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Switched Asynchronous Sequential Machines With
Relaxed Switching Operations

Jung-Min Yang

Abstract—The model matching problem of inpufstate swit- asynchronous sequential machines. On the other hand, cor-
ched asynchronous sequential machines is studied in this paper.rective control has been successfully applied to the problem
The considered machine consists of a number of inpfatate  f fa It diagnosis and fault tolerant control for asynchronous
asynchronous machines, termed submachines, between which . . . . . .
asynchronous switching is conducted by the switching signal. sequential machines. This accompllshment is allso attrlbute(_j
The control goal is to design a corrective controller such that to the feature of asynchronous sequential machines that their
the closed-loop system can mimic the stable-state behavior of dynamics are not governed by any synchronizing clock. Refer

a reference model. In particular, we focus on relaxing the to, e.g., [9]-[12] and references therein for recent results on
condition for fundamental mode operations in switching ope- o topic.

rations so that the switched asynchronous sequential machine In thi . tioate th bl f del )
can enlarge its switching capability. The necessary and flicient n this paper, we investigate the probiem of model ma
condition for the existence of a model matching controller is tching for a composite asynchronous sequential machine.
analytically derived in the framework of corrective control. We The considered machine consists of switched composition
also provide a simple illustrative example to demonstrate the of multiple inpufstate asynchronous sequential machines—
proposed notion and control scheme. termedsubmachinesn this paper. The composite machine
Index Terms—asynchronous sequential machines, switched switches between submachines according to a rule (or control
systems, corrective control, model matching. scheme) that orchestrates the switching behavior. Though
the research of switched systems is already ripe in the field
of continuous-time systems (see [13]), few studies exist in
the field of event-driven systems, much less asynchronous
Since first proposed by Hammer for general sequentggguential machines. We note that in systems biology, control
machines [1], corrective control has been studied extengf-switched Boolean networks is studied by some researchers
vely as a novel automatic control scheme for asynchrondd4], [15]. But since [14], [15] do not consider significant
sequential machines. Though having the same structuref@atures of asynchronous sequential machines such as sta-
conventional feedback control systems, the corrective contfd@/transient states and fundamental mode operations, they
scheme has distinctive features in activating feedback contg@nnot be applied to our framework.
processes. Most unique among them is the fact that thelhe main consideration of this paper is to study the model
interaction between controllers and controlled machines rigatching problem of inpywuput switched asynchronous
conducted very fast in an asynchronous mechanism. Hengequential machines. We analyze the existence condition for
even though the controlled machine does not have desiradlgorrective controller that makes the stable-state behavior
transitions, it can be compensated by the corrective control@r the considered switched machine be equivalent to that
so as to show the desirable inatate or inpybutput beha- of a given reference model. While similar researches are
vior if it has inherent stable reachability that can be used teund in the author’s previous studies [16]-[18], the present
make an appropriate feedback trajectory. paper difers from them for the following reason. In all
In the past, the research of corrective control was mainije prior work [16]-[18], a switching operation between
done for controlling single asynchronous sequential machiri# submachines is possible only if there exists an input
with various deficiencies. [2] first addresses the problefffaracter that makes stable pairs with both states of the two
of model matching for inpystate asynchronous sequentiaggubmachines at which the switching operation is executed.
machines with critical races. [3] presents inputput control On the other hand, the present study relaxes this constraint
of asynchronous sequential machines using output burstsfenthe purpose of enhancing the switching capability of the
[4], controlling inputstate asynchronous sequential machfomposite machine. We will represent this relaxed condition
nes with infinite cycles is studied. In [5], [6], control ofin terms of a new switching incidence matrix. The existence
inputoutput asynchronous sequential machines with nondgndition for a model matching corrective controller is also
terministic state transitions is addressed. In [7], [8], a matrescribed with the new switching incidence matrix in the
operation termed semi-tensor product (STP) is applied fi@mework of corrective control. We will focus our concern
quantifying the stable reachability of the considered sing® analyzing the existence condition for a controller. The
design procedure for a controller is similar to that in the prior
This research was supported in part by the Bio & Medical Technawork [16], [17]. Besides switched asynchronous sequential
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and in part by Basic Science Research Program through the Natio ynchronous S.e.quem'a machines exist as We_’. e.g., 1or
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asynchronous machines and the problem statement of mderex’ is the next stable state ¢k, v). If (x,v) is a stable
del matching. In Section lIl, a relaxed switching operatiopair of %j, s(x,v) = x. A series of transient transitions
is presented and described by a new switching incidenitem a transient paifx, v) to its next stable paifx,v), as
matrix. The existence condition for a corrective controllaepresented by, is called astable transition The domain
achieving model matching is also addressed in terms @ff 5 is often expanded tX x A" as follows, whereA" is
matrix expressions. A simple example is provided in Sectighe set of all nonempty strings of charactersAin

