
 

 
Abstract—We propose the protocol of real-time quantum 

state estimation based on continuous weak measurement and 
compressed sensing (CS). We consider a pure ensemble of 
identical qubit spins which interacts with an optical mode and is 
measured continuously by homodyne detection. Assuming that 
the computing time is ignored, the state of the qubit ensemble 
can be estimated in real time. We verify the real-time estimation 
by simulation experiments on MATLAB. The evolution 
trajectories of the actual states and the corresponding estimated 
results are shown in Bloch sphere, and the influence of the 
parameters on the performance of the estimation results is 
analyzed. The experimental results show that when the system 
is under a constant applied magnetic field and the selected weak 
measure operator does not coincide with or be orthogonal to the 
Hamiltonian of the system, the state of the qubit ensemble can 
be accurately estimated in real time with only 2 consecutive 
measurements records. 
 

Index Terms—compressed sensing, continuous weak 
measurement, quantum trajectory, real-time quantum state 
estimation 
 

I. INTRODUCTION 
UANTUM state tomography (QST), also called 
quantum state estimation or quantum state 

reconstruction, is one of the important contents in the 
research of quantum information processing and quantum 
control [1][2]. By estimating the state of the quantum system, 
people can effectively obtain the current information of the 
system and design the corresponding control scheme [3][4]. 
In order to fully estimate a quantum state, one needs to obtain 
the measurement values on a complete set of observables on 
the state. For an n-qubit quantum state, the number of 
complete observables is . In general, one 
needs to obtain the complete observation values by 
destructively measuring at least  ensembles of identically 
prepared copies of the state. As a result, the number of 
measurements required for conventional QST increases 
exponentially as the number of qubits n increases, which 
brings great difficulties to the reconstruction of high-qubit 
quantum states. 
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In some physical platforms, it is difficult to perform 
destructive strong measurements directly on the system. In 
order to obtain information of the target quantum system, 
people need to use a probe to associate with the quantum 
system and then measure the probe strongly. The information 
of the target quantum state can be inferred by the 
measurement records of the probe. If the interaction strength 
between the system and the probe is rather weak, this kind of 
measurement is called weak measurement [5] (Do not 
confuse this with another weak measurement concept related 
to the weak value [6]). Unlike the strong measurement that 
will completely destroy the state, weak measurement will 
only bring slight changes to the state and the impact to the 
system is also weak. Using weak measurements, one can 
measure a quantum ensemble and directly obtain the 
expectation value of an observable as the measurement 
record.  

Since the weak measurement is not completely destructive, 
one can make continuous measurements of the quantum 
system with weak measurements. In continuous weak 
measurements, the observables are not orthogonal and the 
corresponding information between different observables 
overlaps, so the number of observables required to ensure 
complete information is usually greater than . Real-time 
quantum state estimation refers to the continuous state 
estimation of any moment based on the continuous weak 
measurement records of the quantum state. It is usually 
impossible to directly calculate the state of the quantum 
system by using non-orthogonal observables in continuous 
weak measurements. One can calculate the optimal result 
based on the measurement records using an estimator and an 
appropriate algorithm as the state estimation result. Real-time 
quantum state estimation is the basis of quantum feedback 
control, but there is yet no complete theoretical framework in 
this respect. Silberfarb et al. first proposed a quantum state 
estimation scheme and employed a continuous measurement 
protocol to perform QST on the seven-dimensional, F = 3 
atomic hyperfine spin manifold, in an ensemble of cesium 
atoms [7]. Smith et al. achieved state-to-state quantum 
mapping performance estimation based on the continuous 
weak measurement, as well as the optimal control technology 
design and implementation [8]. And the quantum state of the 
spins undergoing the quantum chaotic dynamic of a nonlinear 
kicked top is measured based on the continuous weak 
measurement [9]. 
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Compressed sensing (CS) provides a new solution to the 
problem of reducing the number of measurements in 
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quantum state estimation [10]–[12]. CS claims that: if the 
rank of a state density matrix r is much smaller than its 
dimension d ( r ), then the state density matrix can be 
reconstructed with only a small amount of randomly sampled 
measurement records. Gross proved that one can reconstruct 
the state density matrix with only 

