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Abstract—A query learning model is an established mathe-
matical model of learning via queries in computational learning
theory. A regular pattern is a string consisting of constant
symbols and distinct variable symbols. The language of a
regular pattern is the set of all constant strings obtained by
replacing all variable symbols in the regular pattern with
constant strings. In a query learning model, it is known that
the class of languages of regular patterns is identifiable from
one positive example using a polynomial number of membership
queries. In this paper, we show that the class is identifiable from
one positive example using a linear number of membership
queries. This result means that the number of membership
queries is reduced to be linear with respect to the length of the
positive example.

Index Terms—pattern language, membership query, query
learning, computational learning theory

I. INTRODUCTION

The query learning model of Angluin [1] is an established
mathematical model of learning via queries in computational
learning theory. In this learning model, a learning algorithm
accesses oracles, which answer specific types of queries, and
collects information about a target. The query learning model
is regarded as a mathematical model of a data mining strategy
using queries for large databases (e.g.,[2]). Querying whether
or not a target exists in the database, which is called a
membership query in the query learning model, is frequently
performed in data mining using databases. Hence, to extract
characteristic features from large databases, data mining
algorithms that identify features using fewer membership
queries are required. From this motivation, in this paper, we
consider a query learning algorithm that uses a linear number
of membership queries with respect to the length of a given
string contained in a target.

Angluin [3] presented a pattern as a string consisting of
constant symbols and variable symbols. Particularly, a pattern
π is said to be regular if each variable symbol occurs in π at
most once. For example, let π1 = xaybaz and π2 = xaybyz
be two strings consisting of two constant symbols a, b and
variable symbols x, y, z. The string π1 is a regular pattern
but π2 is not regular. The pattern language of a pattern π
is the set of all strings w consisting of constant symbols
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such that w is obtained from π by replacing all variable
symbols with strings consisting of constant symbols. There
is considerable research [1], [4], [5], [6] about learning
algorithms for identifying a target pattern language in the
same query learning model. Angluin [1] showed that the
class of pattern languages is not identifiable using polynomial
numbers of membership queries and restricted equivalence
queries. Here, a restricted equivalence query is to query an
oracle as to whether or not the pattern language derived by
a pattern given as input is equal to the target language.
Because of this result, Marron [4] presented the query
learning setting in which the learner initially receives a string
that belongs to the target language before starting the process
of asking queries. Matsumoto and Shinohara [5] showed
a query learning algorithm for identifying a target pattern
language from one positive example w using a polynomial
number of membership queries with respect to the length of
w. Moreover, they presented a non-trivial subclass of regular
pattern languages that is identified from one positive example
using a linear number of membership queries.

In this paper, we show that the full class of regular pattern
languages is identified from one positive example using a
linear number of membership queries. The proposed query
learning algorithm consists of the following two phases,
called ShrinkString and IdentifyVariables, while shifting the
index in a given positive example from the start to the end of
it. The ShrinkString phase is to recursively shrink the given
positive example by asking membership queries, until it is
confirmed that the resulting example is a shortest one. The
IdentifyVariables phase is to determine whether or not the
target pattern has a variable symbol at the index by asking
membership queries. By shrinking constant symbols at the
position of the rightmost variable symbol in the substring up
to the index in both the ShrinkString and IdentifyVariables
phases, we update a shortest example. From this algorithm,
we expand a target class that is exactly learnable from
one positive example using a linear number of membership
queries to the class of regular pattern languages. That is, this
result shows that a target class is extended from the subclass
of regular pattern languages in [5] to the full class of regular
pattern languages in the same query learning setting as [5].

There are query learning algorithms for identifying the
classes of the regular languages [7], the erasing pattern
languages [8], the languages derived from elementary formal
systems [9], the tree languages derived from tree patterns
[10], the tree languages derived from primitive formal or-
dered tree systems [11], and the sets of binary decision
diagrams [12], [13].
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This paper is organized as follows. In Sec. II, we introduce
a regular pattern and its language. Moreover, we briefly
introduce the query learning model proposed by Angluin [1].
In Sec. III, by presenting a query learning algorithm, we
show that the class of regular pattern languages is exactly
learnable from only one positive example using a linear
number of membership queries. We conclude this paper and
give future work in Sec. IV.

