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Abstract—A new operational matrix method based on Cheby-
shev polynomials is developed for obtaining approximate nu-
merical solutions of boundary value problems for non-linear
fourth order Caputo fractional derivative integro-differential
equations. The new Chebyshev operational matrices are applied
to reduce the integro-differential equations for the static beam
problem to a system of nonlinear algebraic equations. Examples
are given to show the simplicity and accuracy of the proposed
method.

Index Terms—Caputo fractional integro-differential equation
(FIDEs), Chebyshev polynomials, Static beam problem.

I. INTRODUCTION

FRACTIONAL differential equations (FDEs) are gen-
eralizations of integer order differential equations to

arbitrary (non-integer) orders. They have been the focus of
many studies because they can give more realistic models of
many physical real world problems, for example, static beam
problems [1], fluid dynamics [2], chemical kinetics [3] etc.

Modeling and simulation of systems or processes by
using fractional derivatives leads to fractional differential
equations (FDEs) or fractional integro-differential equations
(FIDEs). These FIDEs are usually difficult to solve analyti-
cally and therefore numerical methods are usually required.
Many numerical methods have been used to solve FIDEs,
for example, the Adomian decomposition method [4], the
variational iteration method [5], the homotopy perturbation
method [6] and predictor-corrector methods [7]. Further,
standard methods of approximating solutions of FIDEs using
families of basis functions are also being widely used.
The most commonly used sets of approximating functions
include block pulse functions [8], Bernstein polynomials [9],
Chebyshev polynomials [10], Legendre polynomials [11] and
Laguerre polynomials [12].
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The main aim of this work is to find approximate solutions
of non-local static beam problems [13] which can be modeled
as nonlinear fourth order Caputo fractional derivative integro-
differential equations. We propose a new operational matrix
method for solving these types of problems based on shifted
Chebyshev polynomial of the first kind.

Consider the nonlinear fourth order Caputo fractional
integro-differential equation of a static beam in the form :

u(4α)(x)−ϵu(2α)(x)− 2

L

∫ L

0

[
u(α)(x)

]2
dxu(2α)(x) = f(x)

(1)
with boundary conditions

u(0) = u(L) = u(2α)(0) = u(2α)(L) = 0, 0 < x < L, (2)

where u(x) represents the static deflection of the beam at the
point x and ϵ is a positive constant. This equation models
the bending equilibrium of an extensible beam (of length
L) which is simply supported at x = 0 and attached to a
fixed nonlinear torsional spring at x = L. The given func-
tion, f(x), represents the force exerted by the foundation.
The mathematical model for the elastic beam with non-
local terms of the type

∫ L

0

[
u(α)

]2
dxu(2α) can be found

in [14], [15]. Due to the presence of the integral over [0, L],
the problem is not modeled by a point-wise equation and
therefore is called a non-local problem.

II. PRELIMINARIES

In this section, we introduce some necessary definitions
of the Caputo fractional derivative and some properties of
Chebyshev polynomials.

A. Definition of Caputo fractional derivative

Definition 1. Let α ∈ R+, n = ⌈α⌉ and u ∈ ACn[a, b]. Then
the Caputo fractional derivative of u(x) is defined by [16]

Dα
au(x) =

1

Γ(n− α)

∫ x

a

u(n)(τ)

(x− τ)α−n+1
dτ.

The Caputo fractional derivative is a linear operator similar
to integer order differential operators. Some properties of
Caputo fractional derivatives are as follows [16].

Dα
aC = 0, where C is a constant. (3)

and

Dα
ax

β =

{
0, β < ⌈α⌉,
Γ(β+1)

Γ(β+1−α)x
β−α, β ≥ ⌈α⌉,

(4)
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where β ∈ N ∪ 0, ⌊α⌋ denotes the largest integer less than
or equal to α and ⌈α⌉ is the smallest integer greater than or
equal to α.

B. Some properties of Chebyshev polynomials

In this section, we summarize some elementary formulae
for the manipulation of Chebyshev polynomials.

Definition 2. The Chebyshev polynomials Tn(s), n = 1, 2,
. . ., N of the first kind are orthogonal polynomials of degree
n in s defined on the interval [−1, 1] by [17], [18]

Tn(s) = cos(nθ),

where s = cos(θ), θ ∈ [0, π] and s ∈ [−1, 1].