d

( )logO rd d  measurement 
records when using the Pauli measurement operators [13]. 
CS can be applied to real-time quantum state estimation and 
improve the efficiency of calculation. Deutsch et al. first 
applied CS to the estimation of the states of a controlled 
quantum system under continuous weak measurements and 
realized the rapid reconstruction of the state of a 
16-dimensional cesium atomic spin ensemble [14]. In this 
paper, we study the quantum state real-time estimation based 
on CS and the continuous weak measurement of one qubit 
spin ensemble. We verify the real-time estimation by 
simulation experiments on MATLAB using different control 
fields and different initial weak measurement operators. The 
evolution trajectory of the actual state and the corresponding 
estimated results in Bloch sphere are shown, and the 
influence of the parameters on the performance of the 
estimation results is analyzed. 

The structure of this paper is organized as follows: In Sec. 
II, we give a detailed review of the principles of real-time 
quantum state estimation based on the continuous weak 
measurement and CS. In Sec. III, we verify the real-time 
estimation of the selected qubit spin ensemble by simulation 
experiments on MATLAB, and the influence of parameters, 
such as the control field and initial weak measurement 
operators, on the estimation performance is analyzed. Finally, 
a brief conclusion is given in Sec. VI. 

II. PRINCIPLES OF REAL-TIME QUANTUM STATE ESTIMATION 

A. Quantum State Estimation 
Quantum state estimation refers to the process of 

reconstructing the density matrix of the quantum state 
according to the measurement record and the corresponding 
measurement operators. In quantum mechanics, a 
measurement operator is a matrix that can reflect information 
or some mechanical quantities of the system, usually denoted 
by the operator M . The measurement of a d-dimensional 
quantum state ρ  actually means measuring the expectation 
probabilities of ρ  projecting on a set of measurement 
operators . People can obtain one of the measurement 
values 

M
( )jM ρ  corresponding to jM  by each 

measurement: 

( ) ( )j jM tr Mρρ =  , j = 1, 2, … ,    (1) 2d

In order to estimate the density matrix ρ , it is necessary 
for people to measure the expectation probabilities over 
multiple observables to obtain sufficient information. For an 
arbitrary quantum state ρ  of a d-dimensional Hilbert space, 
assume there is no priori information, it is generally 
necessary to measure on at least   mutually orthogonal 
observables so as to accurately reconstruct  

2 1d −
ρ .  

     Let { }21 2, , ... dM M M=M denote a set of complete 

observables of ρ  , including  orthogonal observables 2d

jM  ( j = 1, 2, … , ).  2d { }21 2, , ... dM M M=M  may be 

regarded as a set of basis corresponding to the Hilbert spaces. 
In this case, the density matrix ρ can be directly calculated by 
the following formula: 

2

1

1 d

i
i

iM M
d

ρ
=

= ∑         (2) 

When the selected set of observables is not complete, the 
measurement of ρ  is called an informationally incomplete 
measurement. In this case, ρ  cannot be directly calculated 
by (2), but can only be calculated by using an optimization 
algorithm to calculate the closest estimation result under the 
existing conditions. In addition, the direct calculation of the 
density matrix using (2) is based on the assumption that the 
observables jM  are orthogonal to each other, whereas the 

observables in actual tend to be non-orthogonal, such as 
generalized measurements, positive operator valued 
measurements (POVMs) and quantum weak measurements. 
And it is necessary to substitute the measurement records of 
the observables into an optimization algorithm to find the 
optimal estimation value through iterative calculation. 

