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Abstract—This paper deals with a piecewise model based
controller design for nonlinear systems via feedback lineariza-
tion. The model is a piecewise multi-linear system and a
nonlinear approximation. The approximated model is fully
parametric. Feedback linearization is applied to stabilize PML
(Piecewise Multi-Linear) control system. We apply the piecewise
model based controller to TORA (Translational Oscillator with
Rotating Actuator) system. Although the controller is simpler
than the conventional feedback linearization controller, the
PML model based control can be applied to a wider region
than the conventional one. Examples are shown to confirm the
feasibility of our proposals by computer simulations.

Index Terms—nonlinear control, feedback linearization, tora
system, piecewise model.

I. INTRODUCTION

WE propose a piecewise model based controller de-
sign for nonlinear systems via feedback linearization.

We apply the piecewise model based controller to TORA
(Translational Oscillator with Rotating Actuator) system. The
TORA system [1] has a cart of mass M connected to a
wall with a linear spring (constant k). The cart can oscillate
without friction in the horizontal plane. A rotating mass m
in the cart is actuated by a motor. The mass is eccentric with
a radius of eccentricity e and can be imagined to be a point
mass mounted on a massless rotor. The rotating motion of
the mass m controls the oscillation of the cart (see Fig. 2).
TORA system is difficult to control because the system has
a complex nonlinear dynamics.

Many methods have been studied for the stabilizing control
of TORA system. The exact feedback linearization method
is proposed in [1]. However the controller is limited in the
angle of the rotor. The cascade and passivity based control
designs is proposed in [2]. This method can be applied to the
limited region of the state variable. The model-based fuzzy
controls are proposed in [3], [4].

In this paper, we consider piecewise multi-linear (PML)
model as a piecewise approximation model of TORA system.
The model is built on hyper cubes partitioned in state space
and is found to be bilinear (bi-affine) [5], so the model has
simple nonlinearity. The model has the following features:
1) The PML model is derived from fuzzy if-then rules
with singleton consequents. 2) It has a general approxima-
tion capability for nonlinear systems. 3) It is a piecewise
nonlinear model and second simplest after the piecewise
linear (PL) model. 4) It is continuous and fully parametric.
The stabilizing conditions are represented by bilinear matrix
inequalities (BMIs) [6], therefore, it takes long computing
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time to obtain a stabilizing controller. To overcome these
difficulties, we have derived stabilizing conditions [7], [8],
[9] based on feedback linearization, where [7] and [9]
apply input-output linearization and [8] applies full-state
linearization. The control system has the following features:
1) Only partial knowledge of vertices in piecewise regions
is necessary, not overall knowledge of an objective plant. 2)
Although the structure of the PML controller is very simple,
the PML control system can be applied to a wider region
than the feedback linearization [1].

This paper is organized as follows. Section II introduces
the canonical form of PML models. Section III briefly
presents TORA system. Section IV presents a stabilizing con-
troller design using exact feedback linearization. Section V-
VI propose a PML modeling and a PML model based control
for TORA system via exact feedback linearization. Section
VII shows some examples demonstrating the feasibility of
the proposed methods. Finally, section VIII summarizes
conclusions.

II. CANONICAL FORMS OF PIECEWISE MULTI-LINEAR
MODELS

A. Open-Loop Systems
In this section, we introduce PML models suggested in

[5]. We deal with the two-dimensional case without loss of
generality. Define vector d(σ, τ) and rectangle Rστ in two-
dimensional space as d(σ, τ) ≡ (d1(σ), d2(τ))

T ,

Rστ ≡ [d1(σ), d1(σ + 1)]× [d2(τ), d2(τ + 1)]. (1)

σ and τ are integers: −∞ < σ, τ < ∞ where d1(σ) <
d1(σ+1), d2(τ) < d2(τ +1) and d(0, 0) ≡ (d1(0), d2(0))

T .
Superscript T denotes a transpose operation.

