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Abstract—With the advent of cloud computing, there is a
potential need for the interconnection of clouds (i.e., Intercloud).
Intercloud seeks to connect heterogeneous clouds together to
form a network of clouds. As an extension to our previous work,
this paper gives an overview of an Intercloud system with a fo-
cus on the Intercloud Gateways and Intercloud communications
protocol. To analyze the performance of the Intercloud systems,
we have conducted experiments under different settings and
scenarios. Furthermore, we have evaluated the Intercloud
system to support a mobile Intercloud application.

Index Terms—cloud computing, Intercloud, mobile cloud
computing, mobile Intercloud

I. INTRODUCTION

CLOUD computing has become an important field in re-
cent years. With cloud computing, a variety of comput-

ing resources (e.g., hardware, software, and storage) can be
provided as services over the Internet [1] [2]. In general, there
are three service models for cloud computing: Software-
as-a-Service (SaaS), Infrastructure-as-a-Service (IaaS), and
Platform-as-a-Service (PaaS) [3] [4]. By using cloud com-
puting, operating and maintenance costs can be significantly
reduced. For example, a company can set up virtual servers
and use computing resources on an on-demand basis. This
allows the provision of computing resources (e.g., storage
and processing power) as utility services similar to electricity
services. Indeed, computing resources situated in different
servers across the Internet can work in a collaborative
manner. In other words, they become shared distributed
resources, which can be employed collectively to serve user
requirements in a dynamic fashion [5]. While these services
are typically provided through public clouds, other clouds,
including private clouds, community clouds, and hybrid
clouds, can also be set up depending on user requirements.

When many clouds are set up, there is a need for them to
collaborate and communicate (e.g., to enable heterogeneous
cloud service providers to interact with each other) [6]. Here,
cloud-to-cloud communications and collaboration refers to
the interaction between clouds of the same cloud provider
as well as between clouds of different cloud providers. For
instance, one potential application would be the collaboration
of cloud-based data storage systems. However, despite the
popularity of cloud computing, the development of cloud-
to-cloud service support is still in its infancy. In particular,
there are currently limited well-defined and standardized
methods (and implementations) for achieving inter-cloud
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Fig. 1. Basic Intercloud architecture

operability. The IEEE has been developing the Intercloud
Standard (P2302), and has made a draft standard available
[7]. The standard defines an Intercloud architecture that
resembles the architecture of the Internet. Various system
components, such as Intercloud roots, Intercloud Gateways,
and Intercloud exchanges, have been proposed to facilitate
Intercloud operations. In general, this paper is based on the
Intercloud framework defined by the IEEE P2302 framework.
This framework facilitates the development of Intercloud
systems for different Intercloud applications [8] [9] [10].

As shown in our previous work [11], we have designed
an Intercloud Gateway as well as an extensible Intercloud
Communications Protocol (ICCP) for supporting Intercloud
operations. Using the Intercloud Gateway, either a cloud
user or cloud provider can securely and effectively move
their files or virtual machines from one cloud to another
cloud without client involvement. As a continuation of our
previous work on designing an extensible ICCP and develop-
ing an Intercloud Gateway application to support Intercloud
communications [8], we analyze the performance of the
Intercloud Gateway in this paper.

The rest of the paper is organized as follows. Section II
presents a brief review of ICCP. Section III presents the
design and functions of the Intercloud Gateway. Section IV
presents and discusses the experimental results. Section VI
presents the conclusion.

II. INTERCLOUD COMMUNICATIONS PROTOCOL (ICCP)
As shown in Fig. 1, the system architecture consists of

the following key components: Intercloud Roots, Intercloud
Exchanges, and an Intercloud Gateway to support Intercloud
operations:

• Intercloud Roots: These servers function like DNS root
servers on the Internet. They provide a directory service
and facilitate queries for cloud resources. Furthermore,
they can also function as a root certificate authority.

• Intercloud Exchanges: They function like Internet Ex-
changes. Each cloud should be associated with an
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Intercloud Exchange. The Intercloud Exchanges facil-
itate communications and resource matching among the
clouds.

• Intercloud Gateways: They function like Internet
routers, allowing Intercloud communications based on
XML messages.

