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Abstract—New results on passivity criteria for a class of neu-
ral networks with interval and distributed time-varying delays,
as well as generalized activation function, is investigated. Based
on refined Jensen’s inequalities, improved Lyapunov-Krasovskii
functional (LKF) with double integrals, triple integrals, and
quadruple integrals, all of them are picked up in terms of linear
matrix inequalities (LMIs) which can be checked numerically
using the effective LMIs toolbox in MATLAB. Additionally, the
effectiveness of approach considered in this paper is illustrated
by numerical examples which is less conservative than the
previous results.

Index Terms—passivity analysis, neural networks, linear
matrix inequality, discrete and distributed time-varying delays

I. INTRODUCTION

IN the recent past, neural networks have attracted consider-
able attention in various fields of science and engineering

applications such as signal processing, pattern recognition,
static image processing, associative memory, and combinato-
rial optimization [7], [27]. Anyway, time-delays are common
in many physical and biological phenomena, as is demon-
strated by using of mathematical modeling incorporating
time-delay in a wide range of applications such as mechan-
ical transmission, fluid transmission, metallurgical processes
and the networked control systems which are often a source
of instability, periodic oscillatory, chaos and poor control per-
formance. These applications are largely dependent upon the
stability of the equilibrium of neural networks, ie. Stability
is much importance in dynamical properties about neural
networks when neural networks are designed. As research
results, the stability problem and the performance of the
neural networks with time-delay have been improved [4],
[16], [18], [25]. However, the most results were discussed
the only discrete delay in the neural networks. In contrast,
the distributed delay should be associated into model of a
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system that there exist a distribution of propagation delays
over a period of time in some cases as discussed in [11], [22].
When modeling a realistic neural network, both of discrete
and distributed delays should be included. Moreover, they
recently add more leakage delay with those of delays to
analyze on neural networks as in [2], [12], [13], [15], [17],
[19].

On the other hand, the passivity is more interested atten-
tion and is closely related to the circuit analysis method. The
main scope of passivity theory is that the passive properties
of the system can keep the system internally stable [10].
Specifically, the passive system utilizes the product of input
and output as the energy provision and embodies the energy
attenuation character. A passive system only burns energy
without energy production, and thus passivity represents
the property of energy consumption [23]. The problem of
passivity performance analysis has been extensively applied
in many areas such as signal processing, fuzzy control,
sliding mode control [29] and networked control. Because
of these features, the passivity problems have been an active
area of research in the past decades with neural networks.

The most authors also studied about the passivity analysis
of neural networks with time-varying delay, see in [21],
[24], [30]. In the same way, in [1], [20], [28] also stud-
ied the passivity analysis of neural networks with discrete
and distributed delays. However, the delay neural networks
could be classified into two categories: delay-independent
and delay-dependent. Also, the delay-dependent passivity of
neural networks with various time-delays has also focused
in [3], [5], [14], [26]. According to these literatures, we can
conclude that the most of those studies with the passivity
of neural networks with discrete and distributed delays were
focused on differentiable delay (τ̇(t) ≤ µ). To the best our
knowledge, in this paper concern with the new results on
passivity criteria for a class of neural networks with interval
and distributed time-varying delays as non-differentiable de-
lay. By conducting suitable Lyapunov-Krasovskii functional
with double integrals, triple integrals, quadruple integrals
and using refined Jensen’s inequality, and linear matrix
framework, which guarantees stability for the passivity of
addressed neural networks. Additionally, the effectiveness of
approach proposed in this paper is illustrated by numerical
examples which is less conservative than the previous results
in the literature.

Notation:
The following notations will be accounted in this paper:
let Rn and Rn×m denotes n-dimensional Euclidean space
with vector norm ||.|| and set of n×m matrices, respectively.
Matrices A,B ∈ Rn×m, col{A,B} and diag{A,B} denote

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



the block matrices
[
A
B

]
and

[
A 0
0 B

]
, Sym(A) stand

for A+AT . A matrix P is symmetric positive definite, write
P > 0, if PT = P and xTPx > 0 for all x ∈ Rn,x ̸= 0. Let
S+n denote the set of symmetric positive definite matrices in
Rn×n. We also denoted by D+

n the set of positive diagonal
matrices. A matrix D = diag{d1, d2, ...., dn} ∈ D+

n if di >
0(i = 1, 2, ..., n). I represent the identity matrix.