We consider a two-dimensional nonlinear system:

ẋ =f(x)

For x = (x1, x2) ∈ Rστ , the PML system is expressed as
ẋ =fp(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)f(i, j),

x =

σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)d(i, j),

(2)

where f(i, j) is the vertex of nonlinear system ẋ = f(x),

ωσ1 (x1) =
(d1(σ + 1)− x1)

(d1(σ + 1)− d1(σ))
,

ωσ+1
1 (x1) =

(x1 − d1(σ))
(d1(σ + 1)− d1(σ))

,

ωτ2 (x2) =
(d2(τ + 1)− x2)

(d2(τ + 1)− d2(τ))
,

ωτ+1
2 (x2) =

(x2 − d2(τ))
(d2(τ + 1)− d2(τ))

(3)
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and ωi1(x1), ω
j
2(x2) ∈ [0, 1]. In the above, we assume

f(0, 0) = 0 and d(0, 0) = 0 to guarantee ẋ = 0 for x = 0.
A key point in the system is that state variable x is also

expressed by a convex combination of d(i, j) for ωi1(x1)
and ωj2(x2), just as in the case of ẋ. As seen in equation (3),
x is located inside Rστ which is a rectangle: a hypercube
in general. That is, the expression of x is polytopic with
four vertices d(i, j). The model of ẋ = f(x) is built on a
rectangle including x in state space, it is also polytopic with
four vertices f(i, j). We call this form of the canonical model
(2) parametric expression.

B. Closed-Loop Systems

We consider a two-dimensional nonlinear control system.{
ẋ =f(x) + g(x)u(x),

y =h(x).
(4)

For x ∈ Rστ , the PML model (5) is constructed from a
nonlinear system (4).{

ẋ =fp(x) + gp(x)u(x),

y =hp(x),
(5)

where 

fp(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)f(i, j),

gp(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)g(i, j),

hp(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)h(i, j),

x =

σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)d(i, j),

(6)

and f(i, j), g(i, j), h(i, j) and d(i, j) are vertices of the
nonlinear system (4). The modeling procedure in region Rστ
is as follows:

1) Assign vertices d(i, j) for x1 = d1(σ), d1(σ+1), x2 =
d2(τ), d2(τ + 1) of state vector x, then partition state
space into piecewise regions (see Fig. 1).

2) Compute vertices f(i, j), g(i, j) and h(i, j) in equation
(6) by substituting values of x1 = d1(σ), d1(σ+1) and
x2 = d2(τ), d2(τ+1) into original nonlinear functions
f(x), g(x) and h(x) in the system (4). Fig. 1 shows
the expression of f1(x) and x ∈ Rστ .

The overall PML model is obtained automatically when all
vertices are assigned. Note that f(x), g(x) and h(x) in the
PML model coincide with those in the original system at
vertices of all regions.

III. TORA SYSTEM

The TORA (Translational Oscillator with Rotating Actua-
tor) system [1] has a cart of mass M connected to a wall with
a linear spring (constant k). The cart can oscillate without
friction in the horizontal plane. A rotating mass m in the
cart is actuated by a motor. The mass is eccentric with a
radius of eccentricity e and can be imagined to be a point
mass mounted on a massless rotor. The rotating motion of the

d1(σ)

d1(σ + 1)

d2(τ)

d2(τ + 1)

f1(σ + 1, τ)

f1(σ, τ)

f1(σ, τ + 1)

f1(σ + 1, τ + 1)

ωσ+1
1

ωσ1

ωτ+1
2

ωτ2

f1(x)

Fig. 1. Piecewise region (fp1 (x) =
∑σ+1

i=σ

∑τ+1

j=τ
ωi1ω

j
2f1(i, j), x ∈

Rστ )

Fig. 2. Kinematic model of TORA system

mass m controls the oscillation of the cart. The motor torque
is the control variable. The dynamics of TORA system is



ż1 =z2

ż2 =
−z1 + εz24 sin z3
1− ε2 cos2 z3

− −ε cos z3
1− ε2 cos2 z3

v

ż3 =z4

ż4 =
1

1− ε2 cos2 z3
{
ε cos z3

(
z1 − εz24 sin z3

)
+ v
}

y =z1,

(7)

where z1 and z2 are the position and velocity of the cart.
z3 = θ and z4 = θ̇ are the angle and angular velocity of the
rotor. The parameter ε depends on the eccentricity e and the
masses M and m. v and y are the control input and output.

