Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

Implementation of Virtual Machine Monitor-Based
Stack Trace Mechanism on Windows 10 x64

Yuya Yamashita, Junjun Zheng, Shoichi Saito, Fiji Takimoto, Koichi Mouri

Abstract—Along with the advent of 64-bit malware, an
analysis of such malware is now required. We are developing
Alkanet 10, which is a system call iracer using virtualization
technology for 64-bit malware analysis on Windows 10 xo64.
At present, we are attempting to implement a stack trace on
Alkanet 10 in order to trace the code injection behaviors of the
malware. However, realizing the stack trace is not easy because
unlike x86, the calling convention on x64 does not use a frame
pointer. We propose implementing the stack trace by using a
VAD tree and .pdata section in a PE file.

Index Terms—runtime analysis, stack trace, Windows 10

I, INTRODUCTION

N recent vears, along with the widespread use of 64-bit

operating systems, malware has also advanced to 64 bits
[1]. In fact, damages caused by 64-bit malware are occurring
and are believed to increase in the future. To deal with
malware, analyzing its behaviors is necessary, and hence,
an analytical environment for 64-bit malware is required.
There are two main methods for analyzing malware. One
is runtime analysis, which traces the behaviors by actually
running the malware, and the other one is static analysis,
which analyzes the behaviors by disassembling the codes of
malware. Focusing on runtime analysis, we have developed
Alkanet which is a system call tracer that allows the analysis
of malware on Windows [2]. Alkanet is based on BitVisor
which is a virtual machine monitor (VMM) and it can trace
system calls invoked by processes on a per-thread basis on
Windows XP. We have extended Alkanet to run on Windows
10 [3]. In this paper, we refer to Alkanet for Windows XP
x86 as Alkanet XP and Alkanet for Windows 10 x64 as
Alkanet 10.

Some malware injects malicious codes into other pro-
cesses, which are forced to execute these codes in order to
hide the behaviors of the malware. In general, system calls
or APT tracing cannot trace the behaviors of the processes
caused by code injections that are associated with each
other. Alkanet solves this problem by using stack tracing
[4]. By implementing the stack tracing to Alkanet, Alkanet
can acquire a function call hierarchy up to system calls.
Furthermore, combining the system call tracing log and the
call hierarchy would be able to solve this problem.

Alkanet XP implements stack tracing by tracing the values
of frame pointers pushed onto the stack in order. However,
we cannot apply the same method to Alkanet 10 because the
calling convention of Windows 10 x64 does not use frame

Y. Yamashita, J. Zheﬁg, E. Takimoto, and K. Mour are with Col-
lege of Information Science and Engineering, Ritsumeikan Univer-
sity, 1-1-1 Noji-higashi Kusatsu Shiga 525-8577 Japan e-mail: yya-
mashita@asl.cs.ritsumei.ac.jp.

8. Saito is with Nagoya Institute of Technology, Gokiso Showa Nagova
466-8555 Japan.

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

SystemCall

User-
Mode

— e | e — — —

7

]
= 3

Hook system call. b
Collectinformation about
the system call.

SystemCall Analyzer

Log

Alkanet
BitVisor

Fig. 1. Overview of Alkanet.

pointers. So, a method that does not rely on frame pointers is
required. In our survey, no study has vet proposed a method
of stack tracing on Windows 10 x64. Here we propose a
method to realize stack tracing on Windows 10 x64 using
a VAD tree which is a internal data structure of Windows
and .pdata section in a PE file. We have tested our proposed
method and show that stack tracing is possible on Windows
10 x64.

II. PROBLEMS OF STACK TRACING ON ALKANET 10
A, Overview of Alkanet

Figure 1 shows an overview of Alkanet, which is a system
call tracer based on BitVisor which is a VMM. Alkanet can
trace system calls invoked by malware running on Windows
which is a guest OS. Based on a VMM, Alkanet avoids many
of the anti-debugging techniques possessed by malware.
System call hooking is made by setting hardware breakpoints
at the entry and exit of the system call handler. After hooking
a system call, Alkanet collects information about system
calls such as arguments and return values, then saves the
information in a system call tracing log.

