
Firewall Traversal Method by Inserting Pseudo
TCP Header into QUIC

Keigo Taga, Junjun Zheng, Koichi Mouri, Shoichi Saito, Eiji Takimoto

Abstract—A wide range of communication protocols has
been developed recently to address service diversification. At
the same time, firewalls(FWs) are installed at the boundary
between internal networks such as those owned by companies
and homes, and the Internet. In general, FWs are configured as
whitelists is whitelist that release only the port corresponding
to the service to be used and block communication from other
ports. This means that many protocols except those well used
are blocked by FWs resulting in users not being able to benefit
from any new protocols. In this paper, we propose a method
for traversing an FW and enabling communication by inserting
a pseudo TCP header imitating HTTPS into a packet, which
will be blocked by the FW. Since the packet capsulated by
the proposed method disguised by HTTPS camouflaging only
when passing through the FW, the TCP control of the end node
is not executed, and the advantages of Quick UDP Internet
Connection are not lost. In this study, we implemented the
proposed method as a loadable kernel module using Netflter in
Linux and verified its operation and performance.

Index Terms—QUIC, Firewall, TCP, Capsuling.

I. INTRODUCTION

A wide range of communication communication proto-
cols has been developed recently to address service

diversification．Improvement of service quality and com-
munication performance can be expected when using these
communication protocols. At the same time, firewalls(FWs)
are installed at boundary between internal networks such
as those owned by companies and homes, and the Internet.
An FW, which is a system for ensuring security, guarantees
security by limiting communication protocols and ports.
Therefore, even if the end nodes support a specific protocol,
communication may be blocked by an FW. As a result, many
clients may not be able to use services developed by service
providers based on newly developed protocols due to an FW.
In other words, an FW may become a barrier preventing the
spread of new protocols and improvement of service quality
.

In such a case, the FW configuration may be changed to
open the port used for communication. However, changing
the FW configuration is not preferable from the viewpoint
of network management. Thus, many organizations prohibit
Quick UDP Internet Connections(QUIC) using UDP as the
transport layer protocol and RTP communication, whose port
number to be used is determined dynamically.

Tunneling is often used as a method for enabling the use
of communication protocols that are not permitted by an FW
without changing the FW configuration.

This study was supported by the Grants-in-Aid for Scientific Research of
the Japan Society for Promotion of Science (JSPS) under the Contract No.
JP18K18045.

K. Taga, J. Zheng, K. Mouri, and E. Takimoto are with Ritsumeikan
University (e-mail: ktaga@asl.cs.ritsumei.ac.jp).

S. Saito is with Nagoya Institute of Technology.

Tunneling encapsulates original packets by other protocol.
Ordinal tunneling uses HTTP or HTTPS for capsulation
because these protocols are the most widely used. They
use TCP as the transport layer protocol. Even if tunneled
communication uses another transport layer protocol, TCP
influences the communication much stronger than the other
protocol. For example, assume that QUIC is the target of
HTTP tunneling. QUIC uses UDP and has its own TCP-
like control mechanisms. When a packet loss occurs, TCP of
HTTP tunneling retransmits transparently from QUIC. In this
way, TCP mechanisms work prior to the ones of QUIC. That
is to say, QUIC over HTTP cannot exhibit its performance.

In this study, we propose an FW traversal method, which
inserts a pseudo TCP header with the purpose of realizing
communication without affecting it on a communication
path, where delivery of packets between end nodes is not
guaranteed. The proposed method makes it possible to use
various communication protocols without being restricted
by an FW. The method achieves this by disguising packets
that use protocols and port numbers usually restricted by
an FW making them look as if they are parts of HTTPS
communication. Impersonation of HTTPS communication is
achieved by encapsulating the pseudo TCP specified port 443
for the payload of the IP datagram of the target packet. By
labeling a packet to be a part of HTTPS traffic, it becomes
possible to exclude it from the FW targets to be filtered. In
addition, the proposed method does not affect the control of
the protocol that the FW wishes to pass since the method only
rewrites the packet on the communication path preventing the
TCP control from working. The proposed method inserts the
pseudo TCP header, discards it after passing through the FW,
and returns it to the original packet to obtain communication.