The TORA system dynamics has many nonlinear terms.
In the case of a coordinate transformation

x1 =z1 + ε sin z3

x2 =z2 + εz4 cos z3

x3 =z3

x4 =z4

u =
ε cos z3(x1 − ε sin z3(1 + z24)) + v

1− ε2 cos2 z3
,
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we have
ẋ =f + gu =


x2

−x1 + ε sinx3
x4
0

+


0
0
0
1

u

y =h = x1,

(8)

where x ∈ R4, y ∈ R.

IV. CONTROLLER DESIGN OF TORA SYSTEM VIA EXACT
FEEDBACK LINEARIZATION

We design the controller of TORA system (8) via the exact
feedback linearization [10]. We calculate the time derivatives
of the output y until the input u appears.

y =h = x1,

ẏ =Lfh = x2

y(2) =L2
fh = −x1 + ε sinx3

y(3) =L3
fh = −x2 + ε cosx3

y(4) =L4
fh+ LgL

3
fhu

=x1 − ε sinx3 − εx24 sinx3 + ε cosx3u

Then the controller is obtained as

u =
−L4

fh

LgL3
f

+
1

LgL3
f

µ

=
−x1 + ε sinx3 + εx24 sinx3

ε cosx3
+

1

ε cosx3
µ, (9)

where µ is the linear controller for the linearized system (10).{
ξ̇ =Aξ +Bµ

y =Cξ,
(10)

where ξ = (h, Lfh, L
2
fh, L

3
fh)

T ,

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B =


0
0
0
1

 , C =


1
0
0
0


T

.

However the controller (9) is only well defined at −π/2 <
x3 < π/2 because the denominator of the controller is
ε cosx3. Hence the rotor of TORA system can only be
rotated at −π/2 < θ < π/2.

V. PML MODEL OF TORA SYSTEM

We construct the PML model of TORA system (8). The
nonlinear term sinx3 of TORA system is transformed into
a PML model representation. The variable of x3 is divided
by m vertices x3 ∈ {d3(1), d3(2), . . . , d3(m)}. For x3 ∈
{d3(σ), d3(σ + 1)}, the PML model is expressed as

ẋ =fp + gpu =


x2

−x1 + εfp2(x3)
x4
0

+


0
0
0
1

u

y =hp = x1,

(11)

where

fp2(x3) =
σ+1∑
i=σ

wi3(x3)fs(i), fs(i) = sin d3(i),

ωσ3 (x3) =
(d3(σ + 1)− x3)

(d3(σ + 1)− d3(σ))
,

ωσ+1
3 (x3) =

(x3 − d3(σ))
(d3(σ + 1)− d3(σ))

.

σ is integer: −∞ < σ < ∞, d3(σ) < d3(σ + 1). The PML
model is constructed with respect to fp2(x3) = sinx3. The
structure is independent of the state variables x1, x2 and x4
since the variables are the linear terms.

Note that trigonometric functions of TORA system (7) are
smooth functions and are of class C∞. The PML models
are not of class C∞. In TORA system control, we have to
calculate the fourth derivatives of the output y. Therefore the
derivative PML models lose some dynamics. However the
PML model based control for TORA system can be applied
to a wider region than the conventional one.

VI. PML MODEL BASED CONTROL FOR TORA SYSTEM
VIA EXACT FEEDBACK LINEARIZATION

We define the output as y = x1 in the same manner as the
previous section, the time derivative of y is calculated as

ẏ =Lfphp = x2

The time derivative of y doesn’t contain the control inputs
u. We calculate the time derivative of ẏ. We get

ÿ =L2
fphp = fp2(x1, x3) = −x1 + ε

σ+1∑
i=σ

wi3(x3)fs(i),

where x3 ∈ {d3(σ), d3(σ+1)}. The time derivative of ẏ also
doesn’t contain the control inputs u. We continue to calculate
the time derivative of ÿ. We get

y(3) =L3
fphp = −x2 + ε

fs(σ + 1)− fs(σ)
d3(σ + 1)− d3(σ)

x4

We continue to calculate the time derivative of y(3). We get

y(4) =L4
fphp + LgpL

3
fphpu

=x1 − ε
σ+1∑
i=σ

wi3(x3)fs(i) + ε
fs(σ + 1)− fs(σ)
d3(σ + 1)− d3(σ)

u

The stabilizing controller of (11) is designed as

u =
−L4

fp
hp

LgpL
3
fp
hp

+
1

LgpL
3
fp
hp
µ

=

x1 − ε
σ+1∑
i=σ

wi3(x3)fs(i)