II. PRELIMINARIES

Consider the following the class of neural networks with
interval and distributed time-varying delays in the form:

ẋ(t) = −Ax(t) +Wg(x(t)) +W1g(x(t− τ(t)))

+W2

∫ t

t−k(t)

g(x(s)) ds+ u(t), t ≥ 0,

y(t) = C1g(x(t)) + C2g(x(t− τ(t)))

+C3

∫ t

t−k(t)

g(x(s)) ds+ C4u(t), t ≥ 0,

x(t) = ϕ(t), t ∈ [−d, 0], d = max{τ2, k}, (1)

where n denotes the number of neurons in the net-
work, x(t) = [x1(t), x2(t), ..., xn(t)]

T ∈ Rn is
the neurons state vector, y(t) ∈ Rn is the out-
put vector and u(t) is the external input of the net-
work, g(x(t)) = [g1(x1(t)), g2(x2(t)), ...., gn(xn(t))]

T ∈
Rn denote the activation function, g(x(t − τ(t))) =
[g1(x1(t−τ(t))), g2(x2(t−τ(t))), ...., gn(xn(t−τ(t)))]T ∈
Rn. A = diag{a1, a2, ..., an} is a positive diagonal
matirx and W,W1,W2 are interconnection weight matrices.
C1, C2, C3, C4 are given real matrices, and ϕ(t) ∈ Rn is
initial condition.

In this paper, we assume the delay τ(t) and k(t) repre-
sent unknown discrete interval and distributed delay of the
systems with

0 ≤ τ1 ≤ τ(t) ≤ τ2 and 0 ≤ k(t) ≤ k, ∀t ≥ 0, (2)

where τ1, τ2, and k are constants.
The neural activation functions gi(xi(t)) are continuous

gi(0) = 0 and there exist constants l−i , l
+
i (i = 1, 2, ..., n)

such that

l−i ≤ gi(x)− gi(y)

x− y
≤ l+i , ∀x, y ∈ R, x ̸= y. (3)

Definition 1. [6] The network (1) is said to be passive if there
exists a scalar γ > 0 such that, under zero initial condition,
the following inequality holds for all tf ≥ 0

2

∫ tf

0

yT (s)u(s) ds ≥ −γ
∫ tf

0

uT (s)u(s) ds. (4)

Lemma 2. [9] (refined Jensen-based inequalities, Hien and
Trinh) For a given matrix R ∈ S+n and a function φ : [a, b] →
Rn whose derivative φ̇ ∈ PC([a, b],Rn), the following
inequalities hold∫ b

a

φ̇T (s)Rφ̇(s) ds ≥ 1

b− a
χ̂T R̄χ̂, (5)

∫ b

a

∫ b

s

φ̇T (u)Rφ̇(u) du ds ≥ 2Ω̂T R̂Ω̂, (6)

where R̄ = diag{R, 3R, 5R}, R̂ = diag{R, 2R},
χ̂ = [χT

1 , χ
T
2 , χ

T
3 ]

T , Ω̂ = [ΩT
1 ,Ω

T
2 ]

T and

χ1 = φ(b)− φ(a),

χ2 = φ(b) + φ(a)− 2

b− a

∫ b

a

φ(s) ds,

χ3 = φ(b)− φ(a) +
6

b− a

∫ b

a

φ(s) ds

− 12

(b− a)2

∫ b

a

∫ b

s

φ(u) du ds,

Ω1 = φ(b)− 1

b− a

∫ b

a

φ(s) ds,

Ω2 = φ(b) +
2

b− a

∫ b

a

φ(s) ds

− 6

(b− a)2

∫ b

a

∫ b

s

φ(u) du ds.