B. How to realize stack tracing on Alkanet XP

Windows XP x86 uses the stdcall calling convention [5]
to call the Windows API. All functions must push the value
of the current EBP (frame pointer) at the beginning of the
function and overwrite EBP with the value of the current
ESP. As a result, the area to which EBP is ponting contains
the value of the previous EBP value. After 4 bytes, the area
contains the return address (see the left-hand diagram in Fig-
ure 2). Therefore, stack tracing can be done by sequentially
taking out the values of EBP from the stack and reading the
address of EBP + 4 each time.

IMECS 2019

top pe— ESP i

EEF 1—EBP§ top = RSP
retaddr

EBP+4

retaddr
EBP” | EBP'
*EBP

retaddr’ retaddr’

EBP’+4

Windows XP x86 Windows 10 x64

Fig. 2. Stack frame layouts on Windows XP x86 and Windows 10 x64.

C. Problems of stack tracing on Alkanet 10

Windows 10 x64 uses the Microsoft x64 calling conven-
tion [6] to call the Windows APIL Unlike the stdcall calling
convention, the Microsoft x64 calling convention does not
use a frame pointer (see the right-hand diagram in Figure 2).
Therefore, a method that does not rely on a frame pointer is
required.

ITI. PROPOSED METHOD
A. Overall design of proposed method

In the Microsoft x64 calling convention, the first few
instructions (prolog code) of a function allocate the necessary
stack areas, whereas the last few instructions (epilog code)
free the stack areas. Therefore, if we obtain the contents of a
function’s prolog code, we can calculate the stack frame size
consumed by the function and implement stack tracing while
not relying on a frame pointer. The contents of a function’s
prolog code are recorded in the .pdata section of the PE file
where the function is defined. Qur proposed method focuses
on this method for stack tracing on Windows 10 x64.

Figure 3 shows the overall design of the proposed method,
which consists of the following seven steps.

» Step 1: When hooking, obtain the return address pushed

onto the top of the stack.

+ Step 2: Search the VAD tree (described later) and find
the memory area covering the return address.

« Step 3: From the memory area’s information (VAD),
obtain the base address and the file name of the PE file
where the caller function is defined.

+ Step 4: Find the address of the .pdata section of the PE
file using the base address.

» Step 5: From the information in the .pdata section,
calculate the stack frame size consumed by the caller
function.

« Step 6: Using the result of calculating the consumed
stack frame size, obtain the next return address on the
stack.

+ Step 7: Repeat Step 2-6.

We describe the details of the above steps in the following
sections.

B. Details of Step 2

1) Overview of VAD: Virtual Address Descriptors (VADS)
are internal data structures of Windows 10 for managing

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

the memory areas allocated by processes. A VAD is created
every time a process performs a dynamic memory allocation
or file mapping and holds the information for managing
the corresponding memory area. The information held by
a VAD includes the range of the virtual addresses and the
file information managed by the VAD.

VADs belonging to the same virtual address space are
connected to each other to form a balanced binary search
tree (VAD tree). The address of the root node of the tree is
stored in the member VadRoot of the EPROCESS structure.

2) Information required for searching a VAD tree: The
following two pieces of information held by each VAD are
required:

s The range of the virtual addresses to be managed

« The address of the child node
Then, we can search the VAD tree as follows.

1) Obtain the return address (RA).

2) Obtain the address of the root node of the VAD tree

from EPROCESS VadRoot.

3) Obtain the virtual address range managed by the VAD

of the root node. If this virtual address range includes
RA, the search ends. If RA is smaller than the virtual
address range, trace the left child node. If RA is larger
than the virtual address range, trace the right child
node.

4) Trace the child nodes until the target VAD is found.

We can obtain the above two pieces of information from
the fields of the MMVAD structure that expresses VAD.
Figure 4 shows the fields of the MMVAD and related
structures, which we investigated by using the dt command
of WinDbg [7]. The meaning of each column of the output
in order from left to right is an offset, member name and
member type.

3) How to obtain the range of virtual addresses to be
managed: The range of the virtnal addresses managed by
VAD is stored in the members of MMVAD.Core. Figure 4
shows the type definition of the MMVAD SHORT structure
which is a type of MMVAD.Core. Among the members of
this structure, StartingVpn and StartingVpnHigh hold the
start virtval address, whereas EndingVpn and EndingVpn-
High hold the end virtual address. We can obtain the start
virtual address by performing the following calculation on
StartingVpn and StartingVpnHigh.