IV to demonstrate the proposed notions and scheme. Finally,

some concluding remarks are given in Section V. (6 VaVa -+ M = (S (X V), V- W),

ViVo - - -V e AT.
Il. PRELIMINARIES
A. Switched Asynchronous Sequential Machines B. Problem Statement

We consider a switched asynchronous sequential machine
¥ consisting ofm submachines. Each submachine is sup-

(o] IR
posed to be a single inpatate asynchronous sequential )

X1

machine, namely the current state of the machine is given )

as the output value is described as < u b
= i ., Xm
2 = {Zili e M} (ix) —Gl z
Zi = (A X Xo, fi) W
whereM := {1,...,m}, % is theith submachineA is the P :

input set,X is the state set withX| = n, Xp € X is the initial
state, and : X x A — X is the state transition function &f >
partially defined orX x A. Since every submachine serves as
structural redundancy of the composite mactiin¢he input ”
and state sets af; are the same for all € M, while the
transition characteristi¢; is different with each other. %

Each submaching€; possesses the property of a single 4 X
asynchronous sequential machine, that is, no synchronizing
clock governs dynamics of the machine; its state transitigf9- 1. Corrective control system for the switched asyncbusnsequential
is conducted only in direct response to changes of external o>
inputs. A state—input paifx, V') € X x A is valid in %; if

V) | » i V) | i if Fig. 1 illustrates the configuration of the corrective control
i(x’v,) 'S O_'e meq. A v3|d pall:(X., )is a .stabe PaIN T system for the switched asynchronous sequential machine
fi(x V) =x els_e i V) # x, it is a transient pair. the Y. C is the corrective controller having the form of an
that x may b_e either a stable or transient state depending ﬁ%ut/output asynchronous sequential machibeis the de-
the current input. Denote by multiplexer, andP is the multiplexer. We denote hy. the
Ui(x) :=={ve Alfi(x,v) = x} closed-loop system composed ©f D, P, andX. ve Ais
Ti(x) := {ve Alfi(x V) # x} the external inputy € A is the control input, andr € M

. . __is the switching signal. Botlu and o are generated by
the set of inputs that make a stable and transient pairxiith ¢ either of which is transmitted t& one at a time. The

%, respectively. Due to the absence of a global synchronizigghmachine whose dynamics is currently active is termed the

clock, % stays at a stable pafx, V') indefinitely. If the input  active submachined relaysu to the active submaching,,

V' changes to another valuethat makesx a transient state \yhich changes according to the switching sigaalHence

(ve Ti(x)), Zi initiates a chain of transient transitions, €.9.changingr equals activation of the switching operation. The
fi(X,V) = X4, multiplexer P extracts the state feedbackof the active

submachine amonm feedback valueg,, . . ., X and delivers

it to the controllerC along with the corresponding index

i € M of the active submachine.

_ ) ) ] _ . The control goal is to address the existence condition and
during which the inputv remains unchanged. This chairyesign procedure for a corrective control@rthat matches

of transient transitions may or may not end. If it does nghe stable-state behavior &f to that of a reference stable-
end, it makes an infinite cycle. In this paper, we assumsie machine

that everyX; does not have infinite cycleg; then reaches s/ — X d

I ] (A, d XO7 )
the next stable state’xsuch thatx' = fj(x,v) at the end _ ) )
of the chain. Since asynchronous sequential machines p@f§res : X x A — Xis the stabl/e_ recursion function af.
through transition transitions instantaneously (ideally in zef§odel matching betweeB, andX’ implies that their stable-
machines can be represented only in terms of stable stafidteXo, they reach the same next stable state in response to