ε
fs(σ + 1)− fs(σ)
d3(σ + 1)− d3(σ)

+
1

ε
fs(σ + 1)− fs(σ)
d3(σ + 1)− d3(σ)

µ (12)

where x3 ∈ {d3(σ), d3(σ + 1)} and µ = −Fζ is the linear
controller of the linear system (13).{

ζ̇ =Aζ +Bµ,

y =Cζ,
(13)

where ζ = (hp, Lfphp, L
2
fp
hp, L

3
fp
hp)

T . The parameters
A, B, C are the same as the linearized system (10).
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If fs(i) 6= fs(i+ 1) and d3(i) 6= d3(i+ 1), i = 1, . . . ,m,
there exists a controller (12) u of TORA system (11) since
det(LgpL

3
fp
hp) 6= 0. Thus we have to construct the PML

model of TORA system such that fs(i) 6= fs(i + 1) and
d3(i) 6= d3(i+ 1), where i = 1, . . . ,m (see Fig. 3).

1

0 x3

(d3(3), fs(3))

(d3(4), fs(4))

π/2 (d3(5), fs(5))

fs(x3) = sinx3

fs(4)− fs(3))

d3(4)− d3(3)

Fig. 3. PML modeling

Note that the PML model based controller (12) can be
applied to a wider region than the conventional feedback
linearized controller (9).

VII. SIMULATION RESULTS

We apply the feedback linearization controller (9) and
the PML model based controller (12) to TORA system
(7) in a computer simulation. We can select the arbitrary
position and the arbitrary number of the vertices d3(i) in
x3. Although there are some modeling errors because the
PML model is a nonlinear approximation, it is possible to
adjust the approximated error. In the following simulations,
the parameter ε is 0.5.

A. The difference between with the number of divided regions

The state variable x3 of TORA system (8) is divided
by four regions (x3 ∈ {−π, −π/2, 0, π/2, π}) to
construct the PML model. We consider the feedback gain
F = (1.000, 3.078, 4.236, 3.078) such that the lin-
earized control system (13) is stable. The initial condition
is x(0) = (1, 0, 0, 0)T . Fig. 4 shows that the control
system is unstable because of the model approximation error.
Therefore the state variable x3 is divided by eight regions
(x3 ∈ {−π, −3π/4, −π/2, . . . , π}) to construct the PML
model. Next the state variable x3 is divided by 16 regions
(x3 ∈ {−π, −7π/8, −3π/4, . . . , π}) to construct the PML
model. It is enough to select the PML model divided by eight
regions from the results of Figs. 5 and 6.

B. Exact feedback linearization and PML model based con-
trol

For an exact feedback linearized control and the PML
model based control, we use the feedback gains F =
(1.000, 3.078, 4.236, 3.078) and the initial conditions
x(0) = (1.5, 0, 0, 0)T . Fig. 7 shows the exact feedback
linearized control responses. The control and the input re-
sponses are stopped at a time when x3 > π/2. Fig. 8 shows
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Fig. 4. Control and input responses of PML model based control with four
regions
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Fig. 5. Control and input responses of PML model based control with
eight regions
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Fig. 6. Control and input responses of PML model based control with 16
regions

the control results when the state variable x3 is divided by
eight regions (x3 ∈ {−π, 3π/4, . . . , π}) to construct the
PML model. The controller achieves stabilizing control at
the external region of ‖x3‖ ≤ π/2.
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Fig. 7. Exact feedback linearization

VIII. CONCLUSIONS

This paper has proposed a piecewise model based con-
troller design for nonlinear systems via feedback lineariza-
tion. We have applied the piecewise model based controller

0 5 10 15 20

time

-2

0

2

x
1
, 

x
2

x
1

x
2

0 5 10 15 20

time

-4

-2

0

2

x
3
, 

x
4

x
3

x
4

0 5 10 15 20

time

-10

0

10

u

Fig. 8. PML model based control

to TORA system. Although the controller is simpler than
the conventional feedback linearization controller, the PML
model based control can be applied to a wider region than the
conventional one. Examples have been shown to confirm the
feasibility of our proposals by computer simulations. We will
verify the robust performance and design an H∞ controller
in the future works.
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