((StartingVpnHigh << 32)|StartingVpn) << 12

We can also obtain the end virtual address by performing the
same calculation on EndingVpn and EndingVpnHigh.

4) How to obiain the address of the child node: The
address of the child node is stored in the members of
MMVAD.Core.VadNode. Figure 4 shows the type definition
of the RTL. BALANCED NODE structure which is a type
of MMVAD.Core.VadNode. Among the members of this
structure, Left holds the address of the left child node and
Right holds the address of the right child node, i.e., we can
obtain the address of the MMVAD structure of the left child
node from Left and of the right child node from Right.

C. Details of Step 3

1) How to obrain the base address of the PE file where
caller function is defined: This base address is the same

IMECS 2019

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

{1)Get the
return address

Stack trace module

(2)(3)Get the base address of
the PE file where the caller
is defined

User stack

PEfile

(4)Getthe base f
address of .pdata §

— RSP €l - | .|

RetAddr

(8)Cetthe next
return address

Next RetAddr

.pdata PE file

(5)Calculate the
consumed stack size

PE file

Alkanet 10
Fig. 3. Overall design of proposed method.

kd= dt ntt_MMVAD

+0x000 Core 1 _MMVAD SHORT
+0x040 u2 : <unnamed-tag>
+0x048 Subsection : Ptré4 _SUBSECTION
+0x060 FirstPrototypePte ;P64 MMPTE
+0x058 LastContiguousPte : P64 _MMPTE
+0x060 ViewLinks 1 _LIST_ENTRY
+0x070 VadsProcess : P64 EPROCESS
+0x078 ud : <unnamed-tag>

+0x080 FileObject :Ptr6d _FILE_OBJECT

kd> dt nt!l_MMVAD_SHORT

+0x000 VadNode : _RTL_BALANCED NODE
+0x000 NextVad : P64 MMVAD_SHORT
+0x018 StartingVpn 1 UintdB

+0x01c EndingVpn 1 Uint4B

+0x020 StartingVpnHigh : UChar

+0x021 EndingVpnHigh : UChar

+0x022 CommitChargeHigh : UChar

+0x023 BpareNT64VadUChar : UChar

+0x024 ReferenceCount : Int4B

+0x028 PushLock 1 _EX_PUSH_LOCK

+0x030 u <unnamed-tag>

+0x034 u1 : <unnamed-tag>

+0x038 EventList : Pré4 _MI_VAD_EVENT_BLOCK

kd> dt nt! RTL_BALANCED NODE

+0x000 Ghildren :[2] P64 RTL BALANGED NCDE

+0x000 Left : P64 RTL BALANCED NODE
+0x008 Right : P84 _RTL_BALANCED NODE
+0x010 Red : Pos 0, 1 Bit
+0x010 Balance : Pos 0, 2 Bits
+0x010 ParentValue : Uint8B

Fig. 4. Fields of MMVAD, MMVAD SHORT and

RTL_BALANCED_NODE structures.

as the start virtval address managed by the VAD acquired
in Step 2. When a process is created from a PE file, the
file is mapped onto the memory. At this time, Windows 10
creates one VAD that manages the mapping area, i.e., the
start virtual address managed by the VAD created here is
the base address of the PE file. The VAD obtained in Step
2 manages the mapping area of the PE file where the caller
function is defined because the VAD covers the RA.

2) How to obtain the filename of the PE file where
the caller function is defined: By following a field of the
MMVAD structure obtained in Step 2, we can obtain the file
name as follows.

1) Obtain EX FAST REF structure
MMVAD.Subsection.Control Area. FilePointer.
Hereinafter, this structure is referred to as efref.

2) Calculate efref.Object AND 0xf, then obtain the ad-
dress of the corresponding FILE_OBJECT structure.
Hereinafter this address is referred to as fo.

from

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Guest memory

L
Dos header‘j IMAGE_DOS_HEADER.e_Ifanew
DOS stub

RE header\:

~—d
Section table \L IMAGE_OPTIONAL_HEADERG64.DataDirectory[3]]

text

.pdata

Fig. 5. Overview of Step 4.

