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Abstract — Today, Industry 4.0 merges the virtual reality 

and the real world generating new cyber-physical systems 

integrated into a single digital ecosystem. Such digital 

ecosystems which in their turn constitute complex automated 

systems require more efficient management solutions. The 

management process involves “anticipation” that means 

forecasting of an evolving event within the above systems at 

different (short-term, medium-term and long-term) time scales 

to develop and implement effective managerial influences. Data 

flows in the above industrial automated systems may be 

transformed into time series data to predict aggregate 

multicomponent time series data. Dynamic time series data 

within complex industrial automated systems result from 

interactions among multiple subsystems, and thus they are 

aggregate multicomponent time series. To generate the 

prediction, the task shall be divided into three steps. At the first 

step, the aggregate multicomponent time series shall be 

decomposed into several basic components (structural analysis 

of multicomponent time series) using the digital signal 

processing technology. This step involves digital spectrum 

analysis and digital signal filtering technologies. Second step is 

intended to generate a neural network architecture for 

generating a prediction according to the structure of the 

multicomponent time series being predicted. Third step involves 

the machine learning technology. Structural analysis of 

multicomponent time series and generation of a neural network 

architecture allow generating predictions at different time 

scales which is important for developing managerial decisions 

and influences within the industrial automated systems. 

 
Index Terms — Neural Network, Time Series, Digital 

Filtering, Prediction, Automated System, Machine Learning, 

Industrial System, Multichannel Signal, Frequency Response. 

 

Prediction is one of key aspects of today’s information 

technologies used to make decisions when implementing the 

management process in the industrial automated systems. 

The management process involves “anticipation” that means 

forecasting of an evolving event within the above systems to 

develop and implement effective managerial influences. 

 
Manuscript received January 23, 2019; revised January 31, 2019. 

A. N. Ragozin is with the Department of information and 

communication technology, Federal State Autonomous Educational 

Institution of Higher Education “South Ural State University (National 

Research University)”, Chelyabinsk, Russia (e-mail: ragozinan @susu.ru).  

V. F. Telezhkin is with the Department of information and 

communication technology, Federal State Autonomous Educational 

Institution of Higher Education “South Ural State University (National 

Research University)”, Chelyabinsk, Russia (e-mail: telezhkinvf@susu.ru). 

P. S. Podkorytov is with the Department of information and 

communication technology, Federal State Autonomous Educational 

Institution of Higher Education “South Ural State University (National 

Research University)”, Chelyabinsk, Russia (e-mail: pavel@napoleonit.ru). 

 

As the present-day (and future) industrial automated 

systems consist of multiple subsystems, all processes taking 

place in the above systems and indicated by the observed 

data flows are complex multicomponent processes. Data 

flows in the above industrial automated systems may be 

transformed into time series data to predict aggregate 

multicomponent time series data at different (short-term, 

medium-term and long-term) time scales. 

Structural analysis of multicomponent time series and 

generation of a scalable prediction are required for 

forecasting at different time scales.  

Russian [1–10] and foreign authors [11–23] have studied 

different issues of process modeling and forecasting in 

multiple technical systems. 

The analysis of Russian and foreign studies shows that the 

issue of generation of a scalable prediction for multiple time 

intervals basing on observed aggregate multicomponent time 

series is still open. This paper focuses on steps and results of 

prediction of multicomponent time series. 

Figure 1 shows an example of a complex signal (time 

series data) indicating a processes taking place in the 

technical system. 

 

 
Fig. 1. Time series data used to generate a prediction. 

At the first step of time series prediction (Fig. 1), the 

aggregate multicomponent time series is decomposed into 

several basic components (i. e. structural analysis of 

multicomponent time series) using the digital signal 

processing technology. 

