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Abstract—This article considers a new shop location model
with both traffic generators and lines of residents. In traditional
location models, a shop locater almost regards such sites
that many residents exist, called traffic generators, or their
neighborhood as good locations. However, because such sites
are also good for other locaters, locating on them needs many
costs and then often results badly for all of them. This article
focuses not only residents’ sites but their movement, that is,
traffic lines. This article proposes a method for prediction of
their movement from traffic generators. By representing traffic
generators and lines as points and lines on a plain respectively,
the proposed location model can be formulated to a location
optimization problem in spatial model. Its solution method
based upon reduction and decomposition is proposed, and an
efficiency of the method is shown by applying it to an example
of the location problem.

Index Terms—shop, location optimization, traffic lines, spatial
model, Brent method.

I. INTRODUCTION

LOCATION optimization is an important area in op-
erations research, and has been studied by many re-

searchers. Researches of location optimization can be clas-
sified into two categories according to the type of locating
facilities. One is facility location for not obtaining rewards
from its users directly, e.g. delivery centers and libraries. An
important location problem in the category is “Weber prob-
lem”, whose recent researches are studied by Hosseininezhad
et al.[5], Uno et al.[12], Saleh Farham et al.[8] and so on.
The other is facility location for obtaining rewards from its
users directly, e.g. shops and supermarkets. This article deals
with the later, called shop location optimization (SLO).

In SLO, the objective of shop locater is usually to obtain
as many rewards from residents as possible. Mathematical
studies on the SLO were originated by Hotteling[6]. He
considered the location problem under the conditions that
residents are uniformly distributed on a line segment and
evaluate shops by the distances to them. As an extension
of Hotelling’s SLO, Wendell and McKelvey[13] considered
residents on a finite number of points, called traffic gener-
ators (TGs), and formulated a location problem on a tree
network whose vertices are TGs. Drezner extended their
location problem to a problem locating on a plain including
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TGs. This article deals with the location problem on a plain
including TGs.

On the above SLO, residents evaluate the located shops
only by the distances to them. Huff[7] defined estimation
model for shops in a trading area, called Huff location
model. In Huff location model, shop’s estimation from a
resident increases in the proportion of the quality of service
it provides, and decrease inversely with the square of the
distance from her/his to it. Huff location model is applied
to many researches on SLO, whose resent researches are
studied by Uno et al.[12] and Blanquero et al[1].

An important issue of Huff location model for SLO is the
cost of locating shops. While a site of shop found by Huff
location model can expect to obtain a large sales, locating it
on such site usually needs many costs and then often results
badly. In this article, we focuses not only TGs but their
movement, that is, traffic lines (TLs). Hodgson[3] considered
a location-allocation model that demands for shops are
represented as flows, including TLs. Applications of the
Hodgson’s model were studied by Hodgson et al.[4] and
Riemann[9]. We propose a new SLO model with both TGs
and TLs of residents. We construct a method for prediction
of their movement from traffic generators. By representing
TGs and TLs as points and lines on a plain respectively, the
SLO can be formulated to a location problem on the plain.
We construct its solution method based upon reduction and
decomposition of it, whose efficiency is shown by applying
it to an example of the new SLO.

The remaining structure of this article is organized as
follows. In the next section, we introduce the new SLO with
TGs and TLs based on prediction of residents’ movement,
and formulate it to a location problem on the plain. We pro-
pose a solution method for the formulated location problem
based upon reduction and decomposition in Section III. In
Section IV, we show an application of the solution method
for an example of the new SLO. Finally, conclusions and
future studies are summarized in Section V.

II. FORMULATION OF SHOP LOCATION OPTIMIZATION

We consider that a shop locater locates her/his shop
on Euclid plain R2. In R2, there are n points represent-
ing TGs of residents, set of whose indices is denoted by
I = {1, 2, . . . , n}. We regard TGs as potential demands of
locating shop. For i-th TG, i ∈ I , its site and demand are
denoted by vi ∈ R2 and qi > 0, respectively.

In the new SLO, we consider TLs of residents on the
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Fig. 1. Illustration of TGs and TLs

location area. TLs can be classified into the following three
types:
• TLs both of whose ends are TGs,
• TLs one of whose ends is a TG, and
• TLs being entirely unrelated to any TGs.

In generally, the first TLs are predominantly larger than those
of others. Hence we consider the first TLs in the article. Fig.
1 illustrates the relation with TGs and TLs.