3) fo.FileName is the target file name.

D. Details of Step 4

1) Overview: In Step 4, we use the information in the
DOS and PE headers included in a PE file. Figure 5 shows
the PE32+ format [8] which is a PE file format supporting
64 bits and an overview of Step 4, of which the outline is
as follows.

1) Read the field e_lfanew in the DOS header to obtain
the start address of the PE header.

2) Read the element of Index 3 of the array DataDirectory
which is a field in the PE header and obtain the start
address and size of the .pdata section.

In the following sections, we describe the DOS and PE
headers related to the above process.

2) DOS header: This is an area placed at the head of
the PE file and is referred to when executing the PE file on
MS-DOS. When executing a PE file on Windows, the fields
except for e_lfanew are not used.

Figure 6 shows the structure of the DXOS header, which
is expressed as an IMAGE_DOS _HEADER structure. The
field important to realizing Step 4 is e_lfanew, which holds
the Relative Virtual Address (RVA) of the address of the PE
header. Here, RVA is an offset from the base address of the
PE file, i.e.,, we can obtain the virtual address of the PE
header by adding e lfanew to the base address obtained in
Step 2.

3) PE header: This is a header that holds a variety
of information about a PE file. Figure 6 shows the struc-
ture of the PE header, which is expressed as an IM-
AGE NT HEADERS64 structure.

IMECS 2019

/1 DOS header
struct IMAGE_DOS_HEADER {
WORD e_magic;
WORD e_cblp;
(snip)
LONG e_Ifanew; // RVA of PE header

%

/{ PE header
struct IMAGE_NT_HEADERS64 {
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER OptionalHeader;
=

Fig. 6. Structures of DOS header and PE header.

struct IMAGE OPTIONAL HEADER {
WORD Magic;
BYTE MajorLinkerVersion;
(snip)
/! DataDirectory[3] holds information about .pdata
IMAGE_DATA_DIRECTORY DataDirectory[16];
J

struct IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress; /f RVA
DWORD Size;

J

Fig. 7. Fields of IMAGE_OPTIONAL _HEADERG64 structure and IM-
AGE_DATA_DIRECTORY structure.

A fleld important to realizing Step 4 s
OptionalHeader. Figure 7 shows the fields of the
IMAGE_OPTIONAL_HEADER64 structure, which is

a tvpe of OptionalHeader The RVA and size of the
.pdata section are stored in the element of Index 3 in
the array DataDirectory. The type of each element in the
DataDyirectory is an IMAGE_DATA_DIRECTORY structure,
which has a VirtualAddress field representing RVA and a
Size field representing the size. In addition, the information
about the .pdata section is stored in the element of Index
3 in the DataDirectory, i.e., the RVA of the .pdata section
is stored in dd3.VirtualAddress and the size of the .pdata
section is stored in dd3.Size, where the element of Index
3 in DataDirectory is dd3. Therefore, by reading these two
members, we can obtain the start virtual address and size of
the .pdata section.

E. Details of Step 5

1) Overview: Using the contents of the prolog code of
a caller function, we can calculate the stack frame size
consumed by the caller function. We can obtain the contents
of the function’s prolog code by using the information in the
.pdata section. In Step 5, we calculate the stack frame size
consumed by a caller function using the information of the
.pdata section. Figure 8 shows an overview of Step 5, which
consists of the following three processes.

1) Search .pdata section for RUNTIME_FUNCTION
structure covering the RA obtained in Step 1.

2) Obtain the address of the corresponding UN-
WIND_ INFO structure from the member of the RUN-
TIME _FUNCTION structure.

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

3) Parse the UNWIND_INFQO structure and calculate the
consumed stack frame size.

2) Structures of the .pdata section and RUN-
TIME FUNCTION structure: .pdata section consists
of an array of RUNTIME_FUNCTION structures [9] whose
number of elements is the number of functions defined in
the PE file. The RUNTIME FUNCTION structures have a
one-to-one correspondence with the function defined in the
PE file and hold information for exception handling related
to the corresponding function. This information includes the
consumed stack frame size.