Lemma 3. [8] (Jensen inequality) For a positive definite
matrix R > 0, and an integral function {w(u)|u ∈ [a, b]},
the following inequalities hold:∫ b

a

wT (α)Rw(α) dα

≥ 1

b− a

(∫ b

a

w(α) dα

)T

R

(∫ b

a

w(α) dα

)
,

∫ b

a

∫ b

β

∫ b

s

wT (α)Rw(α) dα dβ ds

≥ 6

(b− a)3

(∫ b

a

∫ b

β

∫ b

s

w(α) dα dβ ds

)T

R

(∫ b

a

∫ b

β

∫ b

s

w(α) dα dβ ds

)
. (7)

III. MAIN RESULTS

In this section, new results on passivity criteria for a class
of neural networks with interval and distributed time-varying
delays will be established. Now, we have the following
theorem of passivity of system (1).
theorem 1. The delay neural networks in system (1)
is passive in the sense of defintion (1) for any delays
τ(t) and k(t) satisfying 0 ≤ τ1 ≤ τ(t) ≤ τ2 and 0 ≤
k(t) ≤ k if there exists matrices P ∈ S+4n;Q1, S3 ∈
S+
2n;Q2, Q3, S1, S2, S4, R1, R2, U1, U2 ∈ S+n ; Λk, Dj ∈ D+

n ,
(k = 1, 2, ......, 8; j = 1, 2), and a scalar γ > 0 such that the
following LMIs holds

ψ(τ) = Sym(Λ0)− Ξ1(τ)−
6∑

n=2

Ξn − Γ(τ) < 0. (8)

with
Σ1 = diag{l−1 , l

−
2 , ..., l

−
n }, Σ2 = diag{l+1 , l

+
2 , ..., l

+
n },

S̄i = diag{Si, 3Si, 5Si} (i = 1, 2),
G1(τ) = [eT1 τ1e

T
9 (τ − τ1)e

T
10 + (τ2 − τ)eT11

τ2
1

2 e
T
12]

T ,
G2 = [AT (e1 − e2)

T (e2 − e4)
T τ1(e1 − e9)

T ]T ,
G3 = [eT2 eT8 ]

T ,
G4 = [eT4 eT7 ]

T ,
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G5 = [eT1 eT5 ]
T ,

G6 = [eT1 eT2 eT9 eT12]
T ,

G7 = [eT3 eT4 eT11 eT14]
T ,

G8 = [eT2 eT3 eT10 eT13]
T ,

G9(τ) = [((τ − τ1)e10 + (τ2 − τ)e11)
T (e16 + e17)

T ]T ,
G10 =

τ2
1

2 e1 −
τ2
2

2 e12,
G11(τ) =

τ2
12

2 e2 −
(τ−τ1)

2

2 e13 − (τ2−τ)2

2 e14,
G12 = e5 − Σ1e1, G13 = Σ2e1 − e5,
G14 = e6 − Σ1e3, G15 = Σ2e3 − e6,
G16 = e5−e6−Σ1(e1−e3), G17 = Σ2(e1−e3)−e5+e6,
G18 = e5−e8−Σ1(e1−e2), G19 = Σ2(e1−e2)−e5+e8,
G20 = e5−e7−Σ1(e1−e4), G21 = Σ2(e1−e4)−e5+e7,
G22 = e7−e8−Σ1(e4−e2), G23 = Σ2(e4−e2)−e7+e8,
G24 = e6−e8−Σ1(e3−e2), G25 = Σ2(e3−e2)−e6+e8,
G26 = e7−e6−Σ1(e4−e3), G27 = Σ2(e4−e3)−e7+e6,
Π0(τ) = GT

1 (τ)PG2 + eT1 (Σ2D2 − Σ1D1)A
−eT5 (D2 −D1)A,
Π1 = eT1 (Q2 +Q3)e1 − eT2Q2e2 − eT4Q3e4 +GT

3Q1G3

−GT
4Q1G4 + τ212G

T
5 S3G5 +K2eT5 S4e5,

Π2 = AT [τ21S1 + τ212S2 +
τ2
1

2 R1 +
τ2
12

2 R2 +
τ6
1

36U1

+
(τ3

2−τ3
1 )(τ2−τ1)