In this paper, we discuss application of the proposed
method to QUIC developed by Google and expected to be
popular in the future. QUIC is a transport layer protocol that
operates on the user land; it is designed and developed on
the premise of combination with HTTP/2[1].

QUIC communicates using UDP/443. Therefore, the pro-
posed method inserts and discards the pseudo TCP header for
the communication of UDP/443 port. It sets the port number
of the pseudo TCP header to be inserted to 443, making
it look like HTTPS communication. Furthermore, similar
to TCP communication, emulation processing of three-way
handshake is performed when communication start of QUIC
and connection migration occurs. QUIC is a protocol that
performs acknowledgment similar to TCP; hence, pseudo
TCP communication ca be seen as acknowledged after in-
serting a pseudo TCP header with the ACK flag set for the
QUIC packet.

In this study, we implemented the proposed method as
a loadable Kernel Module(LKM) using Netflter in Linux,
verified and evaluated its performance for QUIC. The module

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



verification results confirm that communication is possible
via a stateful inspection FW using the proposed method.

The rest of this paper is organized as follows. An overview
of related research is provided in Section 2. The proposed
FW traversal method that inserts a pseudo TCP header is
presented in Section 3. Application of the proposed method
to QUIC and its evaluation are described Section 4 and 5,
respectively. Conclusion and future work are provided in
Section 6.

II. RELATED WORK

A. Retransmission-Controlled TCP

Retransmission-Controlled TCP[2] suppresses retransmis-
sion control of TCP to perform real-time communication.
While the behavior of TCP controlling retransmission is close
to that of UDP, controls other than the retransmission control
work; hence, performance of the protocol to be passed is
affected in Retransmission-Controlled TCP.

B. SoftEther

SoftEther[3] is a layer 2 VPN protocol encapsulating an
Ethernet frame and transmitting a packet. Since HTTPS is
used as a tunneling protocol, SoftEther makes it possible to
pass through an FW, which is encrypted after the TCP header
and checks up to the application layer in detail. However,
SoftEther uses TCP connection for transmission. Therefore,
similar to the Retransmission-Controlled TCP, each control
mechanism of TCP exerts an impact on the control of the
protocol to be passed.

C. SOCKS

SOCKS[4] is a technology that relays communication of
the transition layer protocol and passes through an FW.
In SOCKS, a proxy server is installed at the boundary
between the external and networks, and external and internal
communication is accepted. Upon receiving the connection,
the SOCKS server authenticates the end user as necessary,
notifies, and connects to the destination node. Application
correspondence is necessary for using SOCKS; it cannot
be used transparently. In addition, there is problem of
throughput degradation since the SOCKS server receives and
retransmits, a packet once.

III. PROPOSED METHOD

In this study, we propose an FW traversal method that
inserts a pseudo TCP header to obtain communication of
a specific protocol on a communication path where packet
delivery between end nodes is not guaranteed. The proposed
method makes it possible to use various communication
protocols without being restricted by an FW. The method
achieves this by disguising packets that use protocols and
ports usually blocked by an FW making them look as if
they are part of HTTPS communication. Impersonation of
HTTPS communication is achieved by encapsulating the
pseudo TCP specified port 443 for the payload of the IP
datagram of the target packet. In this case, the pseudo
TCP performs only three-way handshake and connection
management as the control of TCP. In the proposed method, a
pseudo TCP header is inserted into a packet for encapsulation

Fig. 1. System image of proposed method.

and transmitted. The transmission packet can be returned
to the original form by removing the pseudo TCP header
after the packet passes through an FW. Unlike the existing
technology, double control does not occur since various
control mechanisms of TCP do not work in pseudo TCP.
That is, FW traversal is realized using encapsulation without
impairing the superiority of the target protocol.

Fig. 1 depicts a system image of the proposed method.
It is necessary to install the mechanism that implements
the proposed method before and after the FW that blocks
communication. Several patterns can be considered for the
installation location of the proposed method. In this study, we
assume that the proposed method is installed in each network
to which the client and the server belong, as shown in Fig. 1.
The proposed method mechanism can be installed on the end
node such as the client or server, a terminal existing on the
communication route such as a router of each network, or the
same network such as the proxy. As a prototype, we assume
here that a relay node having the proposed mechanism is
installed for each network to which the client and server
belong.

