
 

  
Abstract—In this paper, we propose an alternative of 

compositional verification of data invariants in Promela code. 
The Promela source code, c-like source code, is analyzed and 
decomposed into a set of code chunks using the program slicing 
technique. Each code chunk of Promela will be verified to 
satisfy each simple logical condition term separately found in 
the linear temporal logic properties of data invariants. The 
separate checks are performed and eventually consolidated 
into the final result. It obviously shows that the state space of 
each separated model checking task has been reduced and 
more tractable. The SPIN model checker tool is used to 
evaluate our final results. 
 

Index Terms—Compositional verification, Data invariant, 
Program slicing, Promela, SPIN 
 

I. INTRODUCTION 
PIN is an automated verification tool developer by [1], 
which needs Promela as an input language for 

processing verification in model checking technique. It is 
one of the most well-known linear temporal logic (LTL) 
model checkers which can simulate various properties: 
safety properties that are often characterized as “something 
bad never happens”, liveness properties that are 
characterized as “something good will happen in the future” 
[2]. 
 For example, safety property can be described as the 
mutual exclusion property—at most one process is always in 
its critical section. Thus, the bad thing which is having two 
or more processes in their critical section concurrently 
should never occurs. Deadlock freedom is also a typical 
safety property in dining philosophers problem for instance. 
The occurrence of each of philosophers holding left 
chopstick and waiting for his right chopstick to be available 
or vice versa must never occur. Checking safety property or 
data invariant checking can be performed by traversing the 
state space and checking whether all of them that are 
reachable hold the data invariant. By holding the data 
invariant, state space must satisfy safety property which can 
be specified by propositional temporal logic. This approach 
can grow the system state space exponentially which leads 
to the state space explosion problem. For example, a system 
composed by n processes and each of them have m states. 
The asynchronous composition from processing the system 
may be mn states which quickly leads to the maximum 
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capabilities of verification tool.  
There are several proposed solutions to the state 

explosion problem in model checking verification. For 
example, using reduction techniques to do on-the-fly 
reduction of the structure of the original state space [3], 
using abstraction techniques to get the simpler formal model 
from the original one [4], etc. In this paper we consider the 
divide-and-conquer techniques by decomposing the formal 
model written in Promela code into a set of code chunks. 
The slicing technique of source code is considered since the 
Promela code is a c-like source code. The data invariants are 
expressed in terms of temporal formula consisting of atomic 
propositions and temporal operators. Our proposed slicing 
technique will consider only relevant variables found in 
atomic proposition as the slicing criteria for each program 
slice. Obviously, we intend to reduce the size of the model 
beforehand into a set of smaller code chunks and separately 
perform the smaller model checking tasks. 

The rest of paper is organized as follows. Section II 
describes backgrounds. Section III describes related works. 
Section IV describes our slicing methodology. Section V 
discusses the results of our compositional verification. 
Section VI is our conclusion. 

II. BACKGROUND 

A. Propositional Logic 
Proposition logic is a simple logical system that allows to 

reason logical expression whether it is true or false [5]. 
Logical expression can contain logical operators such as 
AND (∧), OR (∨), and NOT (¬). Atomic propositions 
express simple known facts about the states of the system 
under consideration for example “x equals 0”, or “x is 
smaller than 100” for some given integer variable x. Given 
AP is a set of atomic propositions. Latin letters such as a, b 
and c (with or without subscripts) are used to denote 
elements of AP. Four rules are defined for the set of 
propositional logic formula: (1) true is formula, (2) any 
atomic proposition a ∈ AP is a formula, (3) if Φ1, Φ2 and Φ 
are formula, then so are (¬Φ) and (Φ1 ∧ Φ2) and (4) nothing 
else is formula [6]. Proposition might hold or not depends 
on which of the atomic propositions are assumed to hold. 
For example, Φ1 ∧ Φ2 holds if and only if Φ1 and Φ2 hold, 
Φ1 ∧ ¬Φ2 holds if and only if Φ1 holds and Φ2 does not hold 
and true holds in any context. 

B. Temporal Logic 
Temporal logic extends propositional logic by modalities 

that allows for the specification of the relative order of 
events [2]. These modalities allow specifying the order in 
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which state labels occur during system execution, or to 
assess that certain state labels occur infinitely often in 
system execution. Propositional logic which is extended by 
temporal logic is propositional temporal logics. The 
elementary temporal modalities that are written in most 
temporal logics include operators as X (next), G (Globally), 
F (Finally) [7] presented in Fig. 1, which is based on [2]. 