3

36 U2]A,
Π3 = eT15(γIn+2C4)e15+Sym(eT15(C1e5+C2e6+C3e18)),
Ξ1(τ) = Sym(Π0(τ) + Π1 +Π2 −Π3,
Ξ2 = GT

6 F
T S̄1FG6,

Ξ3 = GT
7 F

T S̄2FG7,
Ξ4 = GT

8 F
T S̄2FG8,

Ξ5 = 2(e1−e9)TR1(e1−e9)+4(e1+2e9−3e12)
TR1(e1+

2e9 − 3e12),
Ξ6 = 2(e2−e10)TR2(e2−e10)+4(e2+2e10−3e13)

TR2(e2+
2e10 − 3e13) + 2(e3 − e11)

TR2(e3 − e11) + 4(e3 + 2e11 −
3e14)

TR2(e3 + 2e11 − 3e14),
Γ(τ) = GT

9 (τ)S3G9(τ) +GT
10U1G10 +GT

11(τ)U2G11(τ),
Λ0 = GT

12Λ1G13 +GT
14Λ2G15 +GT

16Λ3G17 +GT
18Λ4G19 +

GT
20Λ5G21 +GT

22Λ6G23 +GT
24Λ7G25 +GT

26Λ8G27.

τ12 = τ2 − τ1 and F =

 In −In 0 0
In In −2In 0
In −In 6In −6In

.

Proof: Let Λk = diag{λk1, λk2, ...., λkn} (k =
1, 2, ...., 8), Dj = diag{dj1, dj2, ..., djn} (j = 1, 2) and
denote ei = [0n×(i−1)n In 0n×(18−i)n] (i = 1, 2, ....., 18),
A = Ae1 +We5 +W1e6 +W2e18 + e15.
Consider the Lyapunov-Krasovskii functional candidates:

V (t, xt) =

5∑
i=1

Vi(t, xt),

where

V1(t, xt) = ηT1 (t)Pη1(t)

+2

n∑
i=1

d1i

∫ xi(t)

0

(gi(s)− l−i s) ds

+2

n∑
i=1

d2i

∫ xi(t)

0

(l+i s− gi(s)) ds,

V2(t, xt) =

∫ t−τ1

t−τ2

ηT2 (s)Q1η2(s) ds

+

∫ t

t−τ1

xT (s)Q2x(s) ds

+

∫ t

t−τ2

xT (s)Q3x(s) ds,

V3(t, xt) = τ1

∫ 0

−τ1

∫ t

t+s

ẋT (u)S1ẋ(u) du ds

+τ12

∫ −τ1

−τ2

∫ t

t+s

ẋT (u)S2ẋ(u) du ds

+τ12

∫ −τ1

−τ2

∫ t

t+s

ηT2 (u)S3η2(u) du ds

+k

∫ 0

−k

∫ t

t+s

gT (x(u))S4g(x(u)) du ds,

V4(t, xt) =

∫ t

t−τ1

∫ t

s

∫ t

u

ẋT (θ)R1ẋ(θ) dθ du ds

+

∫ −τ1

−τ2

∫ −τ1

s

∫ t

t+u

ẋT (θ)R2ẋ(θ) dθ du ds,

V5(t, xt) =
τ31
6

∫ t

t−τ1

∫ t

s

∫ t

λ

∫ t

φ

ẋT (θ)U1ẋ(θ) dθ dφ dλ ds

+
(τ3

2−τ3
1 )

6

∫ −τ1

−τ2

∫ −τ1

s

∫ −τ1

λ

∫ t

t+φ

ẋT (θ)U2ẋ(θ) dθ dφ dλ ds.

Let η1(t) = [xT (t)
∫ t

t−τ1
xT (s) ds

∫ t−τ1
t−τ2

xT (s) ds∫ t

t−τ1

∫ t

s
xT (u) du ds]T and η2(t) = [xT (t) gT (x(t))]T .