For the communication applying the proposed method
to pass through a stateful inspection FW, it is necessary
to set each field value of the pseudo TCP header to be
inserted by emulating TCP communication. Therefore, the
proposed method emulates three-way handshake at the start
of communication and periodically acknowledges during
communication. Fig. 2 depicts the emulation of three-way
handshake in the proposed method. When the proposed
mechanism on the client side receives the start packet of
the new flow of the target protocol, it the proposed method
mechanism makes the packet to wait. Next, the proposed
mechanism sends and receives SYN, SYN/ACK, and ACK
packets. A flags is set in the reserved field of the TCP header
distinguish these packets from the actual TCP three-way
handshake packet. In addition, these communication types
three-way handshake between client servers using the IP
addresses of the clients and servers. Our mechanism then
performs a pseudo TCP header insertion process on the
packet that was kept waiting and transmits it.

The proposed, mechanism establishes a connection with
the FW existing on the communication path, makes it ap-
pear as HTTPS communication, and allows packets to pass
through the FW. Moreover, the proposed method can disguise
communication as something other than HTTPS communica-
tion by changing the port number of the pseudo TCP header
to be inserted to another one. In addition, application of the
proposed method can aggregate and convert the ports used
by the target protocol; therefore, it is effective for protocols
that randomly select ports from their a wide range.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



Fig. 2. Three-way handshake emulation of the proposed method.

IV. APPLICATION OF THE PROPOSED METHOD TO QUIC

QUIC is a transport layer protocol that operates on the
user land and can handle multiple streams simultaneously.
This protocol is designed and implemented on the premise
of a combination with HTTP/2. The protocol communicates
using UDP rather than TCP or TLS that were used in con-
ventional Web communication. Therefore, QUIC performs
TCP control, TLS encryption, authentication processing,
HTTP/2 stream management, and flow control. The protocol
unifies these processes to make it specialized in the HTTP/2
transport layer protocol, thereby trying to reduce the com-
munication delay associated with them. Currently, QUIC is
being standardized by the Internet Engineering Task Force.

Since QUIC allows to reduce communication delay, page
loading time can be reduced. As a result, Web service
providers can develop a wider range of services while im-
proving the user experience of the client with enhanced com-
munication performance using QUIC. However, UDP/443
used by QUIC is blocked in many FW configrations. There-
fore, even if QUIC is enabled for both the client and server,
TCP and TLS are usually used instead of QUIC. To solve
this problem, we implement the proposed method for QUIC
communication.

To build the proposed method, it is necessary to modify
the packet on the communication route. Therefore, we imple-
mented the proposed method in Linux as an LKM using Net-
filter. Netlfiter is a framework for obtaining packet filtering
and network address translation function. In Netfilter, hook
points are defined for each protocol in the packet processing
routine, and it is possible to rewrite hooked packets by
registering a callback function at the hook point. In this
section, we describe the processing of the proposed method
for QUIC.

A. Client-side LKM processing

The client-side LKM hooks packets at the IP layer and
processes the proposed method. First, it judges whether the
hooked packet is a packet related to the proposed method,
which could be a QUIC, pseudo TCP, or SYN/ACK packet
with a flag in the reserved field. When the hooked packet
is a pseudo TCP packet, the LKM discards a pseudo TCP
header, updates the IP header, and returns the packet to the
hook point. The packet is judged as a pseudo TCP packet
if TCP and the source port number is 443, and the value
of the first four bytes of the TCP header matches the value
of the first four bytes of the UDP header. When the hooked

packet is a QUIC packet, a pseudo TCP header is inserted
between the IP and UDP headers.　 If it is a UDP packet
of the destination port 443, then it is a QUIC packet. Next,
the LKM judges whether or not the hooked QUIC packet
is a new flow. Four tuples of IP address and port number
are used for flow judgement. When it is a known flow, the
QUIC packet, in which the pseudo TCP header is inserted,
is returned to the hook point and the packet is transmitted.
When the flow is a new flow, the pseudo TCP packet is not
returned to the hook point but kept on standby; further the
emulation process of the three-way handshake is then started.
When the hooked packet is a SYN/ACK packet with a flag
in the reserved field, it transmits an ACK packet with a flag
in the reserved field to the server and discards the hooked
SYN/ACK packet. When the hooked packet is not one of the
above-mentioned three packet types, it is not modified and
returned to the hook point.