Two types of temporal logics are most commonly used 
for model checking: Computational Tree Logic (CTL) that 
is a branching temporal logic for specifying system 
properties, and Linear Temporal Logic (LTL) that is 
interpreted over the set of CTL paths [8]. 

C. Invariant 
Invariant, such as safety properties, are linear time 

properties that require condition to hold for all reachable 
states [2]. An example for mutual exclusion, at most one 
process is always in its critical section, can be described by 
an invariant using the propositional logic formula as (1). 
Given Φ is invariant condition and inCriticali is the 
proposition that characterizes the state(s) of having process 
in its critical section. 
 

21 inCriticalinCritical ¬∧¬=φ         (1) 
 
For deadlock freedom of dining philosophers problem, 

the invariant ensures that at least one of the dining 
philosophers is not waiting to pick up the chopsticks [2]. It 
can be described by using the propositional logic formula as 
(2). Given waitForChopsticki is the proposition that 
characterizes the state(s) of philosopher I in which he is 
waiting for a chopstick. 

 

43

21

pstickwaitForChopstickwaitForCho

pstickwaitForChopstickwaitForCho

¬∧¬∧

¬∧¬=φ
 (2) 

 

D. Program Slicing 
Program slicing is basically a decomposition technique. It 

elides program components that are not related to a 
preserved subset of the original program’s behavior [9]. A 
specification of the subset is known as a slicing criterion, 
and the resulting subprogram is a slice. Slicing criterion is 
defined by [10] as a pair ‹i, V›, combining a program point, 
i, and a set of variables, V. A slice is computed with respect 
to a slicing criterion that consists of a selected variable and 
program location. There are several kinds of slicing such as 

backward slices and forward slices. Both of them include 
variable assignment in the slice in order to preserve 
semantics of the chosen variable at the location in the slicing 
criterion.  

Backward slicing is one kind of program slicing which 
computes to answer the question “what program 
components might effect a selected computation” [17]. The 
example of backward slicing is shown in Fig. 2, which is 
based on [9]. Slicing criterion is specified as ‹8, i›, which is 
related to variables i in statement print(i). Then each 
statement before execution of statement print(i) is checked 
if it contains variable i. So statement that is related to 
variable sum such as sum = 0 and sum = sum + 1 will not be 
included in a slice. 

Whilst, forward slicing is another kind of program slicing 
which computes to answer question “what program 
components might be effected by a selected computation” 
[17]. An example of forward slicing is shown in Fig. 3, 
which is based on [9].  

Slicing criterion is specified as ‹2, sum›, then each 
statement after statement sum = 0 is checked if it is affected 
by variable sum. So statement that is related to variable i 
such as i = i + 1 will not be included in a slice since it is not 
affected by the variable sum.  

E. Program Dependency Graph 
Program dependency graph (PDG) is a graph representing 

the consecutive statements of the cascading dependency of 
the data values assignments in the program. It simplifies the 
static analysis of the program and typically used to perform 
the program slicing. It has been a method to identify the 
relevant entities of the program according to data and 
control dependencies [11].  

Formally, a PDG is a tuple (V, E) where V is a set of 
vertices and E is a set of edges. The vertices of a PDG 

 
Fig. 1. An example of semantics of temporal modalities [2] 
  

 
Fig. 2. An example of backward slicing [9] 

 
Fig. 3. An example of forward slicing [9] 
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represent program statements, control predicates, and 
regions of the program. While, the edges of a PDG represent 
data or control dependencies between the vertices. 

The PDG is related to program slicing since program 
slicing can be reduced to the graph reachability problem in 
which a program slice is a set of vertices that can be reached 
from some indicated vertex. Based on Fig. 2., PDG of the 
original program can be written in Fig. 4, which is based on 
[11]. 

After the backward slicing with the slicing criterion ‹8, i›, 
a resulting smaller slice is illustrated by the PDG shown in 
Fig. 5, which is based on [11]. The unrelated vertices of the 
original PDG are elided according to the slicing criterion ‹8, 
i›. As you can see, the vertex of sum = 0 and its cascading 
dependency vertices, carrying the variable sum, are left out. 