Fignte 9 shows the member of the RUN-
TIME_FUNCTION structure. The BeginAddress and
EndAddress hold the RVAs of the start and end addresses,
respectively, of the function corresponding to the structure.
UnwindData holds the RVA of the UNWIND INFO
structure corresponding to the structure. We describe the
UNWIND INFO structure in the next section.

The RUNTIME_FUNCTION structure is placed in the
pdata section in ascending order with respect to the address
of the corresponding function, i.e., FA(n) < BA(n + 1)
always holds, BeginAddress and EndAddress of the nth
RUNTIME_FUNCTION structure are BA(n) and EA(n),
respectively. Therefore, we can use a binary search to search
for the RUNTIME FUNCTION structure covering the RA.

3) UNWIND INFO structure: The UNWIND INFO
structure [10] is a structure that holds information for the
exception handling of the corresponding function. Figure 9
shows the fields of the UNWIND INFO structure.

The field necessary for realizing Step 5 is UnwindCode-
sArray, which is an array of the UNWIND CODE structures.
Each element represents one instruction in the prolog code
of the function, i.e., we can obtain the instructions of
the function’s prolog code from UnwindCodesArray, and
calculate the consumed stack frame size of the function.

4) UNWIND_CODE siruciure: The UNWIND CODE
structure [11] is a structure for representing one instruction
in the prolog code. Figure 9 shows the fields of the UN-
WIND CODE structure.

We can calculate the consumed stack frame size by using
the fields, UnwindOperationCode and OperationInfo, which
store the type of the corresponding instruction. Table 1
shows the relationship between the machine instructions,
UnwindOperationCode and Operationlnfo. The next slot in
Table 1 represents the value of the next element in the Un-
windCodesArray. Similarly, the next two slots represents the
values of the next two elements in the UnwindCodesArray.
In this way, we can obtain the instructions in the prolog
code from the UNWIND CODE structure and calculate the
reduction amount of the RSP in the instructions. Therefore,
we can calculate the sum of decreases in RSP in the
prolog code, i.e., the consumed stack frame size of the
function, by iterating UnwindCodesArray and parsing the
UNWIND CODE structure.

E Details of Step 6
Figure 10 shows the relationship between the stack frame

layout and consumed stack frame size. We can obtain the
next RA on the stack by performing the following processes.

1) Add 8 to the RSP.

IMECS 2019

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

The number of RF = The number of
functions defined in the PE

Mapped PE .pdata / UNWIND_INFO
RUNTIME_FUNCTION 100, 200) UNWIND_CODE[0]
.pdate RUNTIME_FUNCTION [300, 500) UNWIND_CODE[1] Calculate the
consumed stack size
\ UNWIND_CODE[2]
%

I RUNTIME_FUNCTION [1000, 2000}
3 I Save NONVOL reg (MOV)
\\ mov qword pt [rsp+8],rbx
i I S VOL reg (PUSH)

Search for RF covering
the return address gottenin Step 1
\

/ Allocate stack (SUB)
sub rsp, 40h

Fig. 8. Overview of Step 5.
TABLE I
RELATIONSHIP BETWEEN MACHINE INSTRUCTIONS, UNWINDOPERATIONCODE AND OPERATIONINFO (ONLY PRIMARY ONES).
UnwindOperationCode Reduced amount of RSP Meaning

UWOP_PUSH _NONVOL (0)
UWOP_ALLOC_LARGE (1)

8 bytes

OpInfo=0: next slot * § bytes (range: 136 to 512K - 8)
OpInfo=1: next two slots * 8 bytes (range: 512K to 4G - 8)
OpInfo # § + 8 bytes (range: 8 to 128)

0 bytes

Push a nonvolatile register (PUSH)
Allocate an area on the stack (SUB)

UWOP_ALLOC_SMALL (2)
UWOP_SAVE NONVOL (4)

Allocate an area on the stack (SUB)
Save a nonvolatile register on the stack (MOV)

struct RUNTIME_FUNCTION {
ULONG BeginAddress;
ULONG EndAddress;
ULONG UnwindData;

k

struct UNWIND_INFO {
UBYTE Version : 3;

IV. EVALUATION
A. Purpose and methods

The purpose of this evaluation was to confirm that the
stack trace on Windows 10 x64 could be realized by using
the proposed method. We confirmed the trace by focusing

UBYTE Flags : 5;

UBYTE SizeOfProlog;

