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Abstract—The model matching problem of input/state swit-
ched asynchronous sequential machines is studied in this paper.
The considered machine consists of a number of input/state
asynchronous machines, termed submachines, between which
asynchronous switching is conducted by the switching signal.
The control goal is to design a corrective controller such that
the closed-loop system can mimic the stable-state behavior of
a reference model. In particular, we focus on relaxing the
condition for fundamental mode operations in switching ope-
rations so that the switched asynchronous sequential machine
can enlarge its switching capability. The necessary and sufficient
condition for the existence of a model matching controller is
analytically derived in the framework of corrective control. We
also provide a simple illustrative example to demonstrate the
proposed notion and control scheme.

Index Terms—asynchronous sequential machines, switched
systems, corrective control, model matching.

I. Introduction

Since first proposed by Hammer for general sequential
machines [1], corrective control has been studied extensi-
vely as a novel automatic control scheme for asynchronous
sequential machines. Though having the same structure as
conventional feedback control systems, the corrective control
scheme has distinctive features in activating feedback control
processes. Most unique among them is the fact that the
interaction between controllers and controlled machines is
conducted very fast in an asynchronous mechanism. Hence,
even though the controlled machine does not have desirable
transitions, it can be compensated by the corrective controller
so as to show the desirable input/state or input/output beha-
vior if it has inherent stable reachability that can be used to
make an appropriate feedback trajectory.

In the past, the research of corrective control was mainly
done for controlling single asynchronous sequential machines
with various deficiencies. [2] first addresses the problem
of model matching for input/state asynchronous sequential
machines with critical races. [3] presents input/output control
of asynchronous sequential machines using output bursts. In
[4], controlling input/state asynchronous sequential machi-
nes with infinite cycles is studied. In [5], [6], control of
input/output asynchronous sequential machines with nonde-
terministic state transitions is addressed. In [7], [8], a matrix
operation termed semi-tensor product (STP) is applied to
quantifying the stable reachability of the considered single
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asynchronous sequential machines. On the other hand, cor-
rective control has been successfully applied to the problem
of fault diagnosis and fault tolerant control for asynchronous
sequential machines. This accomplishment is also attributed
to the feature of asynchronous sequential machines that their
dynamics are not governed by any synchronizing clock. Refer
to, e.g., [9]–[12] and references therein for recent results on
this topic.

In this paper, we investigate the problem of model ma-
tching for a composite asynchronous sequential machine.
The considered machine consists of switched composition
of multiple input/state asynchronous sequential machines—
termedsubmachinesin this paper. The composite machine
switches between submachines according to a rule (or control
scheme) that orchestrates the switching behavior. Though
the research of switched systems is already ripe in the field
of continuous-time systems (see [13]), few studies exist in
the field of event-driven systems, much less asynchronous
sequential machines. We note that in systems biology, control
of switched Boolean networks is studied by some researchers
[14], [15]. But since [14], [15] do not consider significant
features of asynchronous sequential machines such as sta-
ble/transient states and fundamental mode operations, they
cannot be applied to our framework.

The main consideration of this paper is to study the model
matching problem of input/ouput switched asynchronous
sequential machines. We analyze the existence condition for
a corrective controller that makes the stable-state behavior
of the considered switched machine be equivalent to that
of a given reference model. While similar researches are
found in the author’s previous studies [16]–[18], the present
paper differs from them for the following reason. In all
the prior work [16]–[18], a switching operation between
two submachines is possible only if there exists an input
character that makes stable pairs with both states of the two
submachines at which the switching operation is executed.
On the other hand, the present study relaxes this constraint
for the purpose of enhancing the switching capability of the
composite machine. We will represent this relaxed condition
in terms of a new switching incidence matrix. The existence
condition for a model matching corrective controller is also
described with the new switching incidence matrix in the
framework of corrective control. We will focus our concern
on analyzing the existence condition for a controller. The
design procedure for a controller is similar to that in the prior
work [16], [17]. Besides switched asynchronous sequential
machines, corrective control for other types of composite
asynchronous sequential machines exist as well, e.g., for
parallel compositions [19] and cascaded compositions [20],
[21] .

The rest of this work is structured as follows. Section
II provides a modeling formalism of input/state switched
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asynchronous machines and the problem statement of mo-
del matching. In Section III, a relaxed switching operation
is presented and described by a new switching incidence
matrix. The existence condition for a corrective controller
achieving model matching is also addressed in terms of
matrix expressions. A simple example is provided in Section
IV to demonstrate the proposed notions and scheme. Finally,
some concluding remarks are given in Section V.