ICCP specifies how two clouds can communicate or in-
teract with each other. It is inspired by HTTP and designed
based on XML. Each Intercloud operation is defined as a
command (e.g., put/get data object) in ICCP. As XML is
highly extensible, new Intercloud operations can easily be
added by defining new commands. Similar to HTTP, ICCP
comprises request and response messages, and each message
is defined by XML tags (such as HTTP headers).

To facilitate Intercloud operations, Intercloud Gateways
communicate with each other using XML-based request/re-
sponse messages. In each request/response message, the
protocol version and session are specified by the “Version”
and “ID” attributes, respectively. Various information tags
(e.g., GeneralInfo, RequestInfo, ResponseInfo etc.) can be
defined in a request or response message in order to provide
specific information for the requested command. An example
of the XML messages can be found in the next section.

III. INTERCLOUD GATEWAY

As presented in our previous paper [11], based on ICCP,
we have developed an Intercloud Gateway to support In-
tercloud communications. In other words, an Intercloud
Gateway is designed to handle and process ICCP requests/re-
sponses. An Intercloud Gateway connects to a cloud’s object
storage and/or virtual machine (VM) hypervisor to perform
various Intercloud operations by using the corresponding
cloud service provider’s API methods.

A. Basic design

The Gateways communicate with each other through sock-
ets. When a Gateway receives a request/response message,
the message will be stored in a message queue first. Based on
the command in a message, the message will be forwarded
to the corresponding command module for processing. Upon
processing, a response message will be sent to the requesting
cloud’s Gateway.

B. Pre-defined API classes

The Gateway includes a number of pre-defined API classes
for common Intercloud operations, such as transferring
data objects and controlling VMs. The aforementioned API
classes allow developers to develop tailor-made Intercloud
applications for individual needs. A set of JavaDoc de-
scriptions of the API classes and methods can be found at
http://iccp.cf.

C. Commands and functions for object storage

Currently, the Gateway supports Amazon S3, Google
Cloud Storage, Microsoft Azure and Minio object storage
service. Referring to the specification of ICCP, the following
is a list of the common commands for object storage, along
with the corresponding Object Storage API methods and a
brief description:

• ListObject: generated by API’s list() method, which
queries the target cloud for a list of data object stored.

• PutObject: generated by API’s put() method, which
requests the target cloud to receive a data object and
store it.

• GetObject: generated by API’s get() method, which
requests the target cloud to return a previously put data
object.

• ForwardObject: generated by API’s forward() method,
which requests the target cloud to forward a data object
to another cloud.

• DeleteObject: generated by API’s delete() method,
which requests the target cloud to delete a previously
put data object.

The following shows an example:
<Request Version="1.0" ID="647352553">

<GeneralInformation From="c1.e1.r1.iccp.us"
To="c2.e1.r1.iccp.us" Date="2019-01-12

" Time="16:36:00"/>
<RequestInformation Service="ObjectStorage"

Command="PutObject">
<ObjectName>bigfile1</ObjectName>
<TransferMethod>UDT</TransferMethod>

</RequestInformation>
<AdditionalInformation>

<IP>123.123.123.123</IP>
<Port>9000</Port>
<Path>path/to/file</Path>
<Encoding>Base64</Encoding>
<DataSecurity>Shared</DataSecurity>
<SharedKey>2efs2esfsghtjdrus</SharedKey>
<DataDigestAlgorithm>SHA256</

DataDigestAlgorithm>
<DataDigest>asdikj234mnd12</DataDigest>
<Overwrite>True</Overwrite>

</AdditionalInformation>
</Request>

In this example, ‘c1.e1.r1.iccp.us’ requests
‘c2.e1.r1.iccp.us’ to receive data via UDT, decrypt it
with the shared key and store it, and overwrite all previous
versions. The data are presented as a file downloadable
from the UDT server at 123.123.123.123:9000 with the
path ‘path/to/file’. Such data are presented using Base64
encoding and are named ‘bigfile1’.

D. Commands and functions for virtual machine
Currently, the Gateway supports VMware and Hyper-V

hypervisors. Referring to the specification of ICCP, the fol-
lowing is a list of the common commands for VM along with
the corresponding VM API methods and a brief description:

• CreateVM: generated by API’s createVM() method,
which requests the target cloud to create a new VM.