Digital signal processing is a flexible tool intended for 

preliminary preparation of data. According to the proposed 

method, for the purpose of preliminary digital processing of 

the time series being predicted, the signal passes through the 

low-pass filters (LPFs) comb generating a set of filtered 

components of the initial signal at the output. By a “vertical 

signal”, we shall mean a set of signal components at the 

output of LPFs comb. Vertical signal is a multichannel 

signal at the output of LPFs comb consisting of, in this 

example, 55 FIR LPFs (finite impulse response (FIR) LPFs) 

with sequentially decreasing cutoff frequencies of their 
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frequency response. This approach implies decomposition of 

the initial signal and subsequent noise filtering using a 

parallel set of digital LPFs. Figure 2 shows the result of 

initial signal conversion using the digital filtering method. 

 

 
Fig. 2. Result of initial signal component conversion (The figure shows 

a part of the converted signal). 

Multiple filtered signal components shown in Figure 2 are 

grouped into five bands (in this example) marked with 

different colors. 

Figure 3 shows the other part of the initial signal 

(Figure 1) featuring a center line of each band. 

 

 
Fig. 3. Part of initial signal (Figure 1). The figure shows a center line of 

each band. 

Therefore, Figure 3 shows the result of conversion of a 

section of the initial complex signal (Figure 1) into the 

enlarged multichannel signal (five channels or bands) 

consisting of five components — center lines of five bands 

(Figure 2). Each of five components (center lines) also has 

its band edges in the form of a standard deviation (SD) from 

the center line (not shown in Figure 3). 

Figure 3 shows the result of the first step — structural 

analysis of multicomponent time series using the digital 

signal processing technology to decompose the aggregate 

multicomponent time series into several basic components 

(in this example, five basic band components). 

Figure 4 shows the result of the second step — generation 

of a neural network architecture for generating a prediction 

according to the structure of the multicomponent time series 

being predicted. In this example, a neural architecture 

consisting of five neural networks was selected. 

 

 

 

 

 
Fig. 4. Neural network architecture for forecasting five-component 

signal. 

Several basic components (in this example, five basic 

band components, Figures 2 and 3) resulting from the 

structural analysis of multicomponent time series have 

different dynamic time response. “Slower and inertial” band 

components allow for a longer-term prediction over a longer 

time interval ahead as a result of a more extensive 

autocorrelation. Five predictions with different time horizons 

are generated for each of five band components based on 

their dynamic response using the neural network architecture 

(Figure 4) and machine learning technology. 

The above five predictions with different time horizons 

are used to generate a final scalable prediction over different 

time intervals (i. e. prediction of the initial multicomponent 

time series). The most distant forecasting horizon of the 

initial multicomponent time series corresponds to the 

slowest band component. Its maximum band width is the 

sum of band widths of all components. The closest 

forecasting horizon of the initial multicomponent time series 

is defined by the parameters of the fastest band component 

(band average and width). 

Figure 5 shows an example of a final scalable prediction 

of the initial multicomponent time series. 

 

 
Fig. 5. Example of a final scalable prediction of the initial 

multicomponent time series. 

The forecasting method used in this study and prediction 

of the initial multicomponent time series at different time 

scales generated using the above method contribute to 

effective managerial decisions and influences in complex 

industrial automated systems. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



 

REFERENCES 

[1] M. S. Molotkov and A. K. Novikov, “Evolutionary Approach to 

Neural Network Setup and Learning,” Molodoy Uchyony, no. 10 

(114), pp. 69–71, May 2016. 

[2] I. Yu. Alekseyeva, “Improvement of Reliability of Electrical Power 

Systems Based on Neural Technologies,” Electrotechnical Systems 

and Complexes, no. 3 (32), pp. 15–19, 2016. 

[3] I. S. Kobersi and V. V. Shadrina, “Energy Consumption Management 

Using Neural Networks,” Izvestiya SFedU. Engineering sciences, no. 

7 (84), pp. 190–195. 

[4] V. N. Zuyeva and D. A. Trukhan, “Regression Methods for 

Forecasting Load Curve of Electric Equipment of Enterprises, 

Organizations and Institutions: Monograph,” Kuban State 

Technological University. Krasnodar: KubSTU, 2017, pp. 123–135. 

[5] A. P. Shuravin and S. V. Vologdin, “Filtering of Neural Network 

Input Data Using Digital Signal Processing Technology,” Bulletin of 

Kalashnikov ISTU, no. 4, pp. 104–109, 2017. 