For convenience, we first transform to the interval x ∈
[0, 1] by using the transformation x = 1

2 (s + 1) and obtain
the shifted Chebyshev polynomials (of the first kind) in the
form T ∗

n(x) = Tn(2x − 1). The shifted polynomials can be
generated by using the recurrence relation

T ∗
n(x) = 2(2x− 1)T ∗

n−1(x)− T ∗
n−2(x),

with T ∗
0 (x) = 1 and T ∗

1 (x) = 2x− 1 and then

T ∗
2 (x) = 8x2 − 8x+ 1,

T ∗
3 (x) = 32x3 − 48x2 + 18x− 1,

...

T ∗
N (x) = N

N∑
k=0

(−1)N−k 2
2k(N + k − 1)!

(2k)!(N − k)!
xk. (5)

The shifted Chebyshev polynomial T ∗
N+1(x) of degree N+1

has exactly N +1 real zeroes on the interval [0, 1]. The nth

zero xn is given by

xn =
1

2

(
1 + cos

(
[2(N − n) + 1]π

2(N + 1)

))
. (6)

C. Chebyshev operational matrix for Caputo fractional
derivatives

We consider the shifted Chebyshev vector given by
T∗(x) = [T ∗

0 (x) T ∗
1 (x) T ∗

2 (x) . . . T ∗
n(x)]

T . Then the
shifted Chebyshev polynomial, T∗(x), in (5) can be ex-
pressed in matrix form as

T∗(x) = D−1Y(x), (7)

where
Y(x) =

[
1 x x2 . . . xn

]T
, (8)

and

D =



20
(

0

0

)
0 · · · 0

2−2

(
2

1

)
2−1

(
2

0

)
· · · 0

...
...

. . .
...

k

(
2N

N

)
2k

(
2N

N − 1

)
· · · 2k

(
2N

0

)


(9)

and k = 2−2N .
From (4), it is not difficult to show inductively that the
Caputo fractional derivative of the vector, Y(x), of order
α is given by the matrix form

DαY(x) = Bα(x)Y(x), (10)

where

Bα(x) = x−α



0 0 0 · · · 0

0
Γ(2)

Γ(2−α)
0 · · · 0

0 0
Γ(3)

Γ(3−α)
· · · 0

...
...

...
. . .

...

0 0 0 · · · Γ(N+1)
Γ(N+1−α)


. (11)

The fractional derivative of order jα is also given by

D(jα)Y(x) = Bjα(x)Y(x), (12)

where

Bjα(x) = x−jα



0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

...
...

... Γ(j)
Γ(j−jα)

...

0 0 0 · · · Γ(N+1)
Γ(N+1−jα)

 , (13)

and j = 1, 2, 3, . . . , N .

D. Expansions for shifted Chebyshev polynomials of the first
kind

In this section, we apply the shifted Chebyshev operational
matrix of fractional derivatives to solve nonlinear Caputo
fractional integro-differential equations (NFIDEs) in (1). To
do this, we first approximate a solution, uN (x), of the beam
problem (1) as

uN (x) =

N∑
n=0

anT
∗
n(x) = AT∗(x)

= AD−1Y(x), (14)

where A = [a0 a1 ... aN ] is an unknown vector and
the matrix, Y(x), in (8).

Theorem 1. Let uN (x) be approximated by the shifted
Chebyshev polynomials of the first kind as in (14) and also
suppose α > 0. Then the Caputo fractional derivative with
order α of the shifted Chebyshev polynomials of the first kind
is given by [19]

Dα(uN (x)) =
N∑

n=⌈α⌉

n∑
k=⌈α⌉

anw
(α)
n,kx

k−α, (15)

where

w
(α)
n,k = (−1)n−k 22kn(n+ k − 1)!Γ(k + 1)

(2k)!(n− k)!Γ(k + 1− α)
. (16)

From theorem 1 and (10), the Caputo fractional derivative
matrix that represents Dα(uN (x)) is given in matrix form
as

Dα
(
uN (x)

)
= Dα

(
AD−1Y(x),

)
= AD−1DαY(x)

= AD−1Bα(x)Y(x). (17)
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We also have that the jth Caputo fractional derivative matrix
with order α is given by

D(jα)
(
uN (x)

)
= AD−1Bjα(x)Y(x), (18)

where D, Bα(x), and Bjα(x) are defined in (9), (11), and
(13) respectively.