ξ(t) = [xT (t), xT (t − τ1), x
T (t − τ(t)), xT (t −

τ2), g
T (x(t)), gT (x(t − τ(t))), gT (x(t − τ2)), g

T (x(t −
τ1)),

1
τ1

∫ t

t−τ1
xT (s) ds, 1

τ(t)−τ1

∫ t−τ1
t−τ(t)

xT (s) ds,
1

τ2−τ(t)

∫ t−τ(t)

t−τ2
xT (s) ds, 2

τ2
1

∫ t

t−τ1

∫ t

s
xT (u) du ds,

2
(τ(t)−τ1)2

∫ t−τ1
t−τ(t)

∫ t−τ1
s

xT (u) du ds,
2

(τ2−τ(t))2

∫ t−τ(t)

t−τ2

∫ t−τ(t)

s
xT (u) du ds, uT (t),∫ t−τ1

t−τ(t)
gT (x(s)) ds,

∫ t−τ(t)

t−τ2
gT (x(s)) ds,

∫ t

t−k(t)
gT (x(s)) ds]T .

Calculating the time derivatives of V (t, xt) along the
solution of (1), we get

V̇ (t, xt) = ξT (t)
(

Sym(Π0(τ) + Π1 +Π2

)
ξ(t)

−τ1
∫ t

t−τ1

ẋT (s)S1ẋ(s) ds

−τ12
∫ t−τ1

t−τ2

ẋT (s)S2ẋ(s) ds

−τ12
∫ t−τ1

t−τ2

ηT2 (s)S3η2(s) ds

−k(t)
∫ t

t−k(t)

gT (x(s))S4g(x(s)) ds

−
∫ t

t−τ1

∫ t

s

ẋT (u)R1ẋ(u) du ds

−
∫ t−τ1

t−τ2

∫ t−τ1

s

ẋT (u)R2ẋ(u) du ds

−τ
3
1

6

∫ t

t−τ1

∫ t

s

∫ t

λ

ẋT (φ)U1ẋ(φ) dφ dλ ds

− (τ32 − τ31 )

6

∫ −τ1

−τ2

∫ −τ1

s

∫ t−τ1

t+λ

ẋT (φ)U2ẋ(φ) dφ dλ ds.

(9)

Using inequality (5) in lemma (2), we have

−τ1
∫ t

t−τ1

ẋT (s)S1ẋ(s) ds ≤ −ξT (t)GT
6 F

T S̄1FG6ξ(t)

= −ξT (t)Ξ2ξ(t). (10)
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By splitting

−τ12
∫ t−τ1

t−τ2

ẋT (s)S2ẋ(s) ds

=− τ12

∫ t−τ(t)

t−τ2

ẋT (s)S2ẋ(s) ds

− τ12

∫ t−τ1

t−τ(t)

ẋT (s)S2ẋ(s) ds.

(11)

Applying inequality (5) in Lemma (2) yields

−τ12
∫ t−τ(t)

t−τ2

ẋT (s)S2ẋ(s) ds

≤− ξT (t)GT
7 F

T S̄2FG7ξ(t)

=− ξT (t)Ξ3ξ(t). (12)

and

−τ12
∫ t−τ1

t−τ(t)

ẋT (s)S2ẋ(s) ds ≤ −ξT (t)GT
8 F

T S̄2FG8ξ(t)

= −ξT (t)Ξ4ξ(t). (13)

Now, by employing inequality (6) to estimate the second
integral terms in (9), we hold

−
∫ t

t−τ1

∫ t

s

ẋT (u)R1ẋ(u) du ds ≤ −ξT (t)Ξ5ξ(t).

(14)

and

−
∫ t−τ1

t−τ2

∫ t−τ1

s

ẋT (u)R2ẋ(u) du ds ≤ −ξT (t)Ξ6ξ(t).