B. Quantum Weak Measurement 
Quantum weak measurement is a method of measuring 

quantum state by using the weak coupling effect between the 
state and the probe [7]. It is usually used to measure quantum 
ensembles. Unlike the strong measurement that always 
causes instantaneous collapse of the target state, weak 
measurement is a non-transient measurement process, and 
the impact on the quantum system is weak. Weak 
measurement generally includes two parts: detection and 
readout. The process of weak measurement is shown in 
Figure 1, in which the left virtual box is for the detection part 
and the right virtual box is for the readout part. Weak 
measurement process introduces a probe  which becomes 
coupled with the target ensemble  for a short time for the 
detection part. Then the probe  is strongly measured. Part 
of the information of the target S  can be inferred with the 
measurement records of . 

P
S

P

P
 

Target System
Probe Projective 

measurement readout
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( )i tψ Δ

Fig. 1. The process of weak measurement 
 

When weakly measuring the target system S , the first 
thing is to prepare a probe .  becomes coupled with  
resulting in a joint system 

P P S
S P⊗ . Suppose the initial state of 

the probe  is P φ , and the initial state of the target system 

 is S 0ρ ψ ψ= . SH  and PH  are the Hamiltonian of 

system  and , respectively, and S P P SH H H= ⊗  is the 
Hamiltonian of the joint system. The initial state of the 
coupled system is: φ ψΨ = ⊗ . After the joint evolution 

of  and  for time S P tΔ , the state Ψ
 
becomes 
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( ) ( )t U tΨ Δ = Δ Ψ , where ( )U tΔ  is the joint evolution 
operator ( ) exp( / )U t -i tHξΔ = Δ , and ξ  represents the 
interaction strength between system S  and  (the unit is 
1/s ). 

P
( )tΨ Δ  is an entangled state composed of and  

which cannot be separately described with the states of 
and . At time , a projective measurements 

S P

S P tΔ
X i i i= ∑  is performed on , where P i  is the eigenstate 
of the system P , and i  is the eigenvalue corresponding to 
i . After the projective measurement the entanglement 

between and  disappears, and the weak measurement 
process is over. Let 

S P
( )iψ tΔ

 
denote the state of S at time 

and the state of the joint system after the weak 
measurement is 

tΔ
( ) (Δ )i it i tψΨ Δ = ⊗ . 

The weak measurement process can be regarded as a 
measurement operation on the system S, and the Kraus 
operator iM  is used to represent the weak measurement 
operator. Therefore, 

†
0

0( | )
i i

i
M M
P i

ρ
ρ

ρ
=          (3) 

where ( )= Δ ( )i i it tρ ψ ψ Δ  is the state density matrix of S 
after the weak measurement. The weak measurement 
operator iM  is 

( )iM i I U t Iφ= ⊗ ⋅ Δ ⋅ ⊗      (4) 

The weak measurement operators { }iM  satisfy † 1iiiM M =∑ . 

0( | )P i ρ  is the probability of measuring outcome :  i
† †

0 0( | ) Tr( )i ii iP i M M M Mρ ρ ψ= = ψ    (5) 
Let tλ ξ= Δ  denote the weak measurement strength, 

where both the interaction strength ξ  and the evolution time 
of the joint system  are small values. Therefore tΔ λ  is a 
small amount approaching 0 and iM i φ≈ ⋅ I  which is 

closed to 0 when i  and φ  are orthogonal or 

approximately orthogonal. Let iM  denote the weak 
measurement value of iM . Using the operators { }iM  and 

the corresponding measurement values { iM } , one can 
estimate the pre-measurement state 0ρ  and the 
post-measurement state iρ  of the system S.  

C. Continuous Weak Measurement and Quantum 
Trajectory 
Continuous weak measurement means measuring the 

selected quantum system continuously using weak 
measurements. This is a dynamic process. One can obtain the 
information of the system based on the measurement records. 
Continuous weak measurement is usually used for the 
quantum feedback system. Based on the continuous 
measurement records, people can estimate the state of the 
system in real time and design a proper control law of the 
feedback.  