III. CHEBYSHEV SOLUTIONS OF THE STATIC BEAM

Consider the Caputo fractional integro-differential equation
(1)

u(4α)(x)−ϵu(2α)(x)− 2

L

∫ L

0

[
u(α)(x)

]2
dxu(2α)(x) = f(x),

(19)
with the boundary conditions

u(0) = u(L) = u(2α)(0) = u(2α)(L) = 0, 0 < x < L. (20)

First, we assume that the approximate solution, uN (x), in
(19) can be written as an expansion in Chebyshev polyno-
mials of the first kind in the form:

uN (x) =
N∑

n=0

anT
∗
n(x) = AD−1Y(x), (21)

where the coefficient A = [a0 a1 ... aN ] is a known
vector. Now using (18), we can approximate the Caputo
fractional derivative of order α in (17). The order 2α and
4α of shifted Chebyshev polynomials of the first kind are
given by

D(2α)
(
uN (x)

)
= AD−1B2α(x)Y(x), (22)

D(4α)
(
uN (x)

)
= AD−1B4α(x)Y(x), (23)

where the matrices D−1,B2α and B4α are given in (9) and
(13). Substituting (17), (21), (22) and (23) into (19), we
obtain the following matrix equation

AD−1B4α(x)Y(x)− ϵAD−1B2α(x)Y(x)

− 2

L

∫ L

0

[
AD−1Bα(x)Y(x)

]2
dxAD−1B2α(x)Y(x)

= f(x).

(24)

The matrices of the boundary conditions in (20) are then

u(0) = AD−1Y(0), u(L) = AD−1Y(L),

u(2α)(0) = AD−1B2α(0)Y(0), (25)
u(2α)(L) = AD−1B2α(L)Y(L).

Next, we substitute the real zeroes on the interval [0, 1] in
(6), xn, n = 0, 1, 2, . . . , N into (24) and obtain a system of
(N + 1) algebraic equations. The first two equations of the
system from (24) can be replaced by the boundary condition
u(0), u(2α)(0) in (25) and the last two equations in (24)
can be replaced by the boundary condition u(L), u(2α)(L)
from (25). Next, we use Newton’s iterative method to solve
the system of (N + 1) nonlinear algebraic equations to
obtain the unknown vector A. Then the approximate solution
uN (x) given in (14) can be calculated to obtain a numerical
approximate solution of the static beam problem.

IV. ERROR BOUND

In this section, we derive an error bound for the approximate
solution u(x) in (19). Diethelm(2010) [20] has proved the
smoothness of solutions of Caputo fractional differential
equations and shown that very good results can be obtained
by differentiation of the solution in the interval [0, L] [21].

Lemma 1. If u(x) is the exact solution and uN (x) =
CD−1Y(x) is the best shifted Chebyshev approximate so-
lution of (19), then the error bound is given by

∥u(x)− uN (x)∥ ≤ h
n2+3

2 R

(n+ 1)!
√
2n+ 3

,

x ∈ [xi, xi+1] ⊆ [0, 1], (26)

where

R = max
x∈[xi,xi+1]

|u(n+1)(x)|, h = xi+1 − ti.

Proof : Applying Taylor’s expansion, we set

u1(x) = u(xi)− u′(xi)(x− xi) + u′′(xi)
(x− xi)

2

2!

+ . . .+ u(n)(xi)
(x− xi)

n

n!
.

It is clear that

|u(x)− u1(x)| ≤ |u(n+1)(ξ)| (x− xi)
n+1

(n+ 1)!
,

where ξ ∈ [xi, xi+1]. Since uN (x) = CD−1Y(x) is the best
approximation of u(x), we have

∥u(x)− uN (x)∥2 = ∥u(x)−CD−1Y(x)∥2

≤ ∥u(x)− u1(x)∥2

=

∫ xi+1

xi

|u(τ)− u1(τ)|2dτ

≤
∫ xi+1

xi

|u(n+1)(ξ)|2 (τ − xi)
2(n+1)

(n+ 1)!2
dτ

≤
∫ xi+1

xi

R2 (τ − xi)
2(n+1)

(n+ 1)!2
dτ

where R = maxx∈[xi,xi+1]|u(n+1)(x)|,

=
R2

(n+ 1)!2
(τ − xi)

2(n+2)

2(n+ 2)
|xi+1
xi

=
R2

(n+ 1)!2
h2n+3

2n+ 3
, where h = xi+1 − xi.

Take the square root of both sides, we have

∥u(x)− uN (x)∥ ≤ h
2n+3

2 R

(n+ 1)!
√
2n+ 3

,

which is the desired result for each sub interval [xi, xi+1], i =
1, 2, . . . , n. Then, the solution u(x) has a local error bound
of O(h

2n+3
2 ), and a global error bound of O(h

2n+1
2 ) on the

interval [0, 1].
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V. NUMERICAL RESULTS

In this section, we give some examples to illustrate the
applicability and accuracy of the proposed method. All
numerical computations were carried out using the Maple
program.
Example 1 : Consider the nonlinear fourth order Caputo
fractional integro-differential equation of the static beam

u(iv)(x)− u
′′
(x)− 2

∫ 1

0

[
u

′
(x)