III. RELATED WORK 
Many approaches for reducing state space has been 

investigated. Partial order reduction, based on research of 
[12], is a technique for reducing size of the state space by 
constructing a smaller state space that is searched by the 
verification algorithms. Their experiment was based on 
safety and liveness properties of parameterized systems, 
which produced excellent results as huge reduction of states, 
transitions, memory and computing time because the local 
semantic accelerations are strong enough to get new results 
that match or beat old results in the context of regular model 
checking. Divide-and-Conquer is another state space 

reduction technique. It decomposes properties of the system 
into properties of its components, then checks each 
component separately. It is necessary to incorporate 
knowledge of the context for expectation of each component 
to operate correctly. An example for state space reduction 
by divide-and-conquer technique is [13], which proposed an 
automatic method for systematically extracting subparts, 
then applying divide-and-conquer approach for computation 
subparts efficiently. Another work by [14] proposed 
agglomeration for state space reduction for model checking 
concurrent C programs. The agglomeration predicate needed 
to be defined which took as argument a C statement and 
returned true or false depending on whether the statement 
could be agglomerated or not. Also, the predicate was 
checked if it was safe or unsafe. It was called unsafe as a 
statement which might contain the global memory 
agglomerated. Agglomerating actions could reduce the 
number of states in control flow graph, for example two 
consecutive statements are x = x +1 and x = x +2, the 
agglomeration technique could combine two statements by 
one action which is the result as well as of executing the 
statement x = (x+1) + 2. The statement with a return 
statement followed could be agglomerated into one action as 
well, for example two consecutive statements such as x = x 
+ 1 and return. Once the states in control flow graph was 
reduced, the resulting state space from model checking with 
this reduction techniques, is reduced accordingly. The 
results from experimental of agglomeration include 5 
programs: Zunebug, Lamport’s Bakery and Peterson 
algorithms, Dekker mutual exclusion algorithm and Dining 
philosopher problem, which could reduce huge number of 
states and also time for model checking as the ratio between 
the state space generated without reduction and the one after 
applying the reduction technique was approximately 90 to 
99. The research of [15] which was about state space 
reduction in Agent Verification, applied program slicing to 
eliminate details of the program that were not related to the 
analysis in hand. The approach from [16] was chosen due to 
similarity of the programs. Furthermore, the executable 
slices did not need to be generated. Experimental results 
were shown as the comparison of the memory usage 
between traditional SPIN and the slicing approach—
traditional SPIN used 606 MB while the slicing approach 
used only 407 MB. Moreover, the comparison of computing 
time between them showed that traditional SPIN used 86 
seconds while slicing approach used 64 seconds. On the 
other hand, the study about program slicing by [17] applied 
static backward slicing to reduce the cost of property 
checking. The experimental results compared running time 
for checking the two properties using the first models from 
original program, from sliced program, and finally from 
sliced program with abstraction. With slicing approach, it 
took the time less than one second. 

IV. OUR SLICING METHODOLOGY 
In this section, we describe our slicing methodology for 

Promela code. An example of Promela code of automated 
teller machine (ATM) is given and shown in Fig. 6. The 
Promela code briefly specifies the states of a ATM system 
using label names, including welcome idle state 
(s_welcome), enter pin state (s_enter_pin), main menu state 

 
Fig. 4. An example of PDG of the original program based on Fig. 2. [11]  

 
Fig. 5. An example of PDG of the sliced program based on Fig. 2. [11] 
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(s_main_menu), deposit state (s_deposit), withdraw state 
(s_withdraw), and try again state (s_try_again).  

The ATM system is normally in the welcome idle state 
and will respond to the events of depositing and 
withdrawing cash. The customer needs to enter the valid pin 
number and the amount of money to be checked with his/her 
current account balance.  A sample of the data invariants of 
this ATM system could be specified in LTL property such 
as �(¬(account_balance < 0)), meaning that the value of 
account_balance should not less than zero at all times. 
According to the mentioned LTL property, we select the 
slicing criteria from the variables found, which is a pair 
‹location, account_balance› where location is the last line 
number of the Promela code.  

Our proposed slicing method is based on [14]. A slicing 
criterion is produced from extraction of variables in 
propositional temporal formula for data invariant checking, 
which can create a slice that contains relevant statements. 
After that a data invariant checking is processed based on 
each slice. The details of the activities are explained below. 