Taking the atomic ensemble ( )tρ  in vacuum under a 
magnetic field as an example, the schematic of the 
experiment for continuous weak measurement and the 

corresponding process structure diagram are shown in Fig. 2, 
in which the probe is a continuous laser beam. The initial 
state of the photon in the laser beam is φ , which coupled 
with the atomic ensemble ( )tρ  resulting the output of the 
probe laser in the entanglement. The output probe is 
measured continuously by homodyne detection by the 
measurement operator X i i i= ∑ . Since the strength of 
weak measurement λ  is very small, the back-action of the 
weak measurement is ignored. The weak measurement 
operators of this process are ( )iM dt

 
with different i, where 

 represents the very short time interval required for the 
weak measurement and i is one of the possible measurement 
outputs. The probability of obtaining the output i  on the 

probe laser is . There exist shot 
noises (SN) in the detection process, which will lead to a 
Gaussian distribution fluctuation in the actual measurement 
records. The measurement record can be modeled through a 
Weiner process W(t) with zero mean and unit variance and 
the actual measurement record can be expressed as 

dt

†( | ( )) Tr( ( ))iiP i t M M tρ = ρ

( ) Tr( ( )) ( )iy t M t W tρ σ= +       (6) 

 
(a) 

( )

( )Y t

ˆ ( )tρtρ

( )u t

 
(b) 

Fig. 2. (a) Schematic of the experiment under continuous weak measurement  
and (b) the process structure diagram of the schematic in (a) 

 
In the experiment shown as Fig. 2, the state ( )tρ  cannot 

be completely estimated with only one measurement record 
 of a certain moment t  because the measurement 

operator related with  only covers a small part of the 
information of 

( )y t
( )y t

( )tρ . According to the principle of quantum 
tomography, a set of informationally complete measurement 
records is needed to fully estimate the density matrix of the 
state ( )tρ . Therefore, the system states must be estimated by 
using measurement records at different moments. The system 
dynamics is Markovian when ignoring the effects of weak 
measurements and shot noises. Assuming that all the 
parameters of the system except the state are known, if the 
state of a moment ( )jtρ  can be estimated accurately, the 
system dynamics trajectory with time can be established 
according to the known parameters. One can calculate the 
state of the system at any time with ( )jtρ  and the dynamics 
trajectory, which solves the problem that the state changes 
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due to the evolution [7]. The dynamics trajectory of a 
quantum system evolving over time is also known as the 
quantum trajectory, which is usually represented by the 
quantum state master equation (SME) [8]. 

The dynamics trajectory of the system in Schrödinger 
picture can be represented by the Lindblad master equation: 

  † †

†

( ) [ ( )]
1 1[ , ( )] ( ) ( )
2 2

( )

tt t
i H t L L t t L

L t L

L

ρ ρ

ρ ρ ρ

ρ

=

⎛= − − +⎜
⎝

+

∑

∑

L

⎞
⎟
⎠
  (7)

 

where [ ( )]t tρL is a super operator, and the operator L  
represents the dissipation or decoherence caused by the 
measurement or the environment. The solution of (7) is 

†( ) [ (0)] (0)t t ttρ ρ ρ= =V V V
    where  is a super operator, and    

  (8) 

tV t t ttd d =V LV

s
.
，

( )0
exp d

t
t s⇒ = ∫V T L , where T is the time-ordering 

operator. The state of the system changes with time because 
of the evolution. In order to facilitate the calculation, we 
transform system of Schrödinger picture into that of 
Heisenberg picture, where the measurement operator evolves 
continuously over time and the quantum state keep constant 
[7].  

If the super operator [ ( )]t tρL  is time-independent, then 
the evolution equation of the measurement operator ( )iM t  
under Heisenberg picture is: 

†

† †

†

( ) [ ( )]
1 1[ , ( )] ( ) ( )
2 2

( )

i it

i

M t M t
i H M t M t L L L LM t

L M t L

=

⎛= + +⎜
⎝

−

∑

∑

L

⎞
⎟
⎠

  (9) 

And the solution of (9) is: 
†( ) [ (0)]i itM t M=V

      In particular, if the measurement is the ideal 
non-destructive measurement, the effect of measurement on 
the system is negligible and . When the system 
Hamiltonian does not change with time, the dynamics of the 
system under Schrödinger picture can be described by the 
Liouville-von Neumann equation: 