]2
dtu

′′
(x)

= 2sin(πx)π4 + sin(πx)π2, 0 < x < 1,

with the boundary conditions

u(0) = u(1) = u
′′
(0) = u

′′
(1) = 0,

which has the exact solution u(x) = sin(πx).
By applying the Chebyshev method, we obtain the following
approximate solution from the shifted Chebyshev expansion
with seven terms (N = 7):

u(7)(x) =
7∑

n=0

anT
∗
n(x) = AD−1Y(x),

where the matrices A = [a0 a1 ... a7]
T ,

Y(x) =
[
1 x x2 . . . x7

]T
and

D−1 =


1 0 0 . . . 0
−1 2 0 . . . 0
1 −8 8 . . . 0
...

...
...

. . .
...

−1 98 −1568 . . . 8192

 .

Using the real zeroes of shifted Chebyshev polynomial T ∗
8 (x)

in (6), we obtain

x0 = 0.0096, x1 = 0.0843, x2 = 0.2222, x3 = 0.4025,

x4 = 0.5975, x5 = 0.7778, x6 = 0.9157, x7 = 0.9904.

For each x, we calculate all matrices Y(x) in (8), Bα(x)
in (11), B2α(x)) and B4α(x) in (13) as follows:

Bα =

[
0 0
0 B6×6

]
,B2α =

[
0 0
0 B5×5

]
,B4α =

[
0 0
0 B3×3

]
,

B6×6 = diag
[
0

1

x

2

x

6

x

12

x

20

x

30

x

42

x

]
,

B5×5 = diag
[
0 0

2

x2

6

x2

24

x2

60

x2

120

x2

210

x2

]
,

B3×3 = diag
[
0 0 0 0

24

x4

120

x4

360

x4

840

x4

]
.

We then construct the system of 8 algebraic equations includ-
ing all boundary conditions. After that, we use the Maple
program to solve for the matrix A = [a0 a1 ... a7]

T

which gives

A =



4.7109× 10−1

5.4476× 10−12

−4.9860× 10−1

−6.0979× 10−12

2.8110× 10−2

6.2246× 10−13

−6.0570× 10−4

2.7878× 10−14


,

Therefore, the approximate shifted Chebyshev solution for
N = 7 is given by

u(N)(x) = −1.8928× 10−11 + 3.1329x+ 5.5629× 10−10 x2

−5.0253x3 − 0.5885x4 + 3.7214x5 − 1.2405x6

+2.2838× 10−10 x7

and the graph of the solution is as shown in Fig. 1.

Fig. 1. Graph of solution of the static deflection of the beam for Ex.1

The accuracy of this method is shown by comparing the
approximate solution with the exact solution N = 14, 15, 16
in Table I and Table II.

TABLE I
SOLUTION OF EXAMPLE 1

x Exact N = 14 N = 15 N = 16

0.1 0.3082 0.3090 0.3090 0.3090
0.2 0.5865 0.5878 0.5878 0.5878
0.3 0.8076 0.8090 0.8090 0.8090
0.4 0.9495 0.9511 0.9511 0.9511
0.5 0.9984 0.9999 1.0000 0.9999
0.6 0.9495 0.9511 0.9511 0.9511
0.7 0.8076 0.8090 0.8090 0.8090
0.8 0.5865 0.5878 0.5878 0.5878
0.9 0.3082 0.3090 0.3090 0.3090

We also show the numerical absolute errors, |uexact(x) −
uN (x)| in Table II and graphs of absolute errors in Fig. 2

TABLE II
ABSOLUTE ERROR OF EXAMPLE 1

x N = 14 N = 15 N = 16

0.1 0.0000 0.0000 2.0× 10−10

0.2 1.0× 10−10 0.0000 4.0× 10−10

0.3 1.0× 10−10 1.0× 10−10 2.0× 10−10

0.4 3.0× 10−10 1.0× 10−10 4.0× 10−10

0.5 2.0× 10−10 0.0000 1.7× 10−10

0.6 0.0000 5.0× 10−10 5.0× 10−10

0.7 1.0× 10−9 1.0× 10−10 6.0× 10−10

0.8 1.1× 10−9 7.0× 10−10 1.1× 10−9

0.9 2.5× 10−9 1.0× 10−10 6.0× 10−10
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Fig. 2. Graph of absolute error of the static deflection of the beam for
Ex.1

Example 2 : Consider the following nonlinear fourth order
Caputo fractional integro-differential static beam problem:

u(4α)(x)− u(2α)(x)− 2

∫ 1

0

[
u(α)(x)

]2
dxu(2α)(x) = −x,

0 < x < 1,

and the boundary conditions

u(0) = u(1) = u(2α)(0) = u(2α)(1) = 0.

