
Correlating Program Code to Output for
Supporting Program Understanding

Miyu Satoh, Seikoh Nishita,

Abstract—Program understanding is important for novice
programers and advanced programers to comprehend what
will happen in execution and why their programs give wrong
output. This paper describes a technique to make code/output
correspondence in runtime of a given program. Then, we show
how this technique is useful for program understanding. In
addition, we report a development of a turtle graphics editor
as an application of our technique.

Index Terms—program understanding, program visualiza-
tion, dynamic program analysis.

I. INTRODUCTION

PROGRAM understanding in this paper means the skills
of tracing execution and explanation of program be-

havior; both skills are based on knowledge of the language
syntax and the computational model. Program understanding
is important for novice programmers, because they need to
read and understand sample program code in textbooks as a
previous step of writing codes. Program understanding is also
important for advanced programmers. Because they often
tackle large scale program codes with various libraries, they
need to modularize codes, and to understand roles of each
module clearly.

For program understanding, program visualization tech-
niques have been proposed in context of the program educa-
tion and debugging. These techniques show a program code
with its execution state including values in variables, call
trees and so on. During the visualization, each statement in
the program code looks like an actor on the execution state.

This paper describes a technique to correlate program
code with its output to support program understanding.
Our technique assumes output is a collection of parts like
characters, bytes, components of GUI and fragments of
figures. When a statement dumps parts of output in runtime,
our technique makes information of correspondence between
the statement and the parts. This information is leveraged
to support program understanding. This paper also shows
how this technique can be used for program understanding.
In addition, this paper reports a development of a program
editor for turtle graphics that correlate program code to
fragments of figures in turtle graphics.

Section II introduces related works on program visu-
alization for program understanding. Section III describes
our technique and its usefulness. Section IV reports the
development of the program editor. Section V discusses the
technique and future works, and section VI concludes.

Manuscript received Dec 20, 2018; revised Jan 10, 2019.
M.Satoh and S.Nishita are with Department of Computer Science, Faculty

of Engineering, Takushoku University, 815-1, Tatemachi, Hachioji, Tokyo,
Japan. e-mail: snishita@cs.takushoku-u.ac.jp.

II. PROGRAM VISUALIZATION FOR PROGRAM
UNDERSTANDING

This section describes previous works on program visual-
ization for program understanding. All works described here
link program code to runtime state.

ETV [1] helps students to understand the behaviors of
programs by presenting a graphical representation of the
execution trace data. The execution trace data includes ar-
guments, values and the program points in multiple code
viewers. When a user selects a node in the call tree, ETV
shows the runtime state by the execution trace data. The
program point highlighted in ETV indicates the moment at
the execution of the runtime state shown.

The Online Python Tutor [2], [3] visualizes objects, vari-
ables and stack frames allowing students to inspect the
runtime state of their code at every moment of the execution.

To address misconceptions about code, Lieber et al. pro-
posed IDE extension named Theseus that visualizes runtime
behavior within a JavaScript code editor [4]. Theseus finds
code/behavior correspondence and identifies which code is
responsible for a particular program behavior.

Doppio [5] tracks and visualizes UI flows and their
changes based on source code. While a developer runs an
interactive app, Doppio captures and logs runtime state.
Then, it presents the screenshots, video clips, code snippets,
UI regions and run-time argument values for each user input
like a click event.

Satoh et al. proposed a system to support understanding
GUI programs written in Java. [6] The system visualizes
reference relationship of classes and thumbnails of the GUI
windows. Thumbnails are linked with statements of program
codes, that is, thumbnails show how GUI windows are
changed by the statements in each moment of runtime.

To reveal runtime behavior during both normal execution
and debugging, Hoffswell et al. proposed a techniques to
visualize program variables directly within the source code
[7]. The technique links variables on the code viewer to their
value in runtime. In addition, it supports simple value and

Fig. 1. Correlation of program code to output

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

a set of values, and represents its snapshot and changes in
every moment with histograms, line charts and so on.

All of these previous works visualize both codes and the
runtime state. Especially, the code is used to indicate the
moment in the execution, and it looks like an actor to change
the runtime state.

III. CORRELATION OF PROGRAM CODE TO OUTPUT

This section proposes a technique to correlate program
code with output. We assume that the output is a collection
of parts. For example, character stream, byte stream, GUI
windows and figures are all output, whose parts are char-
acters, bytes, GUI components and fragments of the figure
respectively. In addition, we also assume that there is a given
program code which runs without any error and dumps an
output, i.e. a sequence of parts.

This section first proposes our technique with the rule
of the correlation, and secondly illustrates usefulness of the
technique by examples of its application.

A. Rule of the Correlation
The correlation is based on the following rules.
R1: correlate every statement in the given code with

parts dumped by the statement in runtime.
R2: correlate every code block in the given code with

all parts dumped by the all statements in the code
block in runtime.