• PutVM: generated by API’s putVM() method, which
requests the target cloud to receive a VM image and
host it.

• GetObject: generated by API’s getVM() method, which
requests the target cloud to export a previously put VM
and send the exported image to it.

• VMPowerControl: generated by API’s powerControl()
method, which requests the target cloud to power on,
power off, suspend or reset a VM.

• GetVMDetails: generated by API’s getVMDetails()
method, which queries the target cloud for the details
of a VM being hosted.
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• ListVM: generated by API’s listVM() method, which
queries the target cloud for a list of VMs being hosted.

IV. PERFORMANCE ANALYSIS

In this section, we present the performance analysis of the
Intercloud system focusing on the transfer of data objects
and VMs between clouds. In particular, we evaluate the sub-
processes and study different ways to improve efficiencies,
such as using multi-threading and data compression. For
the VM transfer, we studied three different cloud service
providers (CSPs) for the performance analysis:

• International cloud provider 1, located in the U.S.-West
• International cloud provider 2, located in Europe
• Local cloud provider, located in Hong Kong

A. Processing time for individual sub-processes

The purpose of this experiment is to evaluate the process-
ing time of each sub-process in an Intercloud transaction.
Since transferring a VM can be considered to be transferring
a large data object, we only accessed the data object transfer
time in this experiment.

1) Experimental settings: The operation of object transfer
can be divided into individual sub-processes. For example,
we divided the operation of ‘PutObject’ into the following
sub-processes: (1) the owner Gateway downloads the ob-
ject from its storage, (2) the owner Gateway encrypts the
object, (3) the owner Gateway computes the digest of the
object, (4) cross-cloud data transfer, (5) the target Gateway
verifies the object, and (6) the target Gateway uploads the
object to its storage. Similarly, we divided the operation of
‘GetObject’ into the following sub-processes: (1) the target
Gateway downloads the object from its storage, (2) the target
Gateway computes the digest of the object, (3) cross-cloud
data transfer, (4) the owner Gateway verifies the object, (5)
the owner Gateway decrypts the object, and (6) the owner
Gateway uploads the object to its storage.

We used three cloud VMs provided by each CSP to
perform the experiments. All VMs had the same machine
specifications of 2 CPUs, 4GB RAM, 2GB Java default heap
and 2GB Java max heap. Different sizes of data objects
were tested, including 5MB, 10MB, 20MB, 50MB, 100MB,
200MB, 512MB and 1024MB.

2) Experimental results: Fig. 2, 3 and 4 illustrate the
mean processing time, the percentage of time spent and
the mean processing speed of individual sub-processes of
a ‘PutObject’ operation. Fig. 5, 6 and 7 illustrate the results
for a ‘GetObject’ operation. The results show that when
transferring a data object through the Intercloud Gateways,
cross-cloud data transfer accounts for the largest amount
of time. However, when the data object size is larger,
the processing time for uploading a data object to storage
becomes more significant, while the time percentage for
cross-cloud data transfer gradually decreases. Furthermore,
when the data object size is larger, there is a steady increase
in the processing speed of cross-cloud data transfer.

B. Effectiveness of multi-threading

Many applications today employ multi-threading to en-
hance overall performance. In this experiment, we investigate

Fig. 2. Mean processing time of PutObject sub-processes. Dl = down-
loading the object by the owner Gateway, En = encrypting the object by
the owner Gateway, Dc = computing the digest by the owner Gateway, Tx
= Intercloud data transfer, Dv = object verification by the target Gateway,
Ul = uploading the object to storage by the target Gateway

Fig. 3. Mean % of time consumption of PutObject sub-processes. Dl =
downloading the object by the owner Gateway, En = encrypting the object
by the owner Gateway, Tx = Intercloud data transfer, Ul = uploading the
object to storage by the target Gateway

Fig. 4. Mean processing speed of PutObject sub-processes (MB/s). Dl =
downloading the object by the owner Gateway, En = encrypting the object
by the owner Gateway, Tx = Intercloud data transfer, Ul = uploading the
object to storage by the target Gateway

the performance of the following operations processed by
the Gateway: (1) downloading an object from storage, (2)
uploading an object to storage, (3) data encryption, (4) data
decryption, and (5) digest calculation. Our aim is to evaluate
the effectiveness of concurrency with different thread limits
and machine specifications. In particular, we examine the
limit of parallel transfer operations among CSPs with various
machine specifications.