II. Preliminaries

A. Switched Asynchronous Sequential Machines

We consider a switched asynchronous sequential machine
Σ consisting ofm submachines. Each submachine is sup-
posed to be a single input/state asynchronous sequential
machine, namely the current state of the machine is given
as the output value.Σ is described as

Σ “ tΣi |i P Mu

Σi “ pA,X, x0, fiq

where M :“ t1, . . . ,mu, Σi is the ith submachine,A is the
input set,X is the state set with|X| “ n, x0 P X is the initial
state, andfi : XˆA Ñ X is the state transition function ofΣi

partially defined onXˆA. Since every submachine serves as
structural redundancy of the composite machineΣ, the input
and state sets ofΣi are the same for alli P M, while the
transition characteristicfi is different with each other.

Each submachineΣi possesses the property of a single
asynchronous sequential machine, that is, no synchronizing
clock governs dynamics of the machine; its state transition
is conducted only in direct response to changes of external
inputs. A state–input pairpx, v1q P X ˆ A is valid in Σi if
fipx, v1q is defined. A valid pairpx, v1q is a stable pair if
fipx, v1q “ x; else if fipx, v1q , x, it is a transient pair. Note
that x may be either a stable or transient state depending on
the current input. Denote by

Uipxq :“ tv P A| fipx, vq “ xu

Tipxq :“ tv P A| fipx, vq , xu

the set of inputs that make a stable and transient pair withx in
Σi , respectively. Due to the absence of a global synchronizing
clock,Σi stays at a stable pairpx, v1q indefinitely. If the input
v1 changes to another valuev that makesx a transient state
(v P Tipxq), Σi initiates a chain of transient transitions, e.g.,

fipx, vq “ x1,

fipx1, vq “ x2,

...

during which the inputv remains unchanged. This chain
of transient transitions may or may not end. If it does not
end, it makes an infinite cycle. In this paper, we assume
that everyΣi does not have infinite cycles.Σi then reaches
the next stable state x1 such thatx1 “ fipx1, vq at the end
of the chain. Since asynchronous sequential machines pass
through transition transitions instantaneously (ideally in zero
time), the meaningful behavior of asynchronous sequential
machines can be represented only in terms of stable states.
In this respect, we introduce thestable recursion function
si : X ˆ A Ñ X as [2]

sipx, vq :“ x1

wherex1 is the next stable state ofpx, vq. If px, vq is a stable
pair of Σi , sipx, vq “ x. A series of transient transitions
from a transient pairpx, vq to its next stable pairpx1, vq, as
represented bysi , is called astable transition. The domain
of si is often expanded toX ˆ A` as follows, whereA` is
the set of all nonempty strings of characters inA:

sipx, v1v2 ¨ ¨ ¨ vkq :“ sipsipx, v1q, v2 ¨ ¨ ¨ vkq,

v1v2 ¨ ¨ ¨ vk P A`
.

B. Problem Statement
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Fig. 1. Corrective control system for the switched asynchronous sequential
machineΣ.

Fig. 1 illustrates the configuration of the corrective control
system for the switched asynchronous sequential machine
Σ. C is the corrective controller having the form of an
input/output asynchronous sequential machine,D is the de-
multiplexer, andP is the multiplexer. We denote byΣc the
closed-loop system composed ofC, D, P, andΣ. v P A is
the external input,u P A is the control input, andσ P M
is the switching signal. Bothu and σ are generated by
C, either of which is transmitted toΣ one at a time. The
submachine whose dynamics is currently active is termed the
active submachine. D relaysu to the active submachineΣσ,
which changes according to the switching signalσ. Hence
changingσ equals activation of the switching operation. The
multiplexer P extracts the state feedbackx of the active
submachine amongm feedback valuesx1, . . . , xm and delivers
it to the controllerC along with the corresponding index
i P M of the active submachine.

The control goal is to address the existence condition and
design procedure for a corrective controllerC that matches
the stable-state behavior ofΣc to that of a reference stable-
state machine

Σ1 “ pA,X, x0, s
1q

wheres1 : X ˆ A Ñ X is the stable recursion function ofΣ1.
Model matching betweenΣc andΣ1 implies that their stable-
state behaviors are identical, i.e., beginning from the initial
statex0, they reach the same next stable state in response to
every incoming input. ThusΣ1 is supposed to have the same
input and state sets as those ofΣ.

To prevent unpredictable outcomes caused by the lack of
a global synchronizing clock, it is assumed thatΣc always
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complies with the principle of fundamental mode operations
[22] whereby an input, state, or output variable should change
its value only when bothC andΣ are in stable states, and
no two or more variables can be changed simultaneously.