II. PRELIMINARIES

In this section, we introduce a regular pattern and its
language. Then, we introduce the query learning model
proposed by Angluin [1].

A. Regular Pattern and Its Language

Let Σ be a nonempty finite set of constant symbols. Let
X be an infinite set of variable symbols such that Σ∩X = ∅
holds. Then, a string on Σ ∪X is a sequence of symbols in
Σ∪X . Particularly, the string having no symbol is called the
empty string and is denoted by ε. We denote by (Σ ∪X)∗

the set of all strings on Σ∪X and by (Σ∪X)+ the set of all
strings on Σ∪X except ε, i.e., (Σ∪X)+ = (Σ∪X)∗ \{ε}.
A pattern on Σ ∪X is a string in (Σ ∪X)+. Note that the
empty string ε is not a pattern on Σ ∪X . Then, a pattern π
on Σ∪X is said to be regular if each variable symbol in X
appears at most once in π. The set of all regular patterns on
Σ∪X is denoted by RP ⊊ (Σ∪X)+. Hereafter, we omit Σ
and X if they are obvious from the context. A substitution
θ is a mapping from (Σ ∪X)+ to (Σ ∪X)+ such that (1)
θ is a homomorphism with respect to string concatenation,
denoted by ‘·’, that is, for two patterns π1, π2 ∈ (Σ ∪X)+,
θ(π1 · π2) = θ(π1) · θ(π2) holds, and (2) for each constant
symbol a ∈ Σ, θ(a) = a holds. Namely, for a pattern π, θ(π)
is a pattern obtained from π by replacing variable symbols
with patterns according to θ. For a pattern π, the pattern
language of π, denoted by L(π), is the set of all strings
w in Σ+ such that w is obtained from π by replacing all
variable symbols in π with strings in Σ+, that is, L(π) =
{w ∈ Σ+ | w = θ(π) for some substitution θ}. We define
RPL = {L(π) | π ∈ RP}.

Example 1: Let Σ = {a, b} and X = {x, y, z, . . .}. Let
π1 = abxby be a regular pattern on Σ ∪X . Then, we have
L(π1) = {ababa, ababb, abbba, abbbb, abaaba, ababba, . . .}.

Next, we prepare some notations on strings. For a string
w ∈ (Σ∪X)∗, the length of w, denoted by |w|, is the number
of symbols composing w, e.g., |ε| = 0 and |abcxay| = 6.
For a string w ∈ (Σ ∪ X)+ and a positive integer i with
1 ≤ i ≤ |w|, we denote by w[i] the i-th symbol of w.
For two positive integers i, j with 1 ≤ i ≤ j ≤ |w|, we
denote by w[i : j] the substring w[i]w[i + 1] · · ·w[j]. Note
that w[i : i] = w[i]. Let w be a pattern on Σ∪X , a a symbol
in Σ∪X or the empty string ε and i a positive integer with
1 ≤ i ≤ |w|. Then, we denote by w.rep(i, a) the pattern
obtained from w by replacing the i-th symbol of w with a.

Example 2: Let π2 = abcabc ∈ Σ+ be a pattern, and
a, b constant symbols in Σ. Then, we have π2[2] = b,
π2.rep(2, a) = aacabc, π2.rep(2, ε) = acabc, and π2[2 :
4] = bca.

If a pattern π contains a variable symbol, we denote by
rmvs(π) the index of the rightmost variable in π, that is,

rmvs(π) = max{i | π[i] is a variable symbol}. Otherwise,
we define rmvs(π) = 0. Note that 0 ≤ rmvs(π) ≤ |π|.

Example 3: Let Σ = {a, b} and X = {x, y, z, . . .}. Let
π2 = abcabc, π3 = axyaxa, and π4 = axybaza be
patterns. Then, we have rmvs(π2) = 0, rmvs(π3) = 5 and
rmvs(π4) = 6.

B. Learning Model

Let L be a class consisting of sets of strings such that
each set in L has its own representation of finite length. Let
R be the set of representations for all sets of strings in L.
For each representation r ∈ R, we denote by L(r) the set
of strings that is represented by r. For example, for a set
L of strings, a regular pattern π is a representation of L if
L = L(π) holds.