R3: correlate every function definition in the given code
with parts dumped by the function calls.

R1 is basis of the rules, and R2 is a natural extension
of R1 to a collection of statements. Fig.1 illustrates our
technique, where simple C program and its output are given.
Blue lines and numbers indicate the correlation information;
printf statements (1), (2) and (3) are correlated with
character sequences (1), (2) and (3) respectively. In contrast,
the statement (4) is correlated with three character sequences
(4) in the output, because the statement (4) is executed three
times by the enclosing for statement. On the other hand, the
for statement(5) and the main block(6) are correlated with
multiple sequences. Since the program is nested by blocks,
output also makes hierarchical structure by the correlation.

The key perspectives of the correlation is that our tech-
nique treats statements in the code and parts in the output
as both objects for correlation. In contrast, many of previous
works considers that a statement leads some action on the
runtime state.

B. Program Visualization with the Correlation
Our technique is available to be applied in program visu-

alization. Fig.2 shows an image of the program visualization
tool with our technique; the tool has two panes, a code viewer
and an output text area. When a user clicks a statement in the
viewer pane, the tool highlights the parts in the output pane,
and vice versa. If the statement selected is in loop statement,
the tool highlights the parts in one or more colors to show
they are iterated parts.

The application of our technique in program visualization
has some limitation. While output is simply a one of runtime
state in program execution, there are various kind of runtime

state. Moreover, output usually follows calculations and data
structure manipulations, whose visualization are needed to
understand the reason why output is so.

Nevertheless, our technique is useful in program visual-
ization in some cases.

1) Case1: Introductory Loop-Programming Exercise: In
conventional hello-world style learning activity, the standard
output is always a goal of programming drills. The exercises
don’t involve complexity of calculations or data structures.
Since the code/output correspondence in this case is rela-
tively simple, the program visualization with our technique
is useful for novice programmers.

The followings are the advantages of the tool considered:
• To novice programmers, the tool provides opportunities

to inspect program behaviors in many cases by diddling
codes. Fig.3 is an example of paper-based teaching ma-
terial. The tool provides the same information to novice
programmers. In addition, when a novice programmer

Fig. 2. Highlight parts in output correlated to the selected statement

Fig. 3. An example of a handout on loop programming

Fig. 4. An example of code to output a part of multiplication table

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

modifies the given code, the tool shows alternative
information with the modified code. Diddling codes
and inspecting the correlation are more helpful for their
program understanding than static contents on paper.

• The tool can demonstrate program behaviors of every
code blocks. Fig.4 describes a program code that gen-
erates a part of the multiplication table. The program
code has a nested for statement, and the selected block
corresponds to each row of the table, which is illustrated
by the tool.

C. Case2: Debugging Programs
Fig.5 shows a snippet of a TypeScript program with React

to make a web form, which has the suspicious semi-colon
symbols. Which semi-colon in the code causes the symbols
on the web page? Debugging in this case, we have to find
the code point that dumps the semi-colon symbols. Modern
web browsers have the developers mode that illustrate cor-
respondence of the web page and its DOM tree. However,
this feature does not work fine in this case, because JSX
elements in React are actually functions to dump HTML
tags, and there is non-ignorable gap between DOM tree and
JSX elements.

Similar problem exists at program codes with modern
libraries that has a purpose like code simplicity or security-
awareness.

We expect that our technique would support to debug in
such situation, because it makes the code/output correspon-
dence. A web developing tool with our technique would
provide a user interface to access directly to a bug in the
code from unexpected elements on a web page.

IV. DEVELOPMENT OF PROGRAM EDITOR FOR TURTLE
GRAPHICS

The previous section describes a technique to correlate
a program code with output. However, realizability or algo-
rithm of our technique is not described yet. As an application
of the technique, this section reports a development of a
turtle graphics tool, and gives a brief sketch of the correlation
algorithm in it.

A. Turtle Graphics Tool with The Correlation
The turtle graphics tool supports novice programers to

write and execute turtle graphics programs. It is based on
Python turtle library [8]. The editor comprises two com-
ponents: one is a program editor, and the other is a turtle
graphics viewer. A user can click and drag on the editor and
the viewer to select a part of the code and the figure.

The turtle graphics tool correlates statements in the editor
with fragments of figures in the viewer. When a user selects a
statement, the tool highlights fragments which is dumped by
the statement. In addition, a statement is also highlighted
by user’s clicking a fragment in the viewer. Fig.6 shows
appearance of the tool; one of the forward statements in
the editor is selected; this statement dumps three highlighted
segments.

Our tool has a feature to expand/shrink selected area
in the editor and the viewer. In the expansion process, a
selected area of single statement is expanded to one of
a code block including the statement. On the other hand,

an area of a code block is expanded to a single control
statement that has the code block. Fig.7 illustrates how the
expansion/shrinkage proceeds: the first selected statement is
the forward statement(1), and the expansion proceeds the
block(2) and the for statement(3) in this order. On the other
hand, the shrinkage proceeds in reverse.