1) Experimental settings: In each experiment, 100 copies
of a 1GB object were processed. Each process was tested for
5 times, with different limits of executing threads including
1, 10, 25, 50, and 100.
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Fig. 5. Mean processing time of GetObject sub-processes. Dl = down-
loading the object by the target Gateway, Dc = computing the digest by the
target Gateway, Tx = Intercloud data transfer, Dv = decrypting the object
by the owner Gateway, De = object verification by the owner Gateway, Ul
= uploading the object to storage by the owner Gateway

Fig. 6. Mean % of time consumption of GetObject sub-processes. Dl =
downloading the object by the target Gateway, Tx = Intercloud data transfer,
De = object verification by the owner Gateway, Ul = uploading the object
to storage by the owner Gateway

Fig. 7. Mean processing speed of GetObject sub-processes (MB/s). Dl =
downloading the object by the target Gateway, Tx = Intercloud data transfer,
De = object verification by the owner Gateway, Ul = uploading the object
to storage by the owner Gateway

2) Experimental results: For all sub-processes, the results
indicate that when the number of executing threads exceeds
10, no obvious performance improvement can be found,
i.e., no significant reduction in total processing time, as
shown in Fig. 8 using ‘data decryption’ as an example. For
the sub-processes of uploading or downloading, setting the
thread limit to more than 10 might result in exceptions. Such
exceptions were thrown by the CSPs’ API and were likely
caused by the network connection between the object storage
server and the Gateway. In other words, there will be a 100%
successful rate for uploading or downloading when the thread
limit is 10 or below.

Fig. 8. Mean time consumption of decryption on difference cases

C. Effectiveness of data compression

In theory, the performance of transferring a large size of
data object can be enhanced if data compression is used. In
order to investigate how well data compression can enhance
Intercloud data object transfer, we conducted experiments
to analyze its efficiency and effectiveness for cross-region,
cross-cloud data transfer. In the analysis, we tested the
process of normal and compressed, object transfer and VM
migration, separately. Note that our analysis focused on the
data transfer. Hence, we only recorded the time usage of the
concerned sub-processes.

1) Experimental settings: For the data object transfer, we
tested with the following sample objects:

• Obj. 1: a text file filled with the character ‘A’ (4104MB)
• Obj. 2: a text file filled with random characters

(4104MB)
• Obj. 3: a Windows 2012 setup DVD ISO (3523MB)
• Obj. 4: an MP4 HD video file (4462MB)

For VM migration, we tested with the following sample
VM disk images. These images were ‘freshly-installed’ with
operating systems:

• Win8.vmdk: a Windows 8 image hosted on VMware
• Win12.vmdk: a Windows 2012 image hosted on

VMware
• Cent6.vmdk: a CentOS 6 Linux image hosted on

VMware
• Win8.vhdx: a Windows 8 image hosted on HyperV
• Win12.vhdx: a Windows 2012 image hosted on HyperV
• Cent6.vhdx: a CentOS 6 Linux image hosted on HyperV

2) Experimental results - object transfer: In a normal
‘PutObject’ operation, we recorded the time used for (1)
downloading the object from the storage, (2) transferring the
object to the target cloud, and (3) uploading the object to
the target storage. In a compressed ‘PutObject’ operation,
we recorded the time used for (1) downloading the object
from the storage, (2) compressing the object, (3) transferring
the compressed object to the target cloud, and (4) uploading
the compressed object to the target storage.

Similarly, in a normal ‘GetObject’ operation, we recorded
the time used for (1) downloading the object from the target
storage, (2) transferring the object from the target cloud, and
(3) uploading the object to the storage. In a compressed
‘GetObject’ operation, we recorded the time used for (1)
downloading the compressed object from the target storage,
(2) transferring the compressed object from the target cloud,
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Fig. 9. PutObject: mean time used

Fig. 10. GetObject: mean time used

Fig. 11. Object transfer: object size

(3) extracting the object, and (4) uploading the object to the
target storage.