Let L∗ ∈ L be a target. Let r∗ ∈ R be one of the
representations of L∗. i.e., L∗ = L(r∗). A string w ∈ Σ+

is said to be a positive example of L∗ if w ∈ L∗ holds. In
the query learning model presented by Angluin [1], learning
algorithms can access oracles that will answer queries about
the target L∗. In this paper, we consider the membership
query defined as follows. The input is a string w ∈ Σ+. The
output is “yes” if w ∈ L(r∗) holds and “no” otherwise. We
denote by MQ the oracle that answers membership queries.
For a target L∗ and a string w ∈ Σ+, a notation MQ(w)
denotes the answer of MQ for the membership query in the
case that the input of MQ is w.

Example 4: Let abxby be a target regular pattern.
MQ(abaaba) is “yes”, and MQ(abaaa) is “no”.

A learning algorithm A is said to exactly identify a target
L∗ ∈ L if A outputs a representation r ∈ R satisfying
L(r) = L(r∗). In the next section, we will present a learning
algorithm that exactly identifies any target L∗ ∈ RPL
using only one positive example and a linear number of
membership queries, that is, the algorithm outputs a regular
pattern π ∈ RP satisfying L(π) = L∗.

III. LEARNING ALGORITHM

We consider the case that Σ is a set of one constant sym-
bol. Let L∗ be a target regular pattern language. The shortest
positive example is obtained from a given positive example
by asking a linear number of membership queries. Then, we
can identify a regular pattern π such that L(π) = L∗ holds,
by replacing the first constant symbol of the shortest positive
example with a variable symbol. Thus, we assume that Σ is
a set of two or more constant symbols. Let π∗ be a target
regular pattern, that is, L(π∗) = L∗.

Let π be a regular pattern, w a string in L(π) and i an
integer with 1 ≤ i ≤ |π|. We say that a triple (π,w, i)
satisfies Condition 1 if the following conditions hold: (1)
there exists a substitution θi such that w = θi(π) and w[1 :
i] = θi(π[1 : i]) hold, and (2) for each integer j with i <
j ≤ |w|, there exists no substitution θj such that w = θj(π)
and w[1 : j] = θj(π[1 : i]) hold.

Example 5: For the regular pattern π4 = axybaza, the
triplet (π4, abababbbba, 5) satisfies Condition 1 (see Fig. 1).
But the triplet (π4, abababbbba, 6) does not satisfy Condi-
tion 1 (see Fig. 2).

Lemma 1: Let w be a string in L(π∗). Let i be a positive
integer with 2 ≤ i ≤ |π∗|. Let k be a nonnegative integer
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Fig. 1. The triplet (π4, abababbbba, 5) satisfies Condition 1. There exists
a substitution θ such that ababa = θ(π4[1 : 5]) and abababbbba = θ(π4).
And for each integer j with 5 < j ≤ 10, there exists no substitution θj such
that w[1 : j] = θj(π4[1 : 5]) and w = θj(π4), where w = abababbbba.

Fig. 2. The triplet (π4, abababbbba, 6) does not satisfy (2) of Condition 1,
since there exists a substitution θ such that abababbbb = θ(π4[1 : 6]) and
abababbbba = θ(π4) hold.

with 0 ≤ k ≤ |π∗|. We assume that (π∗, w, i − 1) satisfies
Condition 1, and k = rmvs(π∗[1 : i − 1]). Let s be the
output of Procedure ShrinkString when w, i, and k are given
as input. Then the triplet (π∗, s, i) satisfies Condition 1.

Proof: By the assumption, the triplet (π∗, w, i − 1)
satisfies Condition 1. There exists a substitution θi−1 such
that w[1 : i−1] = θi−1(π∗[1 : i−1]) and w = θi−1(π∗). For
each integer j with i ≤ j ≤ |w|, there exists no substitution
θ′j such that w[1 : j] = θ′j(π∗[1 : i − 1]) and w = θ′j(π∗).
We consider the following two cases.