In this respect, we introduce thetable recursion function €very incoming input. Thus’ is supposed to have the same
S:Xx A Xas [2] input and state sets as those2bf

To prevent unpredictable outcomes caused by the lack of
a global synchronizing clock, it is assumed thgtalways

fi(X1, V) = %o,

/

S(% V) := X
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complies with the principle of fundamental mode operatiorucial condition for the success of switching in fundamental
[22] whereby an input, state, or output variable should changmde operations.
its value only when bottC andX are in stable states, and In this paper, we relax the foregoing condition on swit-
no two or more variables can be changed simultaneouslyching operations by allowing that the current inputioes
not necessarily have to make a stable pair with the state
. M AN RESULT in the next active submachine. In particular, assume Ihat
is about to switch its mode fror¥; to Z; at the statex, for
which Ui(x,) n Uj(xp) = &, namely no input exists that
Let us first review the prior results on the model matnakes a stable pair witk, in both % andz;. In association
ching problem of a single asynchronous sequential machi@th this, assume that the current inputhas the property
Zi = (A X, X, fi), orm = 1 in view of Fig. 1. It is known that u e Uj(xp) but u e Tj(xp), meaning thatu makes
that the necessary andfBaient condition for the existencea transient pair withx, in X;. Then, upon completion of
of a corrective controller achieving model matching betweafe switching operation fronz; to =;, ¥; will initiate the
Zc andY’ is that the stable reachability af is greater than transient transition tdj(xp, u), eventually reaching the next
or equal to that o’ [2], [4]. The latter condition can be stable states;(xp, U) := Xq. This result implies the following
described in a compact way by a Boolean matrix callagyo points.
the skeleton matribof an asynchronous sequential machine(i) It means that as long as the current input makes a valid

Denote the state set B:= {xi,..., X} hereafter. pair with the new active submachiig, the switching

A. Relaxed Switching Operations

Definition 1. GivenX; = (A, X, %o, fi), the skeleton matrix operation can be still regarded as valid. Hence this
K(Z) is an nxn Boolean matrix whosgp, q) entry is defined policy enhances the switching capability Df
as (pge {1,...,n}) (ii) The former definition of the switching incidence matrix

W(i, j) must be adjusted so that it includes the switching
operation with respect to the inputs that make transient
pairs with the next active submachine.

L. |1 Jte AT st og(xp.t) = Xq
Kpa(Zi) = { 0 otherwise

Kpq(Zi) = 1 if Xq is reachable fronx, in % via a chain  According to the above discussion, in this paper we
of stable transitions. Usin (%) andK(X'), we express the propose a new switching incidence matrix considering those
existence condition for a model matching controller as  inputs that make not only a stable pair but also a transient

one with the next active submachine.

o _ _ Definition 2. GivenX = {Zi|i € M} with Z; = (A, X, Xo, fi),
where matrix inequality must be valid on entry-by-entryg(i,j), the extended switching incidence matriaf two

basis. _ _ ~ submachineg; and Zj, is an nx n Boolean matrix whose
In controlling the switched asynchronous sequential map q) entry is defined as (g e {1,...,n})

chineX, we can utilize not only stable reachability of each

KE) < K(E)

submachine, but also switching capability betweeffiedent 1 p=gand U(xy) nUj(xp) #
submachines. In the previous study [16], [17], switchingq |y ._ 1 p=#qand3u e Ui(xp) n Tj(Xp) @)
capability is represented by the switching incidence matrix~"*"" S.t. §(Xp, U) = Xq

W(i, j), which elucidates wheth&rcan switch its mode from 0 otherwise

a submaching; to another submachirk®; at a specific state
Xp. The condition for enabling this switching operation is thgo
existence of an input character A such that