B. Server-side LKM processing

The server-side LKM hooks IP packets with
NF IP PRE ROUTING and processes the proposed
method. First, it judges whether the hooked packet is a
packet related to the proposed method. In the server-side
LKM, the packet related to the proposed method can be a
QUIC packet, pseudo TCP packet, SYN or ACK packet
with a flag in the reserved field. When the hooked packet is
a pseudo TCP packet, the same processing is performed as
by the client-side LKM. The packet is determined as begin
a pseudo TCP if TCP and the destination port number is
443, and the value of the first four bytes of the TCP header
matches the value of four bytes immediately after the TCP
header. When the hooked packet is a QUIC packet, the
same processing is performed as by the client-side LKM.
However, the emulation processing of three-way handshake
is not performed even for undetected flows. When the
hooked packet is a SYN packet with a flag in the reserved
field, it transmits a SYN/ACK packet flagged in the reserved
field to the client and discards the hooked SYN packet.
When the hooked packet is an ACK packet with a flag in
the reserved field, the hooked ACK packet is discarded.
When the hooked packet is not one of the above-mentioned
four packet types, it is not rewritten and returned to the
hook point.

C. Emulation of sequence and acknowledgment numbers

To enable passing through a stateful inspection FW, each
field value of the pseudo TCP header to be inserted needs to
be set by emulating actual TCP communication. Therefore,
we implemented a process emulating the sequence and
acknowledgment numbers of the pseudo TCP header.

The initial sequence number of the pseudo TCP communi-
cation of the proposed method is generated using a random
number when a SYN or SYN/ACK packet is generated at
the time of emulating three-way handshake. The sequence
number of the ACK packet stores the value of the sequence
number + 1 stored in the SYN packet. The acknowledgment
number of the SYN/ACK and ACK packets stores the value
of the sequence number + 1 stored in the packet that triggers
these packet generation and transmission processing.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



Fig. 3. Evaluation environment.

After completing the emulation process of three-way hand-
shake, the sequence and acknowledgment numbers of the
packet with inserted pseudo TCP header waiting on the
client-side LKM store the same value as the last ACK
packet upon three-way handshake. The sequence number
after completing three-way handshake stores the sequence
number + the value of the TCP payload length stored in
the pseudo header of the packet transmitted in the same
flow. With this processing, the sequence number of the
pseudo TCP communication of the proposed method in-
creases sequentially for each TCP similar to the actual TCP
communication.

The acknowledgment number of the pseudo TCP header
is determined by the sequence number of the pseudo TCP
header that was discarded last. In particular, the acknowledg-
ment number of the pseudo TCP header stores the sequence
number + the TCP payload length of the packet with inserted
pseudo TCP header that was discarded last in the same flow.
In addition, the ACK flag is set in all pseudo TCP headers
during data communication.

V. EVALUATION

In this section, we describe functional and performance
evaluation of the proposed FW traversal method that inserts
pseudo TCP header. In function evaluation, we confirm
that QUIC communication is possible when applying the
proposed method under an FW environment setting to shut
down QUIC communication. In the performance evaluation,
we confirm the overhead caused by applying the proposed
method and its impact on the page loading time.

A. Evaluation environment

Fig. 3 shows the evaluation environment. The difference
between Figs. 3(A) and 3(B) is in the proposed method. In
the client, QUIC’s test client software proto-quic[5] works.
In the Web server, Caddy[6] operates. Caddy is web server
software compatible with Google version of QUIC. The
relay node performs the processing of the proposed method.
We built an FW that blocks QUIC communication using
iptables, which is the Linux standard FW. Fig. 4 shows
the configuration of iptables, where all packets other than
TCP/80, 443, and ICMP packets are blocked. When an
error is detected in the header of the packet, the packet is
discarded, even if it is a TCP/80 or 443 packet using state
matching of the conntrack module.