1) In the case that π∗[i] is a variable symbol. Let w1 be
the string obtained from w after the loop of lines 1–
3. Then, MQ(w1.rep(i, ε)) is “no”. We show that for
each integer j with i < j ≤ |w1|, there exists no
substitution θ′1,j such that w1[1 : j] = θ′1,j(π∗[1 : i])
and w1 = θ′1,j(π∗). Suppose that there exists a sub-
stitution θ′1,j such that w1[1 : j] = θ′1,j(π∗[1 : i])
and w1 = θ′1,j(π∗) for some integer j with i <
j ≤ |w1|. Since π∗[i] is a variable symbol, by the
substitutions θi−1 and θ′1,j , there exists a substitution
θ′1 such that w1[1 : i − 1] = θ′1(π∗[1 : i − 1]),
w1[i : j] = θ′1(π∗[i]) and w1 = θ′1(π∗). Since
|w1[i : j]| > 1, MQ(w1.rep(i, ε)) is “yes”. This
is a contradiction. This satisfies (2) of Condition 1.
Since w1 ∈ L(π∗), there exists a substitution θ1 such
that w1[1 : i] = θ1(π∗[1 : i]) and w1 = θ1(π∗).
This satisfies (1) of Condition 1. Therefore, the triplet
(π∗, w1, i) satisfies Condition 1.
In the case of k = 0, it is clear that s = w1. Thus,
The triplet (π∗, s, 1) satisfies Condition 1. We consider
the case of k > 0, that is, a variable symbol appears
in π∗[1 : i − 1]. Note that 0 < k < i. Let w2 be
the string obtained after the loop of lines 5–7. Then,
we show that w1 and w2 are the same. We assume
that w2 is different from w1. By the loop of lines 5–7,
MQ(w1.rep(k, ε)) is “yes”. Let w′

1 = w1.rep(k, ε).
Since w′

1 ∈ L(π∗), there exists a substitution θ′1 such
that w′

1[ℓ : |w′
1|] = θ′1(π∗[i : |π∗|]) for some integer

ℓ with i ≤ ℓ. Since w′
1[ℓ : |w′

1|] = w1[ℓ + 1 : |w1|],

Procedure 1 ShrinkString
Input: A string w in L(π∗), a positive integer i and a

nonnegative integer k
Output: A string w in L(π∗)

1: while MQ(w.rep(i, ε)) = “yes” do
2: w := w.rep(i, ε);
3: end while
4: if k > 0 then
5: while MQ(w.rep(k, ε)) = “yes” do
6: w := w.rep(k, ε);
7: end while
8: end if
9: output w;

there exists a substitution θ
′′

1 such that w1[1 : i− 1] =
θ
′′

1 (π∗[1 : i − 1]), w1[i : ℓ + 1] = θ
′′

1 (π∗[i]) and
w1 = θ

′′

1 (π∗). Therefore, we have |w1[i : ℓ + 1]| > 1.
MQ(w1.rep(i, ε)) is “yes”. This is a contradiction.
Thus, w1 and w2 are the same. The triplet (π∗, w2, i)
satisfies Condition 1. Since s = w2, the triplet (π∗, s, i)
satisfies Condition 1.

2) In the case that π∗[i] is a constant symbol. At first,
we consider the case k = 0. Since π∗[1 : i] consists
of constant symbols, it is clear that (π∗, w, i) satisfies
Condition 1. Next, we consider the case k > 0. Let
w2 be the string obtained after the loop of lines 5–7.
MQ(w2.rep(k, ε)) is “no”. We assume that there exists
a substitution θ′2,j such that w2[1 : j] = θ′2,j(π∗[1 :
i]) and w2 = θ′2,j(π∗) for some integer j with i <
j ≤ |w2|. Since π∗[i] is a constant symbol, by the
substitution θi−1 and θ′2,j , there exists a substitution
θ′2 such that w2[1 : k − 1] = θ′2(π∗[1 : k − 1]), w2[k :
m] = θ′2(π∗[k]) and w2 = θ′2(π∗) for some integer
m > k. Since |w2[k : m]| > 1, MQ(w2.rep(k, ε)) is
“yes”. This is a contradiction. Thus, for each integer j
with i < j ≤ |w2|, there exists no substitution θ2,j such
that w2[1 : j] = θ2,j(π∗[1 : i]) and w2 = θ2,j(π∗). This
satisfies (2) of Condition 1. Since w2 ∈ L(π∗), there
exists a substitution θ2 such that w2[1 : i] = θ2(π∗[1 :
i]) and w2 = θ2(π∗). This satisfies (1) of Condition 1.
The triplet (π∗, w2, i) satisfies Condition 1. Since s =
w2, the triplet (π∗, s, i) satisfies Condition 1.