A. Identify slicing criterion 
A slicing criterion is produced from the propositional 

temporal formula for data invariant checking, which might 
contain variables, constant values and operators. The 
variables are extracted to provide a slicing criterion for 
processing program slicing in the next step while the 
constant values and the operators are extracted to interpret 
the logical expression based on the value of variable for 
each state space whether it is true or false. A slicing 
criterion is a pair ‹i, V›, which i represents line number and 
V represents variable. This step produces slicing criterion as 
‹end, INV›, which end is the last line number of proctype in 
Promela and INV is a variable from propositional temporal 
formula for data invariant checking. For example, we 
introduce propositional temporal formula for data invariant 
checking as �(¬(account_balance < 0)), an invariant 
formula that describes safety property as balance in bank 
account must never be less than zero in any situation. The 
variable account_balance and constant value 0 are 
accordingly extracted from the formula. Moreover, the 
logical operator NOT must be extracted in order to apply to 
the logical account_balance < 0 to be account_balance >= 
0. Given 100 is the last line number of proctype of this 
example. The slicing criterion for propositional temporal 
formula for data invariant checking �(¬(account_balance < 

0)) is a pair ‹100, account_balance›. 

B. Examine variable dependencies from PDG 
PDG is created based on the original program, the graph 

shows dependencies between variables, statements and 
control flow. We have specified variable in slicing criterion 
from previous step, which can perform traversing vertices in 
PDG. The traversed vertices are marked and they will be 
included in a slice. Once the traversing process is complete, 
we will have the information which vertices are whether 
marked or not. The example slicing criterion from previous 
step is ‹100, account_balance›, which can perform 
traversing in PDG for checking if any vertices have 
dependencies to the variable account_balance. We found 
that the group of statements in the label s_enter_pin and 
s_try_again are not dependent to account_balance. On the 
other hand, the vertices that have dependency to 
account_balance are group of statements in the label 
s_withdraw and s_deposit. 

C. Create a slice 
This step produces a slice from PDG in previous step. 

The vertices that are not marked meaning that they are not 
related to variable in propositional temporal formula, and 
they are elided. A slice is created from the original program 
and it will contain only statements that are related to slicing 
criterion and also their dependencies statements. A sliced 
PDG according to the slicing criterion 
�(¬(account_balance < 0)) is shown in Fig. 7. 

D. Verify data invariant checking of a program slice 
This study compares state space of data invariant checking 

between a slice and the original program using SPIN. So 
after a slice is created, it will be executed to verify data 
invariant in order to ensure the data invariant has been 
preserved. Data invariant must be exactly the same as the 
result from the original program’s data invariant. In this 
paper, we focus on the Promela code with any size of one 
proctype and the propositional temporal formula, denoted as 
A operator B, where A and B are observable variables in 
Promela code, and operator ∈ {==, <, <=, >, >=, !=}. 
Propositional temporal formula can be single or multiple 
atomic proposition such as �(¬(account_balance < 0)	

 
Fig. 6. An example of automated teller machine in Promela source code  

 
Fig. 7. A sliced PDG according to the slicing criterion 
�(¬(account_balance < 0)) 
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∧¬(account_name == null)), given account_name, 
account_balance are the name of account owner and total 
account balance respectively. 

V. EVALUATION 
The example Promela source code for automated teller 

chine is developed for the evaluation. The flow of the 
process is similar to simple automated teller machine. Start 
from putting the correct PIN, in case the PIN is incorrect 
then the state traverses to try again and getting PIN until it is 
correct. After that the process is about account managing 
such as deposition, withdrawal or transferring. This 
example, the data invariant checking on account_balance 
can produce a slice that has smaller size than the original 
program because program slicing approach can remove 
some statements such as statements about variable pin in 
state for entering pin, which can produce smaller state space 
than the original program as well. The total number of state 
space from data invariant checking of the original automated 
teller machine is 95, but after applying our slicing 
methodology, the total number of state space is reduced to 
28. However, the different of state space on data invariant 
checking from our approach and the original program 
depends on how many irrelevant statements that the original 
program contains. The more irrelevant statements in the 
original program, the more state space can be reduced from 
our approach. The experiment results are based on source 
code from [18]. The results are shown in Table I, where 
#Proc denoted the process number and #State space denoted 
the numbers of state space. 

VI. CONCLUSION 

In this paper we propose an alternative of compositional 
verification of data invariants in Promela source code using 
a slicing technique. The data invariants, as the LTL safety 
property, are written in terms of propositional temporal 
formula which are used to specifying the slicing criteria. 
The variables found in a propositional term of the 
propositional temporal formula would be considered as a 
slicing criterion, used to perform a program slicing of 
Promela code. Each small resulting slice of Promela code 
would be verified to satisfy each propositional term at last to 
conclude its validity of the data invariants. We propose a 
backward slicing from the last line number of the Promela 
code. We provide the obvious evidence of the compositional 
verification of the smaller set of state spaces from the 
Promela slices. However, we need to pursue more 
experiments on the huge Promela codes in our future work. 
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