(10) 

0L =

( ) [ , ( )]it Hρ = − tρ

iHt

 
       (11) 

The solution of (11) is: 
( ) [ (0)] exp( ) (0)exp( )tt -iHtρ ρ ρ= =V

  where the super operator . Ignoring the shot 
noises and the Weiner process  in (6) is always 0, then 
the continuous weak measurement in Schrödinger picture is 
equivalent to the measurement of a constant quantum state 

 (12) 
exp( )t -iHt=V

( )W t

(0)ρ  with a continuously evolving measurement operator 
( )iM t  in Heisenberg picture. The evolving measurement 

operator ( )iM t  in Heisenberg picture is: 
†( ) [ (0)] exp( ) exp( )i i itM t M iHt M -iH= =V t

  
(13) 

And the corresponding measurement record is: 

0( ) Tr( ( )) Tr( ( ) )i iy t M t M tρ ρ= =
     If the super operator 

(14) 
[ ( )]t tρL  is time-dependent, then the 

evolving measurement operator ( )iM t  in Heisenberg 

picture is different from (13) because . In 

this case the operator 

† †
t tt t≠V L L V

( )iM t  is  
† †( ) [ [ (0)]]i it tM t M=V L

         Due to the complexity of the calculation, it is difficult to give 
the solution of (15) directly. Deutsch et al. present a method 
of numerical computation with piecewise constant [7]: 
Suppose that Hamiltonian and super-operator  are 
constant over any period of time , if  is small enough, the 
measurement operator meets (

（15）

itL

it it
] ( ]0 iiM M= Vt , where 

. 1
ti

i i
t

t te δ
+ = LV V
It should be noted that, in Heisenberg picture, the 

measurement operators of different moments are a 
non-orthogonal. Since non-orthogonal operators are not 
independent of each other, the number of the operators for 
informationally complete is usually greater than . 2d

D. Real-time Quantum State Estimation Based on 
Compressed Sensing 
The theory of compressed sensing (CS) claims that if the 

density matrix ρ  of a quantum state is a low-rank matrix, 
then the state density can be reconstructed with only 

( )lnO dr d  measurement of random observables by solving 
an optimization problem, where d  and r  are the dimension 
and rank of the density matrix ρ , respectively [13].  

The reconstruction problem of density matrix ρ  can be 
transformed into the following optimization problem: 

*min   s.t.  vec( )ρ ρ= ⋅y A , where *ρ  is the nuclear-norm 

of ρ , vec( )⋅  represents the transformation from a matrix to a 
vector by stacking the matrix’s columns in order on the top of 
one another. The sampling matrix A  is the matrix form of 
the all the sampled observables iM , and the sampling vector 

 is the vector form of the corresponding observation values y

iM . The above optimization problem of nuclear-norm is 
equivalent to the optimization problem of minimizing the 
2-norm under the positive definite constraint: 

2min vec( )  s.t. Tr 1, 0ρ ρ ρ⋅ − =A y ≥     (16) 

Equation (16) is also called nonnegative least squares 
optimization. Researchers have shown that the non-negative 
least squares optimization method also belongs to the CS 
optimization [19]. Two sufficient conditions for complete 
reconstruction of a matrix based on CS are: (1) the density 
matrix ρ  is a low-rank matrix; (2) the sampling matrix A  
satisfies the Restricted Isometry property (RIP) [13].  

The vector  and matrix can be expressed according to 
the current measurement configurations as: 

y A

1 2
( , , ,

m
T

k k kM M M= ⋅⋅⋅y )     (17) 

and 
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1

2

vec( )
vec( )

vec( )
m

T
k

T
k

T
k

M
M

M

⎛ ⎞
⎜ ⎟
⎜= ⎜
⎜ ⎟
⎜ ⎟
⎝ ⎠

A ⎟
⎟         (18) 

where 
ikM  is an arbitrary measurement operator and 

ikM
 
is the corresponding measurement value. 