III. M ain Result

A. Relaxed Switching Operations

Let us first review the prior results on the model mat-
ching problem of a single asynchronous sequential machine
Σi “ pA,X, x0, fiq, or m “ 1 in view of Fig. 1. It is known
that the necessary and sufficient condition for the existence
of a corrective controller achieving model matching between
Σc andΣ1 is that the stable reachability ofΣ is greater than
or equal to that ofΣ1 [2], [4]. The latter condition can be
described in a compact way by a Boolean matrix called
the skeleton matrixof an asynchronous sequential machine.
Denote the state set byX :“ tx1, . . . , xnu hereafter.

Definition 1. Given Σi “ pA,X, x0, fiq, the skeleton matrix
KpΣiq is an n̂ n Boolean matrix whosepp, qq entry is defined
as (p, q P t1, . . . , nu)

Kp,qpΣiq :“

"

1 Dt P A` s.t. sipxp, tq “ xq

0 otherwise

Kp,qpΣiq “ 1 if xq is reachable fromxp in Σi via a chain
of stable transitions. UsingKpΣiq andKpΣ1q, we express the
existence condition for a model matching controller as

KpΣ1q ď KpΣiq

where matrix inequality must be valid on entry-by-entry
basis.

In controlling the switched asynchronous sequential ma-
chineΣ, we can utilize not only stable reachability of each
submachine, but also switching capability between different
submachines. In the previous study [16], [17], switching
capability is represented by the switching incidence matrix
Wpi, jq, which elucidates whetherΣ can switch its mode from
a submachineΣi to another submachineΣ j at a specific state
xp. The condition for enabling this switching operation is the
existence of an input characteru P A such that

u P Uipxpq X U jpxpq.

Under the assumption that the principle of fundamental
mode operations is preserved,Σi has to stay at the stable
statexp at the moment that the switching signalσ changes
from i to j. Hence the current input valueu makes a stable
pair with xp, i.e., u P Uipxpq. Further,u must also make
a stable pair withxp in Σ j , namelyu P U jpxqq; otherwise
Σ j could not maintainxp upon completion of the switching
operation. ThusWpi, jq is an n ˆ n Boolean matrix whose
pp, qq entry is defined as [17]

Wp,qpi, jq :“

"

1 p “ q andUipxpq X U jpxqq ,H
0 otherwise

(1)

Note that the conditionu P U jpxpq may not be always
valid for the current inputu. Still, Wp,ppi, jq “ 1 if Uipxpq X
U jpxpq , H is held true as defined above. The switching
operation can be achieved by changing the input character
from u to someu1 P UipxpqXU jpxpq right before transmitting
the switching signalσ “ j. ThusUipxpq X U jpxpq ,H is a

crucial condition for the success of switching in fundamental
mode operations.

In this paper, we relax the foregoing condition on swit-
ching operations by allowing that the current inputu does
not necessarily have to make a stable pair with the statexp

in the next active submachine. In particular, assume thatΣ

is about to switch its mode fromΣi to Σ j at the statexp for
which Uipxpq X U jpxpq “ H, namely no input exists that
makes a stable pair withxp in bothΣi andΣ j . In association
with this, assume that the current inputu has the property
that u P Uipxpq but u P T jpxpq, meaning thatu makes
a transient pair withxp in Σ j . Then, upon completion of
the switching operation fromΣi to Σ j , Σ j will initiate the
transient transition tof jpxp, uq, eventually reaching the next
stable statesjpxp, uq :“ xq. This result implies the following
two points.

(i) It means that as long as the current input makes a valid
pair with the new active submachineΣ j , the switching
operation can be still regarded as valid. Hence this
policy enhances the switching capability ofΣ.

(ii) The former definition of the switching incidence matrix
Wpi, jq must be adjusted so that it includes the switching
operation with respect to the inputs that make transient
pairs with the next active submachine.

According to the above discussion, in this paper we
propose a new switching incidence matrix considering those
inputs that make not only a stable pair but also a transient
one with the next active submachine.

