]. Thus, the filter computation can 

be considered the following way: 
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where Cnew, Cold are the new and old values of the image 

pixels spectrum, respectively; RH, RW are the constants 

defining the rank of the filter vertically and horizontally. 

 

CLASSIC MEDIAN FILTER 

The median filter is also a slidingwindow spatial filter, but 

it replaces the center value in the window with the median of 

all the pixel values in the window [4].  
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where Cnew, Cold are the new and old values of the image 

pixels spectrum, respectively; Kxy is the kernel window. 

Usually the kernel of median filter is usually square but it 

can take any shape. An example of median filtering of a 

single 3×3 window of values is shown below. 

unfiltered values 

7 4 5 

4 11 8 

6 13 14 

in order:  4, 4, 5, 6, 7, 8, 11, 13, 14 

median filtered 

* * * 

* 7 * 

* * * 

Center value previously 11 is replaced by the median of all 

nine values 4. 

MEDIAN FILTER OPTIMIZED 

In image processing the histogram of spectrum for median 

calculation can be far more efficient because it is simple to 

update the histogram from window to window, and finding 

the median of a histogram is not particularly onerous. Thus 

the histogram used for accumulating pixels in the kernel and 

only a part of it is modified when moving from one pixel to 

another [8, 12-13]. As illustrated in Figure 1, 2×RH+1 

additions and 2×RH+1 subtractions need to be carried out for 

updating the histogram.  

 
Figure 1. Median filter algorithm, 2RH+ 1 pixels must be added to and 

subtracted from the kernel’s histogram when moving from one pixel to the 

next. In this figure, RH = 2. 
 

CLASSIC GAUSSIAN 2D FILTER 

The Gaussian filter uses a Gaussian function (which also 

expresses the normal distribution in statistics) for calculating 

the transformation to apply to each pixel in the image. In two 

dimensions, it is the product of two such Gaussians, one in 

each dimension: 
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where x is the distance from the origin in the horizontal axis, 

y is the distance from the origin in the vertical axis, and σ is 

the standard deviation of the Gaussian distribution. 

Images during processing are usually represented as a 

collection of discrete pixels. Thus it is necessary to produce a 

discrete approximation to the Gaussian function before 

perform the convolution. Since the Gaussian distribution is 

theoretically non-zero everywhere, so the kernel would 

require an infinitely large size. We can say that depends on σ 

and kernel size some of non-zero coefficients, having very 

small values and do not have a significant effect on the result, 

can be outside of kernel. Thus it is possible to truncate the 

kernel. Usually kernel size equals 3σ, but in some cases 

Gaussian kernel can be truncated even more. After generation 

of Gaussian kernel with desirable size and σ, all coefficients 

must be corrected in the way that the sum of all coefficients 

equals 1. Once a suitable kernel has been calculated, then the 

Gaussian smoothing can be performed using standard 

convolution methods. 

IMPROVED GAUSSIAN FILTER 1D ×2  

The convolution of Gaussian filter can be performed much 

faster since the equation for the 2D isotropic Gaussian is 

separable into y and x components [6, 9] Figure 2. 

 

 

 
Figure 2. Isotropic Gaussian is separable into Gy and Gx components. 
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Therefore to improve 2D Gaussian filter we propose to use 

two Gauss single-dimensional filters, which leads to a 

reduction in the number of processed elements (Table I). In 

some cases the approximation of Gaussian filter can be used 

instead of classic version [10, 11]. 

 
TABLE I. 

REDUCTION OF PROCESSED ELEMENTS FOR  

GAUSS FILTER 1D ×2  

Kernel Type Kernel size  Kernel elements 

count 

Reduction of 

processed elements 

2D 5×5  25 
in 2,5 

1D ×2 5×1 & 1×5 5+5=10 

2D 7×7  49 
in 3,5 

1D ×2 7×1 & 1×7 7+7=14 

2D 9×9 81 
in 4,5 

1D ×2 9×1 & 1×9 9+9=18 

2D 11×11 121 
in 5,5 

1D ×2 11×1 & 1×11 11+11=22 

 

PARALLEL IMAGE PROCESSING 

For the implementation of parallel algorithms widely 

spread OpenMP standard for the parallelization of programs 

in languages C, C ++ and Fortran [14-16]. The parallelization 

according to OpenMP standard is performed by inserting 

special directives into the text of the program, as well as call 

of support functions. OpenMP standard implements parallel 

processing using multithreading. Thus the "main" thread 

creates a set of subordinate threads, between which the task is 

distributed. The program is executed with sequential code – 

first running one process (thread), at the entrance to a parallel 

region are generated multiple threads, between which 

workload are distributed in the following code. If a forked 

thread completes its work before any other forked thread, it 

will block. Once all forked threads complete their work, the 

master thread then resumes execution. At the end of the 

parallel region, all threads except the "main", terminated, and 

starts another sequential region of a program. OpenMP 

standard also supports embedding of parallel regions. 