It can be deduced according to CS that, if the sampling 
matrix  formed by continuous weak measurement 
operators satisfies the RIP, then one can estimate the 
quantum state in real time with a small amount of 
time-evolving measurement operators {

A

}( )i iM t  and 
corresponding measures records { }( )iy t . Solving the 
optimization problem (17) with an appropriate algorithm, 
people can obtain the reconstructed density matrix ρ . 

III. SIMULATION EXPERIMENT AND ANALYSIS 
In this Section, we study the real-time state estimation of a 

qubit system by simulation experiments on MATLAB. We 
study the evolution trajectory and corresponding real-time 
estimated state trajectory of the controlled system. Through 
comparative experiments, the influence of external control 
field, control strength and weak observation observer on 
real-time state estimation is analyzed. 

Consider a 1/2 spin particle ensemble ( )tρ  as the object of 
real-time estimation, which is under z  direction constant 
magnetic field  and zB x  direction control magnetic field 

cosxB A φ= . In Schrödinger picture, the initial state of the 
spin is (0)ρ , and ( )tρ  is the state at moment t .  

A continuous weak measurement is applied to the system. 
The initial weak measurement operator is iM . Ignore the 
shot noises and assume the strength of weak measurement is 

0λ = . The evolution equation of the system is given by (11). 
The eigen-frequency of the spin ensemble ( )tρ  in the 
magnetic field  is zB 0 zBω γ= , where γ  is the 
spin-magnetic ratio of the particle ensemble, and AγΩ =  is 
the Rabi frequency of the system Ω ∈ . 

The Hamiltonian of ( )tρ  is: 

0 x xH H u H= +
       

(19) 
where ( )0 2 zH 0ω σ= −  is the free Hamiltonian, 

 is the Pauli operator of z, 
1 0
0 1zσ

⎡
= ⎢ −⎣ ⎦

⎤
⎥

)( 2i i
xH e eφ φσ σ− − += − Ω +  is the control Hamiltonian, 

, , and  is the 

time-independent control strength. 

0 0
1 0

σ − ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0 1
0 0

σ + ⎡
= ⎢

⎣ ⎦

⎤
⎥ xu +∈

In real-time estimation of the state ( )tρ , we first convert 
to Heisenberg picture. The estimated state is constant at this 
time and the measurement operator evolving over time is as 
Equation (13). Assume that the moment of continuous weak 
measurements are jt  and the interval between two adjacent 
moments is .  tΔ

The ( )jy t  are recorded from 0 moment. After each weak 
measurement, substitute the recorded ( )jy t

 
and 

corresponding { }( )i jM t  into (17) and (18) to get the real-time 

sampling vector  and sampling matrix A . We use 
least-square algorithm to solve the optimization problem (16), 
and the optimal solution 

y

(0)ρ  is the estimation of (0)ρ . 
After obtaining (0)ρ , the state density matrix at the current 
moment in Schrödinger picture is calculated according to 
(12), and the result ( )jtρ  is the real-time estimation of the 
state. 

In the experiments, the fidelity f  is used to represent the 
effect of state estimation: 

1 1
2 2( ) Tr ( ) ( ) ( )f t t tρ ρ ρ= t

     
(20) 

where ( )tρ  represents the actual density matrix, and 
( )tρ is the corresponding real-time estimated density 

matrix.  
We choose the initial state of the 1/2 spin system as 
(0) [3 4 3 4; 3 4 1 4]ρ = − − , and the Bloch sphere 

coordinate of ( )3 2,  0, 1 2(0)ρ  is . Let 
18

0 2 2.5 10ω = Ω = × , the initial phase of Control field is  
φ 0=  and the interval of the weak measurements is  

18
00.4* 2 1 10 4 a.u.t sω −Δ = = × ≈ . Assume that the 

estimation time required is approximately 0. We choose 
three different control strength as  1 0,  xu = 2 0.5, xu =  