*filter
:INPUT ACCEPT
:FORWARD DROP
:OUTPUT ACCEPT
-A FOWARD -p tcp ! --syn -m conntrack --ctstate NEW
-j DROP

-A FOWARD -m conntrack --ctstate INVALID -j DROP
-A FOWARD -p tcp --sport 80 -j ACCEPT
-A FOWARD -p tcp --dport 80 -j ACCEPT
-A FOWARD -p tcp --sport 443 -j ACCEPT
-A FOWARD -p tcp --dport 443 -j ACCEPT
-A FOWARD -p icmp -j ACCEPT
COMMIT

Fig. 4. Configuration of iptables.

Fig. 5. Packet capture log of client-side relay node.

B. Functional evaluation

In this evaluation, we confirm that QUIC communication
can be obtained by passing through FWs that block QUIC
communication. Fig. 5 represents a packet capture log of
the client-side relay node, which shows that a communica-
tion start packet is made to wait, emulation of three-way
handshake is performed, a pseudo header is inserted for the
QUIC packet transmitted from the client, and the pseudo TCP
header of the received pseudo TCP packet is discarded. Fig.
6 represents the output log of the proto-quic client. Since
the HTTP status record of 200 has been returned from the
Web server, the communication is successful. Therefore, we
conclude that QUIC communication becomes possible when
using using the proposed method under the FW environment
with the configuration shown Fig. 4.

C. Overhead measurement

Since the proposed method performs processing such as
insertion and discarding of pseudo TCP headers, an overhead
occurs. To measure this overhead, the same communication
was performed as represented in Figs. 3(A) and 3(B).

As a measurement method, we performed QUIC com-
munication in both environments and packet capture on the
client. The RTT is measured from the timestamp of a packet.
The start time is when a QUIC packet is transmitted from
the client, whereas the end time is when the client receives
the response packet. In the environment shown in Fig. 3(B),
which excludes the relay nodes for applying the proposed
method, measurements are carried out in the same way, and
the increment of RTT is measured by applying the proposed
method. handshake, the QUIC packet of the new flow with
standby processing is excluded from measurement.

The RTT increased by 0.92ms when the proposed method
was applied. Therefore, the delay per packet is 0.46ms due
to adding two relay nodes and the pseudo header insertion
and discarding processing of the proposed method.

D. Measurement of page loading time

In the section V-C, we confirmed that delay of 0.46ms
is observed per packet when applying the proposed method.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



Response:
headers:
{
:status 200
alt-svc quic=":443"; ma=2592000; v="38,37,36,35"
server Caddy
etag "pcvcl73y0s"
last-modified Fri, 03 Aug 2018 05:00:43 GMT
content-type text/html; charset=utf-8
accept-ranges bytes
content-length 184060

}

Fig. 6. Output log of proto-quic client.

TABLE I
MEASUREMENT RESULT OF RTT(MS).

Enviroment Fig. 3(A) Fig. 3(B)
RTT 2. 36ms 1. 42ms

Therefore, we measure the effect of the increased delay on
communication and page load time.

1) Measurement method: To investigate the impact on the
Web page loading time, we used QUIC to communicate
in the environment of Fig.3(A) where a relay node was
introduced to apply the proposed method, and environment of
Fig.3 (B), where no relay terminal exists. We prepared three
html files of 1, 5, and 10MB to measure the loading times.
To simulate the actual Internet, the FW terminal generated
a communication delay by using the tc command. There are
five types of delays: no delay, 20, 50, 70, and 100ms. We
measured the delay 10 times and calculated its average value.
In the proposed method, the three-way handshake emulation
processing is performed at the beginning of communication.
Therefore, we separately measured the time taken to emulate
three-way handshake. The time required for reading a page
was measured from the timestamp of the packet captured
at the client. The measurement started at the first captured
QUIC packet and ended up to the QUIC packet last received
by the client during the communication. The time required
for the three-way handshake of the proposed method was
measured from the timestamp of the packet captured at the
client-side relay node. The measurement started when the
QUIC packet was received first and end when the emulation
process of three-way handshake ended and the packet with
inserted pseudo TCP header was transmitted.