[6] A. M. Abdurakhmanov, M. V. Volodin, E. Yu. Zybin, and V. N. 

Ryabchenko, “Methods for Energy Consumption Forecasting in 

Distributive Networks (Overview),” Russian Internet Journal of 

Electrical Engineering, pp. 3–23, 2016. 

[7] D. T. Yakupov and O. N. Rozhko, “Artificial Neural Networks 

Perspective Application for Forecasting Cargo Carriage Volumes in 

Transportation Systems,” Statistical and mathematical methods in 

economics, no. 5, pp. 49–58, 2017. 

[8] Yu. N. Katsyuba and L. V. Grigoryeva, “ANN Application for 

Forecasting Technical Condition of Products,” International 

Research Journal, no. 3 (45), pp. 19–21, 2016. 

[9] A. N. Ragozin and E. A. Petryakov, “Forecasting of Economic Time 

Series Using Adaptive Autoregression Model,” Scientific and 

Analytical Economic Journal, no. 1 (2), pp. 25-28, 2016. 

[10] F. Murtagh, J.-L. Starck, and O. Renaud, “On Neuro-Wavelet 

Modeling,” Decision Support Systems Journal, no. 37, pp. 475-484, 

2004. 

[11] K. Nikola, “DENFIS: Dynamic Evolving Neural-Fuzzy Inference 

System and Its Application for Time-Series Prediction,” IEEE 

Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 144-154, 2002. 

[12] S. Tomonobu and T. Hitoshi, “One-hour-ahead load forecasting using 

neural network,” IEEE Transactions on Power Systems, no. 1, pp. 

21–24, 2002. 

[13] R. Huang, T. Huang, and Gadh, “Solar Generation Prediction using 

the ARMA Model in a Laboratory-level Micro-grid,” in IEEE Third 

International Conference on Smart Grid Communications, Sydney, 

2012, pp. 528–533. 

[14] K. Pichotta and R. J. Mooney. (2016). Learning Statistical Scripts 

with LSTM Recurrent Neural Networks. AAAI. pp. 2800–2806. 

Available: 

https://pdfs.semanticscholar.org/1ceb/038d8b4838120e0dc0a11c949

d032cebf5dd.pdf.  

[15] N. Tax, I. Verenich, M. L. Rosa, and M. Dumas. (2017, May). 

Predictive Business Process Monitoring with LSTM Neural 

Networks. arXiv.org. Available: 

https://arxiv.org/pdf/1612.02130.pdf.  

[16] M. Granroth-Wilding and S. Clark, “What Happens Next? Event 

Prediction Using a Compositional Neural Network Model,” AAAI, pp. 

2727–2733, 2016. 

[17] F. Murtagh, J.-L. Starck, and O. Renaud, “On Neuro-Wavelet 

Modeling,” Decision Support Systems Journal, no. 37, pp. 475–484, 

2004. 

[18] N. Singh, “Stochastic modeling of aggregates and products of 

variable failure rates,” IEEE Transactions on Reliability, vol. 44, no. 

2, pp. 279–284, 1995. 

[19] W. E. Rhoden, “Observation of electromigration at low temperature,” 

IEEE Transactions on Reliability, vol. 40, no. 5, pp. 524–530, 1991. 

[20] R. M. Geffhen, J. G. Ryan, and G. J. Slusser, “Contact Metallurgy 

Development for VLSI Logic,” IBM Journal of Research & 

Development, vol. 31, no. 6, pp. 608–616, 1987. 

[21] F. Fantini, C. Morandi, “Failure modes and mechanisms for VLSI ICs 

– a review,” IEEE Proceedings, vol. 132, no. 3, pp. 74–81. 1985. 

 

 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

https://pdfs.semanticscholar.org/1ceb/038d8b4838120e0dc0a11c949d032cebf5dd.pdf
https://pdfs.semanticscholar.org/1ceb/038d8b4838120e0dc0a11c949d032cebf5dd.pdf
https://arxiv.org/pdf/1612.02130.pdf