3 1xu = , and choose two kinds of initial weak measurement 

operators as 1 0
0 1z zM σ

⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

，  for each 
0 1
1 0x xM σ

⎡
= = ⎢

⎣ ⎦

⎤
⎥

control strength. Figure 3 shows the evolution trajectories 
of the actual state ( )tρ  and the real-time estimation state 

( )tρ  in the Bloch sphere under different parameters, where 
the red solid line corresponds to the actual state, the blue 
dotted line corresponds to the real-time estimation state, 
" " represents the position of the actual initial state ο (0)ρ , 
and " " represents the initial of estimation state * (0)ρ . In 
Fig. 3, (a) (b) (c), respectively, correspond to the control 
strength 1 0,xu =  2 0.5,xu =  and , and the left and 3 xu = 1
right columns of Fig. 3, respectively, corresponding to the 
measurement operators zM  and xM .  

At time 0t = , the initial estimated state (0)ρ  is 
calculated only from once measurement on the initial actual 
state (0)ρ . Since (0)ρ  in Fig. 3 is constant, the initial 
estimated state (0)ρ  of the same column in (a) (b) (c) are 
same, but of different column are different. The fidelities of 

(0)ρ  corresponding to zM  and xM  are (0) 0.7906zf = , 

(0) 0.9354xf = , respectively. It can be seen from Fig. 3 (a) 
that, when 1 0xu = , the actual system is under free 
evolution and its evolution trajectory is a circular motion on 
x y−  plane. The estimation corresponding to zM  is a 
mixed state which is the projection of ( )tρ  onto the z  
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axis, and the estimation corresponding to xM  is a 
projection of ( )tρ  on the x y−  plane with 0z = . 
However when  and , the evolution 2 0.5xu = 3 1xu =
trajectories of the actual state have certain angles between 
the x y−  plane, and the trajectories of estimation become 
coincide with the actual state trajectories in a short time. 
The value of control strength does not affect the accuracy of 
estimation. Comparing the experimental results of Fig. 3 we 
can see that: in Fig. 3 (a), when the measurement operators 

zM  and xM  are coincident with or orthogonal to the free 
Hamiltonian, the real-time estimation cannot achieve 
accurate results. However, in Fig. 3 (b) and Fig. 3 (c), the 
measurement operators zM  and xM  are not coincident 
with or orthogonal to the system Hamiltonian, and accurate 
real-time estimations of the quantum state can be obtained 
at the moment .  1t = Δt

 
(a) 1 0xu =   

 
 (b)  2 0.5xu =

 
(c)   3 1xu =

Fig. 3. The evolution trajectories of the actual state ( )tρ  and the real-time 
estimation state ( )tρ  in the Bloch sphere under different parameters. 

 
These experimental results show that, if the initial 

measurement operator is coincident with or orthogonal to the 
system Hamiltonian, continuous measurement cannot 
measure sufficiently valid information of the system and 
cannot achieve accurate real-time estimation of the state. On 
the contrary, if the initial measurement operator is not 
coincident with or orthogonal to the system Hamiltonian, a 
successful real-time estimation of the quantum state can be 
achieved, and the state evolving over time can be accurately 
estimated with at most 2 consecutive measurements records. 

 

IV. CONCLUSION 
In this paper, the real-time quantum state estimation based 

on CS and continuous weakness measurement is studied. We 
give the principles and schemes of real-time quantum state 
estimation, and analyze the influence of parameters on the 
performance of the estimation results. We verify the real-time 
estimation by simulation experiments. The real-time 
estimation of a 1/2 spin quantum state is realized, and 
different control strength and different initial measurement 
operators are respectively selected for the experiments. The 
evolution trajectories of the actual states and the 
corresponding estimation states are shown in Bloch spheres 
by comparative experiments. The experimental results show 
that when the initial measurement operator is not coincident 
with or orthogonal to the system Hamiltonian, an real-time 
estimation of the 1/2 spin system based on continuous weak 
measurements and CS is feasible, and accurate real-time 
estimations can be obtained with at most 2 consecutive 
measurement records. 
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