UBYTE CountOfUnwindCodes;

UBYTE FrameRegister : 4;

UBYTE FrameRegisterOffsetScaled : 4;
USHORT UnwindCodesArray[n];

¥

struct UNWIND_CODE {
UBYTE OffsetinProlog;
UBYTE UnwindOperationCode : 4,
UBYTE Operationinfo : 4;

k

Fig. 9. Fields of RUNTIME_FUNCTION, UNWIND_INFO, and UN-
WIND CODE structures,

RetAddr

< RSP
Arguments

stack frame size Local variables

NonVol registers

Next RetAddr

Fig. 10.
frame size.

Relationship between stack frame layout and consumed stack

2) Add the consumed stack frame size obtained in Step
5 to the RSP,

3) Read 8 bytes from the address to which the RSP points.
The result of this reading is the next RA.

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

on the fact that WinDbg had a stack trace function.

In this evaluation, we implemented the proposed method
in Alkanet 10 so as to call the stack trace processes when
hooking the SYSCALL instruction, after which Alkanet 10
outputs the RVA of the RA and the name of the mapped file
of each function call hierarchy. By using these two pieces of
information, we performed the evaluations.

Below, we describe the specific method for the evaluations.
The method is divided into two parts.

First part: Stack trace with WinDbg

1) Make a test program that creates a file using CreateFile
APT, and attaches WinDbg to the process.

Set a breakpoint at ntdll!NtCreateFile, which is the
system call stub of the NtCreateFile system call. Cre-
ateFile API eventually calls the NtCreateFile system
call. For this confirmation, we focus on the function
call hierarchy until the NtCreateFile system call.
Execute the test program. As a result, WinDbg breaks
at the beginning of ntdll!INtWriteFile.

Perform the stack trace function of WinDbg and save
the result.

2)

3)

4)

Second part: Stack trace with the proposed method

1) Activate Alkanet 10 to trace the test program.

2) Save the result of the stack trace.

3) Convert each retrieved RA to the corresponding func-
tion name in the result. We can realize this conversion
by using the RVA of the RA, the name of the mapped
file and the symbol information included in the PDB
file.

4) Confirm if the obtained result matches the result of
Step (4) in the first part of the evaluation.

IMECS 2019

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019

IMECS 2019, March 13-15, 2019, Hong Kong

/I After attaching WinDbg to the test program (file.exe)
0:000> bp ntdll'NtCreateFile

0:000> g

Breakpoint 0 hit

ntdll!NtCreateFile

0:000> knf

{{ The result is snipped partially

Call Site

oo nidil!NiCreateFile

01 KERMNELBASE!CreateFilelnternal+0x2f6
02 KERNELBASE!CreateFileA+0xa8

03 file!lmain+0x4a

04 filelinvoke_main+0x22

05 file!__secrt_common_main_seh+0x11d {Inline Function}
06 KERMNEL32!BaseThreadInitThunk+0x14
o7 nidil!RilUserThreadStart+0x21

Fig. 11. Result of first part of evaluation.

Il ntdll!NtCreateFile {00}
[ALKANET] #3 file_name: \Windows\System3 2\ntdll.dll
[ALKANET] #3 retaddr_rva: a0924

/ KERNELBASE!CreateFilelnternal +0x2f6 (01)
[ALKANET] #3 file_name: \Windows\System32\KernelBase.dll
[ALKANET] #3 retaddr_rva: 41bb6

[KERNELBASE!CreateFile A+0xa8 (02)
[ALKANET] #3 file_name: \Windows\System32\KernelBase.dll
[ALKANET] #3 retaddr_rva: 41808

I file!main+0x4a {03)
[ALKANET] #3 file_name: \Users\yyamashita\Desktop\file.exe
[ALKAMNET] #3 retaddr_rva: 623a

I filelinvoke_main+0x22 (04)
[ALKAMNET] #3 file_name: \Users\yyamashita\Desktop\file.exe
[ALKANET] #3 retaddr_rva: 68a5

Il Alkanet 10 cannot trace file!__scrt_common_main_seh+0x11d {05}
/f because it is an inline function.