Note that if there are three or more TGs being concentrated
close, TLs generated by these TGs may be complex shapes.
For example, the example of SLO in Section IV deals with
the TL being a round route through six TGs.

In the SLO, we give the following assumption for TLs:
• TLs are generated between TGs with large demands,
• TLs are be generated between near TGs, and
• TLs are shaped as a shortest path between TGs.
We construct a mathematical model for generation of TLs

according to the above three assumptions. Let dij be distance
between i and j-th TGs, defined by the following Euclidean
norm:

dij := ||vi − vj || (1)

From the above assumptions, TL between these TGs is
generated if the following inequation holds:

qiqj
d2ij
≥ σ, (2)

where σ is a threshold for generation of TLs. Let E be set
of pairs of TGs generating TLs. For (i, j) ∈ E, i, j ∈ I ,
its demand is given as γ√qiqj , where γ is a coefficient for
demand of TLs, and its shape is given as a shortest path
between these TGs, denoted by Sij .

Moreover, we consider the case that there are two or more
TLs overlapping. We give demand of sites between i and j-
th TGs as sum of demands of TLs overlapping, denoted by
wij , and set of TGs at the ends of all overlapping TLs is
denoted by Iij . Fig. 2 illustrates an example of model with
four TGs. If TLs are generated between all TGs, four TLs
are overlapped between second and third TGs. Then, demand
of sites between second and third TGs is given as

w23 = γ · (√q1q3 +
√
q2q3 +

√
q2q3 +

√
q2q4)

For evaluation of locating shop for TGs, we introduce Huff
location model[7]. In the SLO, we assume that the sales of
shop not located on any TLs is unaffected by all TLs. Let
x ∈ R2 be site of location of the shop, and di(x) be distance

Fig. 2. Overlap of TLs

from i-th TG to the shop, defined by the following Euclidean
norm:

di(x) := ||x− vi|| (3)

In the model, the shop locater expects the sales of her/his
shop from i-th TG defined as the following function:

hi(x) :=


α · qi

d2i (x)
, if di(x) > ε,

α · qi
ε2
, if di(x) ≤ ε,

(4)

where α is a positive constant value for TGs, depended upon
the kind and quality of shop, and is used in common to all
TGs, and where ε is an upper limit of distance that residents
can move without any effort.

First we consider the sales of shop not located on any TLs.
From (4), the sum of sales obtained from all TGs, without
considering TLs, can be represented as follows:

f(x) :=
∑
i∈I

hi(x), if x ∈ R2\S (5)

where
S =

⋃
(i,j)∈E

Sij (6)

On the other hand, for evaluation of locating shop for TLs,
we propose a new function for sales of locating shop. Note
that for each TL, we can regard that each resident in the TL
exists on all sites on the TL. This means that sales obtained
from each TL is constant for any site if it is located on the
TL. If the shop is located on Sij , we represent the sales from
residents on TL between i and j-th TGs as the following
function:

uij(x) := max

 ∑
k∈Iij

hk(x), βwij

 , if x ∈ Sij (7)

where β is a positive constant value for TLs, whose value is
generally more than one because residents in a TL are nearer
by shops on the same TL than those on TGs. It depends upon
the kind and quality of shop, and is used in common to all
TLs.

From (7), the sum of total sales of shop located on Sij

with considering j-th TL can be represented as follows:

f(x) := uij(x) +
∑

k∈I\Iij

hk(x)

= max

∑
k∈I

hk(x), βwij +
∑

k∈I\Iij

hk(x)

 ,

if x ∈ Sij . (8)
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Next, we consider the cost of locating shop. Huff location
model is widely applied to shop location in real world. Then,
we assume that the cost of locating shop is represented as
follows:

c(x) :=
∑
i∈I

hi(x), x ∈ R2. (9)

Therefore, we can formulated our SLO as the following
reward maximizing problem:

maximize r(x) := f(x)− c(x)

subject to x ∈ R2

 (10)

III. SOLUTION METHOD

From (5) and (9), the reward from shop is just zero
wherever it is not located on any TLs. From (8) and (9),
the reward from shop located on TLs is zero or more. Then,
if the reward from shop is also zero wherever located on
TLs, it is zero for any location. Hence, (10) can be reduced
to the following problem:

maximize r(x) = βW (x)−
∑
k∈Iij

hk(x)

subject to x ∈ S

 (11)

where

W (x) =

 wij , x ∈ Sij ,

0, x /∈ S
(12)

For solving (11), we propose the decomposition of it
to subproblems each of whose feasible set is a TL. Then,
subproblem for TL between i and j-th TGs, (i, j) ∈ E is
formulated as follows:

maximize r(x) = βwij −
∑
k∈Iij

hk(x)

subject to x ∈ Sij , (i, j) ∈ E

 (13)

By solving all subproblems for (11), we can obtain optimal
solution of (11), which is the largest objective function value
in all solutions of subproblems.