Fig. 5. A React program with a bug

Fig. 6. The turtle graphics tool

Fig. 7. Expansion and shrinkage of selected area in the turtle graphics tool

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

1 global t, m
2 m ← [] (m has the information for the correlation.)
3 def run ():
4 p ← program text in the editor
5 t ← abstract syntax tree of p
6 id ← 0
7 forall node n of forward statement in t :
8 d← distance argument of n
9 nn ← a new node of the statement myfd(d, id)

10 id ← id + 1
11 replace n with nn in t
12 exec(t)
13 def myfd (d, i):
14 forward(d)
15 s ← the last segment in the viewer.
16 nn ← the node of myfd(d, i) in t
17 m[s] ← nn

Fig. 8. Pseudo code of the correlation in the turtle graphics tool

B. Implementation of the Correlation

This section gives brief sketch of implementation of the
correlation in our tool. Our implementation supports any
statements including conditional statements and loop state-
ments in Python and Python turtle library. We note that user
defined functions and user defined classes are not supported
yet.

Fig.8 illustrates the process of the correlation. While Fig.8
is a pseudo code, it is actually written as Python program.
Our tool collects the code/output correspondence in runtime.
This information is stored at the global variable m. The
function run in Fig.8 indicates the execution function; first,
it obtains the abstract syntax tree of program text in the
editor, then replaces every node of forward statement with
the function call of myfd with additional second argument of
the node ID. The function run finally executes the modified
tree t by exec, the builtin function in Python. The key point
of this pseudo code is that global variables and user defined
function are visible during the execution by exec function.
When Python virtual machine finds a function call of myfd,
it executes the user defined function at the lines 13–17, where
forward statement is executed, and obtains the segment s
(fragment of figure) in the viewer. At the line 16, myfd
function finds the tree node nn of itself; the node ID is
used as the search key. Finally, it makes the correspondence
information of s and nn.

V. DISCUSSIONS AND FUTURE WORKS

The technique proposed in this paper correlates statements
in a given program code with parts of output. Previous
sections illustrate that the code/output correspondence by
this technique is useful in program visualization. Since the
information simply consists of links between statements and
parts, the correspondence can be represented by the highlight
effect on program and output viewers. That is, for the users,
our technique does not increase the amount of information
on screen, while some of the previous works on program
visualization show detail and a lot of information on runtime
state that has a risk to make novice programmers confused.

On the other hand, output is merely a part of runtime
state. The information obtained by our technique may not
be sufficient to reason program behavior in some type of

programs. One of the future works is studying what type
of programs is suitable as a target of our technique. In
addition, Fig.8 shows the correlation process, whose target
is not covered any user-defined functions. To support user-
defined functions in the implementation of our technique is
also a future work.

The previous section introduced the tool for turtle graph-
ics. Turtle graphics is often mentioned with fractals drawn
by recursive function calls. We need to study visualization of
recursive function call and fractal figures with the correlation.
Evaluation of the turtle graphics tool is also required.

In section II, we assume the output is a collection of
parts. There are several kinds of output like character stream,
byte stream and GUI components. Another future work is to
extend our technique to support various type of output.

VI. CONCLUSION

This paper described a technique to make the code/output
correspondence in a give program code, and showed how the
usefulness of the technique for program understanding. We
also reported a development of a turtle graphics editor as an
application of our technique.

REFERENCES

[1] M. Terada, “Etv: a program trace player for students.” in ITiCSE,
vol. 37, 01 2005, pp. 118–122.

[2] P. J. Guo, J. White, and R. Zanelatto, “Codechella: Multi-user program
visualizations for real-time tutoring and collaborative learning,” in 2015
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Oct 2015, pp. 79–87.

[3] “Python tutor — visualize python, java, c, c++, javascript, typescript,
and ruby code execution,” (Date last accessed 20-Dec-2018). [Online].
Available: http://pythontutor.com/

[4] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2014, pp. 2481–2490.

[5] P.-Y. P. Chi, S.-P. Hu, and Y. Li, “Doppio: Tracking ui flows and
code changes for app development,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, pp. 455:1–
455:13.

[6] R. Satoh, F. Shituki, and J. Tanaka, “Supports for understanding gui
programs using ide with a visualization system of execution,” in
Proceedings of 15th Workshop on Interactive Systems and Software,
2007, japanese edition.

[7] J. Hoffswell, A. Satyanarayan, and J. Heer, “Augmenting code with in
situ visualizations to aid program understanding,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, 2018,
pp. 532:1–532:12.

[8] “24.1. turtle ― turtle graphics,” (Date last accessed 20-Dec-2018).
[Online]. Available: https://docs.python.org/3.6/library/turtle.html

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