(15)

In the same way, the following inequality in lemma (3)
then,

− τ12

∫ t−τ1

t−τ2

ηT2 (s)S3η2(s) ds

≤ −
(∫ t−τ1

t−τ2

η2(s) ds
)T
S3

(∫ t−τ1

t−τ2

η2(s) ds
)

≤ −ξT (t)GT
9 (τ)S3G9(τ)ξ(t). (16)

− k(t)

∫ t

t−k(t)

g(x(s))T (s)S4g(x(s)) ds

≤ −
(∫ t

t−k(t)

g(x(s)) ds
)T
S4

(∫ t

t−k(t)

g(x(s)) ds
)

≤ −ξT (t)eT18S4e18ξ(t). (17)

− τ31
6

∫ t

t−τ1

∫ t

s

∫ t

λ

ẋT (φ)U1ẋ(φ) dφ dλ ds

≤ −ξT (t)
(τ21
2
e1 −

τ21
2
e12

)T
U1

(τ21
2
e1 −

τ21
2
e12

)
ξ(t)

≤ −ξT (t)GT
10U1G10ξ(t). (18)

− (τ32 − τ31 )

6

∫ −τ1

−τ2

∫ −τ1

s

∫ t−τ1

t+λ

ẋT (φ)U2ẋ(φ) dφ dλ ds

≤ −ξT (t)GT
11(τ)U2G11(τ)ξ(t). (19)

Since λ1i > 0 (i = 1, 2, .., n), it follows from condition (3)
that

2(gi(xi(t))− l−i xi(t))λ1i(l
+
i xi(t)− gi(xi(t))) ≥ 0

and thus

ξT (t)Sym(GT
12Λ1G13)ξ(t) ≥ 0. (20)

By the same arguments used in deriving (20) we obtain

ξT (t)Sym(Λ0)ξ(t) ≥ 0. (21)

Then, to show the passivity of system (1), we set

J(tf ) =

∫ tf

0

[−γuT (t)u(t)− 2yT (t)u(t)] dt for tf ≥ 0.

under the zero initial condition, we can deduce that

J(tf ) =

∫ tf

0

[−γuT (t)u(t)− 2yT (t)u(t) + V̇ (xt)] dt

−V (xtf )

≤
∫ tf

0

[V̇ (xt)− γuT (t)u(t)− 2yT (t)u(t) dt].

Combining estimates from (9) to (21) we then obtain

V̇ (xt)− γuT (t)u(t)− 2yT (t)u(t) ≤ ξT (t)ψ(τ)ξ(t).

where ψ(τ) defined in theorem (1) since ψ(τ) is an affine
function in τ , ψ(τ) < 0 for all τ ∈ [τ1, τ2] if and only if
ψ(τ1) < 0 and ψ(τ2) < 0. if (8) holds for τ = τ1 and τ = τ2
we have ψ(τ) < 0, then

V̇ (xt)− γuT (t)u(t)− 2yT (t)u(t) ≤ 0.

We have J(tf ) < 0 for any tf ≥ 0 when conditions (3) is
satisfied.
Thus, neural network (1) is passive. the proof is completed.

IV. NUMERICAL EXAMPLE

In this section, the following numerical examples demon-
strate the effectiveness and applicability of our results.
Example 1. Consider a neural network (1) with the following
parameters:

A =

[
2.2 0
0 1.8

]
,W0 =

[
1.2 1
−0.2 0.3

]
,

W1 =

[
0.8 0.4
−0.2 0.1

]
,W2 =

[
0 0
0 0

]
,

Σ1 = diag{0, 0}, Σ2 = diag{1, 1}, and C1 = I ,
C2 = C3 = C4 = 0.
The activation functions are assumed to be
gi(xi) = 0.5(|xi + 1| − |xi − 1|) (i = 1, 2).

Using Theorem 1, we get the upper bound of τ2 is shown
in table 4.1 which give comparision those results obtained
in existing approaches in the literature.
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TABLE I
UPPER BOUNDS OF τ2 FOR EXAMPLE 1

µ=0.5 unknown µ

[23] 0.5227 -
[20] 1.3752 -
[25] 1.8090 -
[27] 3.0430 -
[1] 3.6566 -

Theorem 1 - 4.1010

V. CONCLUSION

In this paper, we focused on new results on passivity
criteria for a class of neural networks with interval and
distributed time-varying delays. Based on refined Jensen’s
inequalities, and by constructing the Lyapunov-Krasovskii
functional with double, triple, quadruple integrals, all of
them were picked up in terms of linear matrix inequalities
which can be checked using LMI toolbox in MATLAB.
Furthermore, This result is less conservative than existing
results in literature and can also be the effective proposed
method.
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