{{ KERNEL32!BaseThreadInitThunk+0x14 (06)
[ALKANET] #3 file_name: \Windows\System32ikernel32.dIl
[ALKANET] #3 retaddr_rva: 11fed

{f ntdIl!RtIUserThreadStart+0x21 (07)
[ALKANET] #3 file_name: \Windows\System3 2intdIl.dll
[ALKANET] #3 retaddr_rva: 6efc

Fig. 12. Result of second part of evaluation.

B. Resudis and discussion

Figure 11 shows the result of the first part of the
evaluation. The function call hierarchy until the NiCre-
ateFile system call consisted of eight functions from
ntdll!RtlUserThreadStart to ntdllINtCreateFile. The inline
functions and lambda expressions were also traced.

Figure 12 shows the result of the second part of the
evaluation. The stack trace with the proposed method was
able to trace all functions except for the inline functions
correctly. An inline function cannot be traced because the
CALL instruction is not used for calling an inline function
and the RA is not pushed onto the stack. However, [12] states
that the information for tracing inline functions is stored in
a PDB file. Therefore, the tracing of inline functions can
be realized by utilizing the information in a PDB file if
necessary. From the above results, we confirmed that the
proposed method was effective for stack tracing on Windows
10 x64.

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

V. CONCLUSION

We proposed a method to realize a stack trace on Windows
10 x64 using virtual machine monitor. By using the infor-
mation from a VAD tree and the pdata section, this method
does not rely on a frame pointer. We evaluated the method by
implementing it on Alkanet 10 and confirmed that it could
perform a stack trace correctly.

In the future, we will continue to evaluate the performance
of the proposed method. Specifically, we will measure the
overhead by comparing the performance of the original
Alkanet 10 to that of Alkanet 10 with our proposed method.

(1

[2]

[3]

[4]

(5]
[6]
[71

(8]

[9]
[10]

[11]

[12]

REFERENCES

Deep Instinct, “Beware of the 64-bit malwara”
http://info.deepinstinct.com/whitepaper-beware- of-the-64-bit-malware,
2017.

Y. Otsuki, E. Takimeto, T. Kashiyama, S. Saito, E. W. Cooper, and
K. Mour, “Alkanet: a dynamic malware analyzer based on virtual
machine monitor,” in 2072 World Congress on Engineering and
Computer Science, WCECS 2012, Newswood Limited, 2012, pp.
36-44.

Y, Otsuki, 8. Nakano, S, Aketa, E. Takimoto, S. Saito, and K, Mour,
“Implementation of system call tracer for windows 10 x64,” Computer
securily symposinm 2015, vol. 2015, no. 3, pp. 839-846, 2015.

Y, Otsuki, E. Takimoto, S, Saito, and K, Mour, “A method for
identifying system call invoker in dynamic link library,” Cemputer
securify symposium 2013, vol. 2013, no. 4, pp. 753-760, 2013,
Microsoft, “_ stdeall,” https://msdn.microsoft.com/en-
us/library/zxk0tw93.aspx, 2017,

——, “x64 software conventions,” https://msdn.microsoft.com/en-
US/library/7kedtefy.aspx, 2017.

——, “Download windows debugger (windbg) tools win-
dows hardware dev center” https://developer.microsoft.com/en-
us/windows/hardware/download-windbg, 2017.

——, “Microsoft portable executable and common object
file format specification,” https://www.microsoft.com/en-
us/download/details.aspx?id=19509, 2017.

——, “struct runtime function,” https:/msdn.microsoft.com/en-
us/library/ft9x 1kdx.aspx, 2017,

JE— “gtruct unwind info,” https://msdn.microsoft.com/en-
us/library/ft9x 1kdx.asp://msdn.microsoft.com/en-
us/library/ddssxxy8.aspx, 2017,

——, “struct unwind_code,” https:;//msdn.microsoft.com/en-
us/library/ck9asaa9.aspx, 2017.

——, “Debugging optimized code and inline functions —
microsoft docs,” https:#/docs. microsoft.com/en-us/windows-
hardware/drivers/debugger/debugging-optimized-code-and-inline-
functions-external, 2017,

IMECS 2019

	camera - Copy_Page_1
	camera - Copy_Page_2
	camera - Copy_Page_3
	camera - Copy_Page_4
	camera - Copy_Page_5
	camera - Copy_Page_6