2) Result: Table II shows the measurement results for the
page loading times in the normal environment of Fig.3(B)
and in the environment, using the proposed method repre-
sented in Fig.3(A). It can be noticed from the table that
the time required for the emulation processing of three-way
handshake by the proposed method is 3WH. This result is
explained in detail in Section 5-E.

E. Discussion

We confirmed that the proposed method allows QUIC
communication to pass through a stateful inspection FW. In
addition, we confirmed that the proposed method increases
the one-way latency per packet by 0.46ms. However, the
impact of the proposed method on the page loading time
was small for QUIC transmitting and receiving packets
continuously. It is clear that the value obtained by subtracting

TABLE II
MEASUREMENT RESULT OF PAGE LOAD TIME(MS).

0ms 20ms 50ms 70ms 100ms
Fig. 3(B) 79.0 189.0 419.7 581.5 824.3

1MB Fig. 3(A) 77.9 213.5 477.2 656.5 927.4
3WH 0.63 20.7 50.78 70.83 100.7
Fig. 3(B) 379 565 835 962 1304

5MB Fig. 3(A) 398 617 893 1064 1429
3WH 0.63 20.7 50.8 70.7 100.6
Fig. 3(B) 725 843 1183 1330 1798

10MB Fig. 3(A) 701 841 1244 1426 1881
3WH 0.66 20.7 50.8 70.7 100.8

3WH from the results achieved by the proposed method is
close to that achieved for the normal environment (see Table
2). On the other hand, the emulation processing of three-way
handshake of the proposed method had a big influence on the
page loading time. The time required for 3-way handshake of
the proposed method depends on RTT between relay nodes.
Therefore, it is thought that the impact of the proposed
method would be noticeable in networks with large RTT.
However, three-way handshake is performed only once when
QUIC communication is started. Therefore, it is expected to
have limited effect since the increase in the communication
time caused by three-way handshake is inversely proportional
to the total communication time of QUIC. This is clear
from the results shown in Table II. In addition, the impact
of three-way handshake is consistent with RTT between
relay nodes and it is constant depending on the state of
the network. The impact of three-way handshake is thought
to decrease as communication time increases. Actually, the
time required for three-way handshake was almost equal to
the set communication delay. Furthermore, as a result of the
communication delay of 100ms, the ratio of communication
time in the environment of Figs. 3(A) and Fig. 3(B) is 1.125
when the file size is 1MB and 1.0476 when it is 10MB.

VI. CONCLUTION

In this paper, we proposed an FW traversal method
that inserts a pseudo TCP header with the purpose of
realizing communication on a communication path where
packet reachability between end nodes is not guaranteed. The
proposed method enables various communication protocols
to be used without being restricted by an FW. Moreover,
the proposed method dose not affect the control of the
target protocol since it only rewrites the packet on the
communication path.

We implemented and evaluated the proposed method on
Linux using Netfilter for QUIC that is expected to become
popular in the future. We confirmed that the target commu-
nication can pass through a stateful inspection FW when
applying the proposed method. Moreover, we confirmed
that only the emulation process of three-way handshake
implemented in our method impacts the page download time.
In the future, we plan to apply the proposed method to
communication on the Internet and verify its effectiveness.

REFERENCES

[1] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” RFC 7540, May 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7540.txt

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



[2] S. YOKOYAMA, H. YAMAMOTO, and K. YAMAZAKI, “The eval-
uation of communication characteristic of cellular network and imple-
mentation and evaluation of retransmission-controlled tcp,” The IEICE
transactions on information and systems (Japanese edition), vol. 95,
no. 5, pp. 1133–1141, may 2012.

[3] D. Nobori, “Virtual ethernet system and tunneling communication
with softether,” https://www2.softether.jp/jp/company/media/academic/
data/softetherpaper001.pdf, jan 2004.

[4] M. D. Leech, “SOCKS Protocol Version 5,” RFC 1928, Mar. 1996.
[Online]. Available: https://rfc-editor.org/rfc/rfc1928.txt

[5] “proto-quic,” https://github.com/google/proto-quic.
[6] “caddy.” [Online]. Available: https://caddyserver.com

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019