From the above, the triplet (π∗, s, i) satisfies Condition 1.
Example 6: Let π∗ = axabacy and i = 2. Then, we have

rmvs(π∗[1]) = 0. Procedure ShrinkString outputs a string
ababacbacb when it takes w = abbabacbacb, i = 2, and k =
0 as input (see Fig. 3). In case i = 6, we have rmvs(π∗[5]) =
2. And the procedure outputs a string ababacb when it takes
w = ababacbacb, i = 6, and k = 2 as input (see Fig. 4).

Lemma 2: Let w be a string in L(π∗). Let i be a positive
integer with 2 ≤ i ≤ |π∗|. Let k be a nonnegative integer
with 0 ≤ k ≤ |π∗|. We assume that (π∗, w, i) satisfies
Condition 1, and k = rmvs(π∗[1 : i − 1]). Given w, i and
k as input, Procedure IdentifyVariables correctly outputs the
value of rmvs(π∗[1 : i]).

Proof: Since (π∗, w, i) satisfies Condition 1, there exists
a substitution θi such that w[1 : i] = θi(π∗[1 : i]) and w =
θi(π∗). For each integer j with i < j ≤ |w|, there exists
no substitution θj such that w[1 : j] = θj(π∗[1 : i]) and
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abbabacbacb ⇒ abbabacbacb.rep(2, ε) = ababacbacb ∈ L(axabacy)
}

The loop of lines 1–3⇒ ababacbacb.rep(2, ε) = aabacbacb ̸∈ L(axabacy)

Fig. 3. A running example of Procedure ShrinkString when a string w = abbabacbacb, i = 2, and k = 0 are given as input. The procedure outputs the
string ababacbacb.

ababacbacb ⇒ ababacbacb.rep(6, ε) = abababacb ∈ L(axabacy) }
The loop of lines 1–3⇒ abababacb.rep(6, ε) = ababaacb ̸∈ L(axabacy)

⇒ abababacb.rep(2, ε) = aababacb ∈ L(axabacy) }
The loop of lines 5–7⇒ aababacb.rep(2, ε) = ababacb ∈ L(axabacy)

⇒ ababacb.rep(2, ε) = aabacb ̸∈ L(axabacy)

Fig. 4. A running example of Procedure ShrinkString when a string w = ababacbacb, i = 6, and k = 2 are given as input. The procedure outputs the
string ababacb.

Procedure 2 IdentifyVariables
Input: A string w in L(π∗), a positive integer i and a

nonnegative integer k
Output: an integer k = rmvs(π∗[1 : i])

1: Let a be a constant symbol in Σ \ {w[i]};
2: if MQ(w.rep(i, a)) = “yes” then
3: w′ := w.rep(i, a);
4: if ((k > 0 and MQ(w′.rep(k, ε)) = “yes”)

or k = 0) then k := i;
5: end if
6: output k;

w = θj(π∗). Then, we consider the following two cases,
that is, π∗[i] is a variable symbol, or a constant symbol.

1) In the case that π∗[i] is a variable symbol. From
the substitution θi, MQ(w.rep(i, a)) is “yes”, where
a ∈ Σ \ {w[i]}. Let w1 be the string obtained from
w at line 3. At first, we consider the case k = 0,
that is, rmvs(π∗[1 : i − 1]) = 0. Then, it is
clear that k is updated. Next, we consider the case
k > 0, that is, rmvs(π∗[1 : i − 1]) > 0. Suppose
that MQ(w1.rep(k, ε)) is “yes”. Since w1.rep(k, ε) ∈
L(π∗), there exists a substitution θ′1,j such that w1[1 :
j] = θ′1,j(π∗[1 : i]) and w1 = θ′1,j(π∗) for some integer
j with i < j. Since w[1 : i−1] = w1[1 : i−1] and π∗[i]
is a variable symbol, by using θi and θ′1,j , there exists
a substitution θ′1 such that w[1 : j] = θ′1(π∗[1 : i]) and
w = θ′1(π∗) for some integer j with i < j. This con-
tradicts that the triplet (π∗, w, i) satisfies Condition 1.
Since MQ(w1.rep(k, ε)) is “no”, k is updated.