Definition 2. GivenΣ “ tΣi |i P Mu with Σi “ pA,X, x0, fiq,
Qpi, jq, the extended switching incidence matrixof two
submachinesΣi and Σ j , is an nˆ n Boolean matrix whose
pp, qq entry is defined as (p, q P t1, . . . , nu)

Qp,qpi, jq :“

$

’

’

&

’

’

%

1 p “ q and Uipxpq X U jpxpq ,H
1 p , q andDu1 P Uipxpq X T jpxpq

s.t. sjpxp, u1q “ xq

0 otherwise

(2)

It is easily seen that (2) is a generalized version of the
former definition (1). More than one entries can have 1
value in each row ofQpi, jq. But that does not mean that
the corresponding switching operation is nondeterministic.
Any switching operation can be conducted deterministi-
cally by the corrective controller. For instance, assume that
Qp,ppi, jq “ 1 andQp,qpi, jq “ 1 for somep, q P t1, . . . , nu,
p , q, and i, j P M. Assume further thatΣ stays at a stable
pair pxp, uq (u P Uipxpq) of the active submachineΣi . If one
has to switch the mode ofΣ to Σ j while maintaining the
same statexp, it can be accomplished by providing a control
input u1 P Uipxpq X U jpxpq before changing the switching
signalσ from i to j. On the other hand, if one has to switch
the mode ofΣ to Σ j but with the different next stable state
xq, the latter can be done by providing another control input
u2 P Uipxpq X T jpxpq such thatsjpxp, u2q “ xq. In this way,
the switching capability ofΣ is enlarged by combining the
switching operation with transient transitions.

B. Existence Condition for a Controller

We now address the existence condition for a corrective
controller that achieves model matching betweenΣc andΣ1.
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We first describe the stable reachability ofΣ that encompas-
ses relaxed switching operations as presented in Definition
2.

Definition 3. Theone-step switching skeleton matrixS 1pΣq
is an nm̂ nm Boolean matrix defined as

S
1pΣq “

¨

˚

˚

˚

˝

KpΣ1q Qp1, 2q ¨ ¨ ¨ Qp1,mq
Qp2, 1q KpΣ2q ¨ ¨ ¨ Qp2,mq
..
.

..

.
..
.

..

.

Qpm, 1q ¨ ¨ ¨ Qpm,m´ 1q KpΣmq

˛

‹

‹

‹

‚

The k-step switching skeleton matrixS kpΣq (k ě 2) is
recursively defined as

S
kpΣq “ S

k´1pΣq ˆB S
1pΣq

where ‘̂ B’ denotes the Boolean product of two Boolean
matrices where logic AND and OR are used instead of
multiplication and addition operations in the matrix product.

Definition 4. Thecombined switching skeleton matrixZpΣq
of the switched asynchronous sequential machineΣ is an
nmˆ nm Boolean matrix defined as

ZpΣq “
nḿ 1
ÿ

k“1

`B
S

kpΣq

where ‘̀ B’ denotes the Boolean addition of two matrices.

In Definitions 3 and 4, the statexp of the submachineΣi ,
where p “ 1, . . . , n and i “ 1, . . . ,m, is given the index
p1 P t1, . . . , nmu such that

p1 “ pi ´ 1qn ` p. (3)

S
1pΣq in Definition 3 represents one-step stable reacha-

bility between any state pair ofΣ. Note thatS 1pΣq displays
not only stable reachability between two states in the same
submachine, but also switching capability between two dif-
ferent submachines. For instance, assume thatS 1

p1,q1
pΣq “ 1

where p1 “ pi ´ 1qn ` p and q1 “ p j ´ 1qn ` q for some
p, q P t1, . . . , nu and i, j P M. If i “ j, then by Definition 3
Kp,qpΣiq “ 1, which means thatxq is stably reachable from
xp in the submachineΣi . On the other hand, ifi , j, it
follows that Wp,qpi, jq “ 1. This implies thatΣ can switch
its mode fromΣi to Σ j during which the state changes from
xp to xq. In short,S 1pΣq characterizes whether a state of a
submachine can be reached from another state of another (or
the same) submachine either by a chain of stable transitions
(KpΣiq) or by a relaxed switching operation (Qpi, jq).

S kpΣq represents whether a state can be reachable from
another state byk steps of chains of stable transitions
and switching operations. Finally, the combined switching
skeleton matrixZpΣq is a generalized description of sta-
ble reachability and switching capability of the switched
asynchronous sequential machineΣ. Not only doesZpΣq
represent stable reachability within the same submachine,
it also characterizes whether a state of a submachine can
be reached from another state of a different submachine by
a combination of stable transitions and relaxed switching
operations as defined in Definition 2.

BecauseΣ is endowed withm submachinesΣ1, . . . ,Σm, Σ
hasm equivalent states for every state ofX “ tx1, . . . , xnu.

A subordinate state listΘ Ă t1, 2, . . . , nm´ 1, nmu of X is a
set ofn indices, where each index represents the statexp of
a submachine,p “ 1, . . . , n [17]. Using the index setting (3)
of the switching skeleton matrix, we can express an instance
of Θ as follows.