Since the first term of objective function of (13) is con-
stant, (13) is equivalent to the following problem:

minimize
∑
k∈Iij

hk(x)

subject to x ∈ Sij , (i, j) ∈ E

 (14)

From (5), the objective function is neither linear nor
convex. Unfortunately, there is no efficient solution algorithm
for general nonlinear and nonconvex programming problems.
However, from the assumption of TLs in the previous section,
each TL can be represented as a line segments. Since (14)
can be represented as one-dimensional optimization, we can
apply Brent method[2] for solving (14).

Fig. 3. An Example of SLO

Fig. 4. Generation of TLs

IV. NUMERICAL EXAMPLE OF SLO

In this section, we show an efficiency of the proposed
solution method by applying it to an example of our SLO.
We consider an example of SLO with six TGs, whose sites
are shown in Fig. 3. Demands for the TGs are given qi = 2
for all i ∈ {1, 2, . . . , 6}.

For generation of TLs, we give σ = 1 and γ = 0.5. Then,
TLs are generated in Fig. 4, all of whose demands wij = 1
for all (i, j) ∈ E.

For sales and cost of locating shop, we give α = 1 and
β = 2. Then, we can formulate the SLO as the following
problem:

maximize r(x) = f(x)−
6∑

i=1

hi(x)

subject to x ∈ R2

 (15)

For finding an optimal location of the SLO, we reduce
(15) to the following subproblems:

maximize r(x) = 2−
∑
k∈Iij

hk(x)

subject to x ∈ S =
⋃

(i,j)∈E

Sij ,

 (16)

where E = {(1, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 6)}.
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Fig. 5. Optimal Location

We decompose (16) to the following subproblems for
(i, j) ∈ E:

minimize
∑
k∈Iij

hk(x)

subject to x ∈ Sij , (i, j) ∈ E

 (17)

For solving (17), we code a Brent method by Python with
scipy.optimize.brent function[10] in SciPy. Then, we can find
the following candidates of optimal solutions of (16)
• If the shop is located on S12, optimal site of (17) is x =

(4.00, 1.00), whose objective function value is 1.00.
• If the shop is located on S13, optimal site of (17) is x =

(1.00, 4.00), whose objective function value is 4.00.
• If the shop is located on S24, optimal site of (17) is

x = (2.50, 2.00), whose objective function value of (13)
is 1.78.

• If the shop is located on S35, optimal site of (17) is
x = (3.50, 6.00), whose objective function value of (13)
is 1.78.

• If the shop is located on S46, optimal site of (17) is
x = (5.00, 2.00), whose objective function value of (13)
is 4.00.

• If the shop is located on S56, optimal site of (17) is
x = (6.00, 4.00), whose objective function value of (13)
is 1.00.

These sites are shown in Fig. 5. By comparing these objective
function values, we can obtain an optimal solution of (16),
and then (15), x = (1.00, 4.00) and (6.00, 4.00). Their
objective function values are r(x) = 2.00 − 1.00 = 1.00,
which means that the shop locater can obtain reward from a
shop by these location.

V. CONCLUSION AND FUTURE STUDIES

In this article, we have considered a new SLO with
both TGs and TLs. We proposed a mathematical model for
prediction of residents’ movement from traffic generators.
We defined sales function of shops on TLs and applied
Huff location model for representing cost of locating shop.
Then, we formulated a new SLO problem with TGs and
TLs. For solving the formulated problem, we decompose it
to subproblems whose feasible sets are line segments, and
then suggest to apply Brent method. An efficiency of solution
method is shown by applying an example of SLO.

This article proposes a simple cost function of locating
shop. However, cost functions in real world are usually given
in a complicated way. Considering SLOs with more complex
cost function is an interesting future research. Moreover, this
article considers SLO that TLs is given statically. However,
TLs often changes their sizes and shapes, and includes
uncertainty. Considering SLO with uncertain TLs changing
dynamically is also an interesting future study.
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