It is easily seen that (2) is a generalized version of the
rmer definition (1). More than one entries can have 1
value in each row ofQ(i, j). But that does not mean that
ue Ui(xp) N Uj(xp). the corresponding switching operation is nondeterministic.
Any switching operation can be conducted deterministi-
Under the assumption that the principle of fundamentahlly by the corrective controller. For instance, assume that
mode operations is preserveq}, has to stay at the stabIer’p(i, j) = 1 andQpq(i, j) = 1 for somep,qe {1,...,n},
statexp at the moment that the switching signalchanges p % g, andi, j € M. Assume further thak stays at a stable
fromi to j. Hence the current input valuemakes a stable pair (x,, u) (ue Ui(xp)) of the active submaching. If one
pair with xp, i.e., u € Ui(xp). Further,u must also make has to switch the mode of to =; while maintaining the
a stable pair withx, in X, namelyu € Uj(xq); otherwise same statex,, it can be accomplished by providing a control
Zj could not maintairx, upon completion of the switching input u’ e Ui(x,) n Uj(x,) before changing the switching
operation. ThusA(i, j) is ann x n Boolean matrix whose signals fromi to j. On the other hand, if one has to switch

(p.q) entry is defined as [17] the mode off to =; but with the diferent next stable state
_ _ _ , the latter can be done by providing another control input
1 p=gandUi(xy,) nU +J X?, :
Woq(l J) = { 0 otherwise %) i) (1) u” e Ui(xp) N Tj(Xp) such thats;(xp, U”) = Xq. In this way,

the switching capability ok is enlarged by combining the
Note that the conditioru € Uj(xp) may not be always switching operation with transient transitions.
valid for the current inputi. Still, Wy p(i, j) = 1 if Uj(Xp) N
Uj(xp) # < is held true as defined above. The switchin
operation can be achieved by changing the input chara
from uto someu’ e U;(xp) nU;(Xp) right before transmitting  We now address the existence condition for a corrective
the switching signab- = j. ThusU;(xp) n Uj(xp) # & is a controller that achieves model matching betw&grandx'.

rExistence Condition for a Controller
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We first describe the stable reachability»that encompas- A subordinate state lisb < {1,2,...,nm—1,nm} of X is a

ses relaxed switching operations as presented in Definitiset ofn indices, where each index represents the statef

2. a submachinep = 1,...,n[17]. Using the index setting (3)

of the switching skeleton matrix, we can express an instance

Definition 3. Theone-step switching skeleton matrix*(X) of ® as follows

is an nmx nm Boolean matrix defined as

) = 0 :={61,...,6},
K(Z1) QL2 e Q(1,m) Op = (ap—1)n+p, (4)

Q(2,1) K(=2) Q(2,m) bpe{l,2,....nm—1,nm}, ape M

: : : : where 6, corresponds tox, of the submachineZ,,. For
Qm1) - Qmm-1) K(Zm) notational convenience, let us defig®) as then x n
The k-step switching skeleton matri¥/X(s) (k > 2) is Skeleton matrix o whose(p,q) entry is ,q € {1,....n})
recursively defined as
Y Kpg(®) := Kgyg0(Z).

AKE) = S*Z) x g SHZ)

We are now in a position to address the existence condition
where x5’ denotes the Boolean product of two Booleafgr a corrective controller that achieves model matching
matrices where logic AND and OR are used instead @ktweeny. and ¥’ in which the switched asynchronous
mUltiplication and addition Operations in the matrix prOdUCtsequentiai maching is given relaxed Switching operations_

Definition 4. Thecombined switching skeleton matr&(x) The following theorem is the main result of this report.
of the switched asynchronous sequential macltinis an  Thegrem 1. Givens — (Zili € M} with 5 = (A, X, %o, f;)

nmx nm Boolean matrix defined as and a modelY’ = (A X X,S), a corrective controller C
nm—1 exists that matches the stable-state behavidctafo that of
Z(%) = Z R0 Y’ if and only if a subordinate state ligd as described in

k=1 (4) exists such that

where 4 %' denotes the Boolean addition of two matrices.