To improve the performance of image processing 

algorithms (Filters) is expedient to carry out parallelization 

for external loops (height of image) – Loop level parallelism. 

To do this, in OpenMP can be used directive: 

#pragma omp parallel for 

It is offers a simple way to achieve loop-level parallelism, 

often existing in image processing algorithms (Data 

parallelism). The parallelization of loops is the most common 

use of OpenMP. Consider the following code, which 

represent a basis of any filter: 

for (int y=0; y< Image_Height; y++) 

  for (int x=0; x< Image_Width; x++) 

   { 

    // do some processing 

   } 

With OpenMP, this code can be parallelized according 

data parallelism in a simple way: 

#pragma omp parallel for 

for (int y=0; y< Image_Height; y++) 

  for (int x=0; x< Image_Width; x++) 

   { 

    // do some processing 

   } 

Here, the directive instructs the compiler that the next for 

loop is to be parallelized. The compiler will then distribute 

the work among a set of forked threads. Thus we can divide 

image into lines which will be processed independently. 

 

III. EXPERIMENTAL RESULTS 

For our experimental study we used 50 medical images 

with different size. During experiments were conducted 

estimation of processing time of optimized filtering 

algorithms (Mean filter, Median filter, Gaussian Filter) and 

evaluation of noise suppression. For the experiment used PC 

based on Intel Core i5 3.1 GHz with 8 GB RAM.  

At first we conducted a study that shows the advantage of 

optimized implementation of algorithms. Thus were 

generated map of acceleration with kernel changing in range 

3×3 – 11×11 for each filters. This map shows acceleration 

coefficient which based on average processing time (200 

calculations for each kernel size). 

 

  
(a) 

 
(b) 

 
(c) 

Figure 3. Maps of acceleration of optimized filters implementation: (a) Mean 

filter; (b) Gaussian filter; (c) Median filter. 
 

Also we conducted comparison of Mean, Median, 

Gaussian filters for optimized variant of algorithms 

implementation. Thus Figures 4-7 demonstrate an 

acceleration of optimized algorithms, which were 

parallelized using OpenMP and utilizing 2-4 threads, versus 

classical implementation for different kernel size. 

The dependence of the processing time of filters and used 

threads for image size 1056×2148 and kernel size 9×9 is 

demonstrated on Figure 7. 

The comparison of time taken for the image processing 

using the classic and optimized implementation of filters with 

the kernel size 5×5 pixels (RH=2 RW=2) is shown in Table 

II. For the experimental study images having different 

orientation and with size from 0.26 MP (512×512 pixels) to 

2.89 MP (1396×2168 pixels) were taken. 

Additionally, we evaluated the acceleration of processing 

using OpenMP for different kernel sizes at two, three and 

four threads. During evaluation were used images with size 

1056×2148 pixels. The experimental results reveal that the 

increase in the processing speed for different kernel sizes is  
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Figure 4. The computation sped up of optimized Mean filter utilizing OpenMP technology compare to classic sequential implementation 

 

 
Figure 5. The computation sped up of optimized Gaussian filter utilizing OpenMP technology compare to classic sequential implementation 

 

 
Figure 6. The computation sped up of optimized Median filter utilizing OpenMP technology compare to classic sequential implementation 

 

 
Figure 7. The dependence of the filters processing time from used threads. 
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almost the same (Table III). 

To evaluate noise suppression of filters were generated test 

data set emulating noise which may occur in the equipment. 

The following noise characteristics were used. Thus we used 

noise which covers from 5% to 25% (noise level). The 

generated noise map consists 15% of the impulse noise 

component and 85% of the additive noise component.  The 

value of the additive noise component considered as 15% of 

the dynamic range of the experimental data. 

Figure 8 shows the results obtained when processing an 

image with 15% noise by Gaussian (sigma 2), mean and 

median filters with kernel size 5×5. 

The evaluation of noise suppression for filters with 

different kernel size is shown in Table IV. It demonstrates 

average PSNR values for image with noise (size of image is 

1056×2148) and images processed by filters. During 

experimental study were generated 300 images with noise. 

 

  
(a)                                        (b) 

  
(c)                                                 (d) 

Figure 8. Results of image processing: (a) original image with 15% noise 15; 

(b) processed by Gaussian filter kernel 5×5 sigma 2; (c) processed by mean 

filter kernel 5×5; (d) processed by median filter kernel 5×5. 

 
 

 

 

 

 

 

 

 

TABLE II. 