Fig. 9 and 10 show the mean time used for PutObject
and GetObject, respectively. Fig. 11 compares the sizes
of normal objects and compressed objects. Note that the
compression ratio of Obj. 1 is very large, therefore it is too
small (4MB) to be read in the figure. The results show that
the time required for PutObject and GetObject depends on
the compression ratio. If the compression ratio for an object
is low, compression is not beneficial because it takes more
time to compress the object. That means, the time required
(i.e., compression time plus transmission time) is even longer
(see objects 2, 3 and 4 in the example).

3) Experimental results - VM migration: For normal
transfer, we recorded the time usage for transferring the
VM disk images. For compressed transfer, we recorded the
time used for (1) compressing the VM disk image, (2)
transferring the compressed image to the opposite cloud,
and (3) extracting the image. Fig. 12 shows the mean time
used to transfer the VMs (i.e., including the aforementioned
steps). Fig. 13 compares the size of the VMs both without
compression and with compression. The results show that

Fig. 12. VM migration: mean time used

Fig. 13. VM migration: object size

transferring a VM without compression is actually faster,
mainly because it requires significant time to compress the
VM.

4) Conclusion: In object transfer, performance enhance-
ment (i.e., reduction in processing time) by data compression
is mostly related to the content of the object. Further-
more, performance enhancement by data compression in
VM migration is in general not effective. Nevertheless, data
compression is still preferred in many cases, because the
network usage cost can be saved by transferring smaller
objects.

V. MOBILE INTERCLOUD APPLICATIONS DATA
TRANSFER SCENARIO

The Intercloud system can also facilitate the development
of mobile Intercloud applications [12]. Mobile Intercloud
system is an extension of the Intercloud system to a mobile
environment with the aim of providing cloud computing
services through heterogeneous clouds. In particular, it seeks
to allow mobile devices to manage data and virtual machines
across different or heterogeneous cloud platforms. Basically,
a mobile device is associated with a home cloud. The
corresponding virtual mobile terminal, data and applications
can be stored in the home cloud. Whenever required, data
and applications can be transferred between clouds based
on ICCP. For example, to enhance system performance (i.e.,
access time), it is desirable to move data closer to the mobile
device [13].

This section studies a mobile Intercloud scenario using the
Intercloud Gateway to illustrate the advantages of the mobile
Intercloud system. Assume that a mobile user stores his/her
data using a cloud-based data object storage system (e.g.,
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(a) (b) (c)

Fig. 14. Mobile Intercloud scenario. (a) A user accesses data objects from the home cloud. (b) When the user travels to a foreign area, the home cloud
is further away. (c) To enhance access time, data objects can be transferred to a nearby foreign cloud.

Fig. 15. Comparison between the two approaches

Minio) at the home cloud. In the home cloud, he/she can
of course access data efficiently. However, when the mobile
user travels to a foreign city for example, the time required
to access the data object storage system from the home cloud
(e.g., downloading a file) is greatly increased because of
latency and bandwidth. The scenario is illustrated in Fig.
14.

At the foreign cloud, the user can initiate another data
object storage (namely foreign data object storage) nearby,
and utilize the Intercloud Gateway to transfer the data/files
from the home data object storage to the foreign data object
storage. He/she can then access the data/files from the foreign
cloud more directly and efficiently. We have conducted ex-
periments to evaluate this approach. Basically, we compared
the time required between (1) directly downloading data from
the home cloud and (2) transferring data to the foreign cloud
first and then accessing data from the foreign cloud. Fig. 15
shows the comparison results for different data sizes. We can
see that it is better to transfer data from the home cloud to the
foreign cloud first (i.e., Intercloud data transfer) so that the
mobile device can access the data more efficiently. As shown
in the figure, this is particularly beneficial for large data
objects. One of the reasons is that Intercloud data transfer is
faster, and it is more efficient for a mobile device to access
data from a nearby cloud. This experiment illustrates the
key benefit of using an Intercloud system to support mobile
Intercloud applications.

VI. CONCLUSION

In conclusion, we have presented an overview of an
Intercloud system. By using Intercloud Gateways, data and
virtual machines can be transferred using ICCP. The Gate-
ways not only support data transfer between clouds from
the same cloud providers, but also between heterogeneous
clouds running on different platforms. We have presented

experimental results to analyze the system performance. Fur-
thermore, we have presented experimental results to illustrate
the advantage of a mobile Intercloud system.
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