Applying Chebyshev method, we use the shifted Chebyshev
operational matrices to obtain the approximate solutions for
α = 1 and values N = 7, 10, 16 respectively as follows.

u(7)(x) = −3.21× 10−13 − 0.02x− 7.61× 10−12 x2

+0.25× 10−1 x3 + . . .− 0.19× 10−3 x7

u(10)(x) = −7.59× 10−13 − 0.02x+ 3.96× 10−12 x2

+0.02x3 + . . .− 1.23× 10−7 x10

u(16)(x) = 1.09× 10−12 − 0.02x+ 1.01× 10−11 x2

+0.02x3 + . . .− 1.83× 10−8 x16.

We define an absolute residual error given by

Er = |Lu− f |,

where Lu = u(4α)−ϵu(2α)− 2
L

∫ L

0

[
u(α)

]2
dxu(2α) and f(x)

is known function. The results of the errors for different
values of N = 6, 7, 10 are shown in Table III.

TABLE III
ABSOLUTE RESIDUAL ERROR OF EXAMPLE 2

x N = 7 N = 10 N = 16

0.1 1.92× 10−4 1.55× 10−8 3.00× 10−11

0.2 1.67× 10−5 3.60× 10−9 2.00× 10−10

0.3 1.92× 10−5 2.50× 10−9 2.00× 10−10

0.4 5.81× 10−7 1.70× 10−9 1.00× 10−10

0.5 1.37× 10−5 2.00× 10−10 2.00× 10−10

0.6 6.33× 10−7 1.40× 10−9 7.00× 10−10

0.7 2.29× 10−5 2.28× 10−9 1.00× 10−10

0.8 2.17× 10−5 3.60× 10−9 1.00× 10−10

0.9 2.72× 10−4 1.67× 10−8 2.00× 10−10

Graphs of the numerical approximate solutions with N =
7 and different values of order α = 0.6, 0.7, 0.8, 0.9, 1 for
Caputo fractional derivative are shown in Fig. 3.

Fig. 3. Graphical solutions for deflection of the static beam for fractional
order α = 0.6, 0.7, 0.8, 0.9.1

Example 3 : Consider Caputo non-local fractional integro-
differential equation of the static beam on elastic bearings:

u(4α)(x)− u(2α)(x)− 2

∫ 1

0

[
u(α)(x)

]2
dxu(2α)(x) =

1

x+ 1
,

0 < x < 1,

and the boundary conditions

u(0) = u(1) = u(2α)(0) = u(2α)(1) = 0.

This example is solved by our method with N = 7 when
fractional orders α = 0.6, 0.7, 0.8, 0.9, 1 respectively. The
approximate shifted Chebyshev solutions which depend on
order α given by

u
(7)
α=0.6(x) = 1.49× 10−12 + 0.33x− 2.13x2 + 5.45x3

−7.40x4 + . . .− 0.25x7

u
(7)
α=0.7(x) = −6.00× 10−13 + 0.08x− 0.18x2 − 0.60x3

+2.80x4 + . . .− 1.11x7

u
(7)
α=0.8(x) = −3.00× 10−13 − 8.54× 10−3 x+ 0.30x2 − 1.56x3

+3.61x4 + . . .− 0.83x7

u
(7)
α=0.9(x) = −3.30× 10−13 − 0.04x+ 0.30x2 − 0.92x3

+1.63x4 + . . .− 0.26x7

u
(7)
α=1(x) = 5.86× 10−13 + 0.03x+ 7.42× 10−12 x2 − 0.06x3

+0.04x4 + . . .− 3.31× 10−4 x7.

Graphs of numerical solutions for order α = 0.6, 0.7, 0.8,
0.9 and 1 are shown in Fig. 4

Fig. 4. Graph of solution of the static deflection of the beam for Ex.3,
α = 0.6, 0.7, 0.8, 0.9 and 1

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



VI. CONCLUSION

In this paper, a new operational method based on Chebyshev
polynomials for Caputo fractional derivative is applied to
solve boundary value problems of the non-local Caputo frac-
tional integro-differential static beam equation. This method
is simple and is a good mathematical method for finding
numerical solutions of NFDEs. The validity, accuracy and
applicability of our Chebyshev method have been illustrated
through numerical results. The approximate solutions have
been compared with known exact solutions for some prob-
lems. The comparisons show that the Chebyshev method
gives good accuracy and is efficient for a class of nonlinear
fractional integro-differential equations (FIDEs) which arise
in the study of transverse vibrations of a hinged beam.
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