K(Z') < K(®). (5)
In Definitions 3 and 4, the statg, of the submaching;,
wherep = 1,...,nandi = 1,...,m, is given the index If ® satisfying condition (5) is found, we can design a
p' € {1,...,nm} such that corrective controlleC that employs states that correspond
to ®. A detailed procedure of controller synthesis is given

pl = (i - 1)” +p. (3) in [17]_

Z1(2) in Definition 3 represents one-step stable reacha-
bility between any state pair &. Note that7*(Z) displays
not only stable reachability between two states in the same
submachine, but also switching capability between two dif- Consider a simple switched asynchronous machine

IV. EXAMPLE

ferent submachines. For instance, assumeﬂi%g&,(i) =1 {3,%} (M = {1,2}) and a reference modé&’ shown
wherep’ = (i—1)n+ pandq = (j — 1)n+ q for some in Fig. 2, whereX = {xi, %2, %3} with xo = x; and
p.qe {1,...,n} andi, j € M. If i = |, then by Definition 3 A = {a,b,c,d}. For simplicity, we define all the machines
Kpq(Zi) = 1, which means thax, is stably reachable from such thatfi(x,v) = s(x,v) for all i = 1,2 and all valid

Xp in the submachin&;. On the other hand, if # j, it (xv)e XxA
follows thatWyq(i, j) = 1. This implies thai can switch  To investigate the existence of a model matching corrective
its mode fromZ; to Z; during which the state changes frontontroller, we first derive the skeleton matrix of each subma-
Xp 10 Xq. In short,.#(X) characterizes whether a state of @hine and the model. From Fig. 2, we indu¢€; ), K (),
submachine can be reached from another state of anotherged K (X') as
the same) submachine either by a chain of stable transitions
(K(Z)) or by a relaxed switching operatio(i, j)).
%(Z) represents whether a state can be reachable from K(Z1) =
another state byk steps of chains of stable transitions
and switching operations. Finally, the combined switching
skeleton matrixZ(X) is a generalized description of sta- K(Z2) =
ble reachability and switching capability of the switched
asynchronous sequential machiBie Not only doesZ(X)
represent stable reachability within the same submachine, K(X) =
it also characterizes whether a state of a submachine can
be reached from another state of #@elient submachine by
a combination of stable transitions and relaxed switching Next, we compute the extended switching incidence matrix
operations as defined in Definition 2. Q(i, j) according to Definition 2. Note that whereas the
BecauseX is endowed withm submachineX,, ..., %, £ previous switching incidence matrix has the property that
hasm equivalent states for every state Xf= {xy,...,xn}. W(i, j) = W(},i) foralli, je M, Q(i, j) # Q(j,i) in general.

PRrRr ORR RRER
PRRPR ORPR RBRBR
PRREPPRPRPRER PR
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Thus we must derive two matrice3(1,2) and Q(2,1) as
follows.

0

Q(1,2) =

OO OFr o

0
1 1

Derivation of Q(1,2) and Q(2,1) is made by a slight
examination of Fig. 2. For instance, 3f switches its mode

Q2.1 =

OOPFr OO0FFr

class of switched asynchronous sequential machines. When
a switched asynchronous sequential machine is composed
of multiple inpufstate asynchronous sequential machines,
the composite machine can have expanded reachability in
terms of the stable-state behavior. In particular, we have
proposed relaxed switching operations that do not need the
preservation of fundamental mode operations. The enhanced
switching capability has been described as a novel switching
incidence matrix, based on which the existence condition for
a model matching controller is addressed. The examination of
the controller existence has been demonstrated in the simple

from X, to X; at the statexs, the next stable state canillustrative example.

be eitherx; or X3 since Ua(xg) n T1(x1) = {d} with
s1(x3,d) = x3 and Uz (x3) n U1(xs) = {c}. Hence we have
Qa1(2,1) = Q33(2,1) = 1.

AssemblingK (Z1), K(X2), Q(1,2), andQ(2, 1), we com-
pute the switching incidence matriceg’(2),...,.7>(2)

(omitted) and derive the combined switching skeleton matrix

Z(%) according to Definition 4.

11 111
111111
111111
Z(2):111111
11 1111
11 111

Clearly, we can find a subordinate state @isthat satisfies

condition (5) for the existence of a model matching correctiv%]

controller. For instance, & = {1, 2, 6}, that is, takex; and
Xo from X1 and x3 from X,. Then, since

111
K@©) =[1 1 1],
111

we haveK(¥') < K(@).

bd

Fig. 2. Switched asynchronous sequential mactline {£1,%,} and a
model¥’.

V. SUMMARY
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