Θ :“ tθ1, . . . , θnu,

θp :“ pap ´ 1qn ` p, (4)

θp P t1, 2, . . . , nm´ 1, nmu, ap P M

where θp corresponds toxp of the submachineΣap. For
notational convenience, let us defineKpΘq as the n ˆ n
skeleton matrix ofΘ whosepp, qq entry is (p, q P t1, . . . , nu)

Kp,qpΘq :“ Kθp,θqpΣq.

We are now in a position to address the existence condition
for a corrective controller that achieves model matching
betweenΣc and Σ1 in which the switched asynchronous
sequential machineΣ is given relaxed switching operations.
The following theorem is the main result of this report.

Theorem 1. GivenΣ “ tΣi |i P Mu with Σi “ pA,X, x0, fiq
and a modelΣ1 “ pA,X, x0, s1q, a corrective controller C
exists that matches the stable-state behavior ofΣc to that of
Σ1 if and only if a subordinate state listΘ as described in
(4) exists such that

KpΣ1q ď KpΘq. (5)

If Θ satisfying condition (5) is found, we can design a
corrective controllerC that employsn states that correspond
to Θ. A detailed procedure of controller synthesis is given
in [17].

IV. Example

Consider a simple switched asynchronous machineΣ “
tΣ1,Σ2u (M “ t1, 2u) and a reference modelΣ1 shown
in Fig. 2, where X “ tx1, x2, x3u with x0 “ x1 and
A “ ta, b, c, du. For simplicity, we define all the machines
such that fipx, vq “ sipx, vq for all i “ 1, 2 and all valid
px, vq P X ˆ A.

To investigate the existence of a model matching corrective
controller, we first derive the skeleton matrix of each subma-
chine and the model. From Fig. 2, we induceKpΣ1q, KpΣ2q,
and KpΣ1q as

KpΣ1q “

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚

KpΣ2q “

¨

˝

1 1 1
1 1 1
0 0 1

˛

‚

KpΣ1q “

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚

Next, we compute the extended switching incidence matrix
Qpi, jq according to Definition 2. Note that whereas the
previous switching incidence matrix has the property that
Wpi, jq “ Wp j, iq for all i, j P M, Qpi, jq , Qp j, iq in general.
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Thus we must derive two matricesQp1, 2q and Qp2, 1q as
follows.

Qp1, 2q “

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚

Qp2, 1q “

¨

˝

0 1 0
0 0 0
1 0 1

˛

‚

Derivation of Qp1, 2q and Qp2, 1q is made by a slight
examination of Fig. 2. For instance, ifΣ switches its mode
from Σ2 to Σ1 at the statex3, the next stable state can
be either x1 or x3 since U2px3q X T1px1q “ tdu with
s1px3, dq “ x1 and U2px3q X U1px3q “ tcu. Hence we have
Q3,1p2, 1q “ Q3,3p2, 1q “ 1.

AssemblingKpΣ1q, KpΣ2q, Qp1, 2q, andQp2, 1q, we com-
pute the switching incidence matricesS 1pΣq, . . . ,S 5pΣq
(omitted) and derive the combined switching skeleton matrix
ZpΣq according to Definition 4.

ZpΣq “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‚

Clearly, we can find a subordinate state listΘ that satisfies
condition (5) for the existence of a model matching corrective
controller. For instance, letΘ “ t1, 2, 6u, that is, takex1 and
x2 from Σ1 and x3 from Σ2. Then, since

KpΘq “

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚,

we haveKpΣ1q ď KpΘq.

x2 x3

c,d

c

b

b c

2
Σ

x1

a

a

x2 x3

ca

a b,d

1Σ

x1

b,d

x2 x3

c

c

b

b

x1

a,d

d

c

Σ′

Fig. 2. Switched asynchronous sequential machineΣ “ tΣ1,Σ2u and a
modelΣ1.

V. Summary

In this paper, we have studied an automatic control
theoretic strategy for the model matching problem of a

class of switched asynchronous sequential machines. When
a switched asynchronous sequential machine is composed
of multiple input/state asynchronous sequential machines,
the composite machine can have expanded reachability in
terms of the stable-state behavior. In particular, we have
proposed relaxed switching operations that do not need the
preservation of fundamental mode operations. The enhanced
switching capability has been described as a novel switching
incidence matrix, based on which the existence condition for
a model matching controller is addressed. The examination of
the controller existence has been demonstrated in the simple
illustrative example.
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