PROCESSING TIME OF FILTERS FOR DIFFERENT IMAGE SIZE 

(4 THREAD OPENMP), ms  

Image size 

Filter 

Mean Filter Gaussian filter Median Filter 

classic optimized classic optimized classic optimized 

512×512 

(0,26 MP) 
16,351 8,133 18,980 9,317 166,003 22,272 

640×480 

(0.31 MP) 
21,915 9,281 28,780 11,657 189,979 27,877 

768×768 

(0.59 MP) 
35,802 14,807 42,470 20,872 329,367 42,199 

1024×768 

(0.79 MP) 
44,090 20,581 53,309 24,797 453,629 46,211 

1280×720 

(0.92 MP) 
55,682 29,079 59,238 34,911 523,766 53,756 

1440×1080 

(1.56 MP) 
80,516 41,719 109,943 45,306 850,261 98,906 

1920×1080 

(2.07 MP) 
120,490 50,264 148,818 66,429 1084,792 129,491 

1056×2148 

(2.17 MP) 
120,123 61,804 156,094 86,268 1176,891 134,528 

1396×2168 

(2.89 MP) 
178,179 92,056 255,100 128,221 1632,550 203,446 

 

TABLE III. 

EVALUATION OF THE ACCELERATION STABILITY FOR 

OPTIMIZED FILTERS FOR DIFFERENT KERNEL SIZE 

Filter Threads 

Kernel Size 

3×3 5×5 7×7 9×9 11×11 

Mean  optimized 

2 1,97 2,01 2,03 2,03 1,98 

3 2,70 2,76 2,73 2,65 2,64 

4 3,08 3,12 3,55 3,23 2,95 

Gaussian  optimized (1Dx2) 

2 1,78 1,84 1,90 1,92 1,92 

3 2,38 2,55 2,56 2,45 2,45 

4 2,83 2,82 2,85 2,86 2,86 

Median  optimized 

2 1,92 1,95 1,96 1,96 1,96 

3 2,64 2,70 2,75 2,66 2,72 

4 2,98 3,05 3,09 2,99 2,95 

 
TABLE IV: PSNR VALUES 

Filters 

Kernel Size 

3×3 5×5 7×7 9×9 11×11 

  Noise Level 5% / Noise image PSNR:51,4244039962383 

Mean 68,4842 72,4898 72,3296 70,927 69,2666 

Gaussian 68,518 72,6628 73,3734 73,4386 73,8396 

Median 88,7094 84,6942 81,5822 79,1196 76,7496 

  Noise Level 10% / Noise image PSNR:45,5018127600979 

Mean 63,2286 68,8242 70,0816 69,517 68,3272 

Gaussian 63,1616 68,276 69,4224 69,591 69,9044 

Median 88,2476 84,5432 81,6126 79,1476 76,7498 

  Noise Level 15% / Noise image PSNR:41,9414738268637 

Mean 59,9406 66,0944 68,0394 68,0304 67,2288 

Gaussian 59,8356 65,2282 66,5362 66,7478 67,268 

Median 87,9284 84,3688 81,4928 79,0522 76,7666 

  Noise Level 20% / Noise image PSNR:39,5352640898964 

Mean 57,4892 63,8614 66,1734 66,5362 66,0318 

Gaussian 57,3658 62,8288 64,2 64,8324 65,4566 

Median 87,5268 84,2286 81,439 79,0578 76,712 

  Noise Level 25% / Noise image PSNR:37,634963500737 

Mean 55,5328 61,9578 64,4476 65,0418 64,7528 

Gaussian 55,3988 60,8406 62,2282 62,4686 62,4946 

Median 87,1142 84,0664 81,188 78,8754 76,6108 
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IV. CONCLUSIONS 

Digital filters were used which in the last decades have 

taken great impetus for the treatment of images in different 

fields of science and in the case of the medical image 

processing better results are obtained in order to make better 

interpretations. Various filters are used for medical image 

preprocessing such as classic and optimized: mean filter, 

Gaussian 2D filter and median filter. The primary purpose of 

these filters is a noise reduction, but filter can also be used to 

emphasize certain features of an image or remove other 

features. Most of image processing filters can be divided into 

linear filters and nonlinear filters. Nonlinear filters include 

order statistic filters and adaptive filters. The choice of filter 

is often determined by the nature of the task and the type and 

behavior of the data. 

Using of OpenMP we made parallel implementation of 

optimized algorithms, which gives performance boost up in 

almost two times for two threads and around 3 times for 3 and 

4 threads. Experimental results show that the optimized 

version of filter algorithms can well do with the relationship 

between the effect of the noise reduction and the time 

complexity of the algorithms. The most increase of 

processing speed was gained for median filter. Thus for small 

kernel (3×3) the acceleration is about 8 times and for large 

kernel (11×11) 70 times. Optimized version of Mean filter 

and Gaussian filter give us acceleration about 3 times for 

small kernel (3×3) and around 13 times for large kernel 

(11×11). 
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