2) In the case that π∗[i] is a constant symbol. We assume
that MQ(w.rep(i, a)) is “yes”, where a ∈ Σ \ {w[i]}.
Let w1 be the string obtained from w at line 3. There
exists a substitution θ1 such that w1[1 : j] = θ1(π∗[1 :
i]) and w1 = θ1(π∗) for some integer j with i <
j. If rmvs(π∗[1 : i]) = 0, then MQ(w.rep(i, a)) is
“no”. Thus, we have rmvs(π∗[1 : i]) > 0. Let k =
rmvs(π∗[1 : i − 1]). Since w[i] ̸= w1[i], by using θi
and θ1, there exists a substitution θ such that w1[1 :
k − 1] = θ(π∗[1 : k − 1]), w1[k : m] = θ(π∗[k])
and w1 = θ(π∗) for some integer m with m > k.
Thus MQ(w1.rep(k, ε)) is “yes”. Therefore k is not
updated.

From the above, if π∗[i] is a variable symbol, then k is
updated. Otherwise, k is not updated. Thus, Procedure Iden-

Algorithm 3 LearningStringPattern
Input: A string w in L(π∗)
Output: A pattern π with L(π) = L(π∗)

1: i := 1, k := 0, vSet := ∅;
2: while i ≤ |w| do
3: w := ShrinkString(w, i, k);
4: k := IdentifyVariables(w, i, k);
5: if k ̸= 0 and k ̸∈ vSet then
6: vSet := vSet ∪ {k};
7: end if
8: i := i+ 1;
9: end while

10: π := w;
11: for all i ∈ vSet do
12: Let x be a new variable symbol that does not

appear in π.
13: π := π.rep(i, x);
14: end for
15: output π;

tifyVariables correctly outputs the value of rmvs(π∗[1 : i]).

Let w0 be the string which is given to Algorithm Learn-
ingStringPattern, and k0 = 0. Let w1, w2, . . . be the sequence
of strings output by Procedure ShrinkString at line 3 of Algo-
rithm LearningStringPattern. Let k1, k2, . . . be the sequence
of nonnegative integers output by Procedure IdentifyVari-
ables at line 4 of LearningStringPattern. At each stage i ≥ 1,
Procedure ShrinkString outputs the string wi when wi−1, i,
and ki−1 are given as input, and Procedure IdentifyVariables
outputs the nonnegative integer ki when wi, i, and ki−1 are
given as input.

In Table I, we write strings w1, . . . , w7 output by Pro-
cedure ShrinkString and integers k1, . . . , k7 output by Pro-
cedure IdentifyVariables when a string w0 = abbabacbacb
is given to Algorithm LearningStringPattern as a positive
example. At last, the string ababacb is obtained after the
loop of lines 2–9.

Lemma 3: For each integer i with 1 ≤ i ≤ |π∗|, the triplet
(π∗, wi, i) satisfies Condition 1, and ki = rmvs(π∗[1 : i]).

Proof: The proof is by the induction on the number of
iterations i ≥ 1 of the loop of lines 2–9. We consider the case
i = 1. The string w1 is the output of Procedure ShrinkString
when w0, i = 1, and k0 are given. It is clear that the triplet
(π∗, w1, i) satisfies Condition 1, and k1 = rmvs(π∗[1 : 1]).
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TABLE I
A RUNNING EXAMPLE OF ALGORITHM LearningStringPattern WHEN A POSITIVE EXAMPLE w0 = abbabacbacb IS GIVEN AS INPUT, WHERE

π∗ = axabacy.

i Procedure output vSet

1 ShrinkString(abbabacbacb, 1, 0) w1 = abbabacbacb ∅
IdentifyVariables(abbabacbacb, 1, 0) k1 = 0 ∅

2 ShrinkString(abbabacbacb, 2, 0) w2 = ababacbacb ∅ (see Fig. 3)
IdentifyVariables(ababacbacb, 2, 0) k2 = 2 {2}

3 ShrinkString(ababacbacb, 3, 2) w3 = ababacbacb {2}
IdentifyVariables(ababacbacb, 3, 2) k3 = 2 {2}

4 ShrinkString(ababacbacb, 4, 2) w4 = ababacbacb {2}
IdentifyVariables(ababacbacb, 4, 2) k4 = 2 {2}

5 ShrinkString(ababacbacb, 5, 2) w5 = ababacbacb {2}
IdentifyVariables(ababacbacb, 5, 2) k5 = 2 {2}

6 ShrinkString(ababacbacb, 6, 2) w6 = ababacb {2} (see Fig. 4)
IdentifyVariables(ababacb, 6, 2) k6 = 2 {2}

7 ShrinkString(ababacbacb, 7, 2) w7 = ababacb {2}
IdentifyVariables(ababacb, 7, 2) k7 = 7 {2, 7}

vSet = {2, 7} a new variable symbol pattern
2 x1 ax1abacb = ababacb.rep(2, x1)

7 x2 ax1abacx2 = ax1abacb.rep(7, x2)

The regular pattern ax1abacx2 is output by Algorithm LearningStringPattern.

We assume inductively that the results hold for any number
of iterations of the while loop less than i. By the inductive
hypothesis, the triplet (π∗, wi−1, i−1) satisfies Condition 1,
and ki−1 = rmvs(π∗[1 : i − 1]). By Lemma 1, the triplet
(π∗, wi, i) satisfies Condition 1. Since the triplet (π∗, wi, i)
satisfies Condition 1, and ki−1 = rmvs(π∗[1 : i − 1]), by
Lemma 2, we have ki = rmvs(π∗[1 : i]).

Theorem 1: Algorithm LearningStringPattern outputs a
regular pattern π with L(π) = L(π∗) from one positive
example w using O(|w|) membership queries.

Proof: Let ℓ = |π∗|. By Lemma 3, the triplet
(π∗, wℓ, kℓ) satisfies Condition 1. Since wℓ ∈ L(π∗), we
have |wℓ| ≥ ℓ. We assume that |wℓ| > ℓ. Then, there exists
a substitution θℓ such that wℓ[1 : j] = θℓ(π∗[1 : ℓ]) and
wℓ = θℓ(π∗) for some integer j with ℓ < j. This contradicts
that the triplet (π∗, wℓ, ℓ) satisfies Condition 1. Therefore, we
have |wℓ| = ℓ = |π∗| and wℓ ∈ L(π∗). By Lemma 2 and 3,
the set vSet in Algorithm LearningStringPattern equals the
set {i | π∗[i] ∈ X, 1 ≤ i ≤ |π∗|} of positive integers. Thus,
Algorithm LearningStringPattern outputs a regular pattern π
with L(π) = L(π∗).

At the i-th repetition of lines 2–9, let ni be a nonnegative
integer that is the number of constant symbols removed in
Procedure ShrinkString. Then, the procedure uses ni + 2
membership queries. At the i-th repetition, Procedure Identi-
fyVariables uses at most two membership queries. The loop

of lines 2–9 uses at most
|π∗|∑
i=1

(ni + 4) membership queries.

Since
|π∗|∑
i

ni ≤ |w| and |π∗| ≤ |w| hold,

|π∗|∑
i=1

(ni + 4) ≤ 4 · |π∗|+
|π∗|∑
i=1

ni ≤ 4 · |w|+ |w| = 5 · |w|.

Thus, Algorithm LearningStringPattern uses O(|w|) mem-
bership queries.

IV. CONCLUSION

In this paper, we have shown that the class of regular
pattern languages is exactly learnable from only one positive
example using a linear number of membership queries. This
result shows that the number of membership queries is
reduced to be linear with respect to the length of the positive
example.

We introduced a primitive formal ordered tree system
(pFOTS) as a formal system defining ordered tree languages
[11]. For a pFOTS program Γ as background knowledge, we
showed in [11] that the class of tree languages derived using
Γ and one primitive graph rewriting rule is exactly learnable
from one positive example using a polynomial number of
membership queries. As future work, we will consider a
query learning algorithm for exactly identifying the class of
tree languages derived from a pFOTS as background knowl-
edge and primitive graph rewriting rules from one positive
example using a linear number of membership queries with
respect to the number of edges of the positive example.
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