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Abstract— A posteriori optimization strategy for the local 

adaptation of the regularization parameters for the nonlinear 

variational model in image motion is presented in this paper. 

The idea of such interesting method is based on the automatic 

step wise refinement of the solution with the special type of 

isotropic mesh refinement process which is controlled by a 

posteriori error estimate in a suitable norm which is a 

computable quantity and works as metric for the given domain 

refinement strategy and the determination of the optimized 

approximate solution in this paper. The main idea is to compute 

image motion with adaptive FEM (finite element method) based 

discretization of nonlinear variational problem then 

optimization with an interesting adaptive process which is a 

novel idea of optimization especially in the Imaging problems.  

Index Terms— Finite Elements, Image Motion. 

Optimization, Isotropic mesh Adaption. 

I. INTRODUCTION 

 

The problems on the moving images are generally known 

as correspondence problems where one mainly is interested 

to compute the pixel shifts (disparities) during the moving 

image or camera shifts during the moving cameras. The 

main goal is therefore to compute the depth information of 

the scene. The determination of such disparities in formal 

terms is called optic flow problem. Main application of these 

problems is to distinguish the stationary from the moving 

objects; moreover the ideas of the image motion are very 

useful in the area of the robot navigation, medical imaging, 

video processing and also in the fluid mechanics etc. 

Generally these correspondence problems are inverse and 

ill-posed. The “inverse” and “ill-posed problems” have been 

surely gaining great popularity in mathematical sciences for 

last more than sixty years. The main interest in the study of 

such problems is their complexity and instable behavior. 

With the advent of the powerful computational technology, 

the inverse and ill-posed problems have attracted the 

mathematical community, especially the applications of such 

problems in imaging techniques have gained much attention 

[1]-[17].  

The interesting and classical approaches for the solution 

of such problems is generally based on the idea of energy 

optimization and regularization, their history go back to the 
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Thikonov like regularization [5]. The problems in the 

computer vision and image processing research are usually 

ill-posed inverse problems. The regularization of the 

problems in PDE’s (Partial Differential Equations) based 

image processing is based on the idea of minimization of the 

energy functional [7]-[14]. These energy based 

regularization techniques in image processing generally 

depend on the optimal selection of the smoothing 

parameters. The usual choice of the regularization 

parameters in these techniques is a priori and uniform over 

the whole domain [11]-[14]. A new idea of non-uniform 

selection of scaling parameters was a priori and appeared as 

local iterative method for the denoising problem [6]. The 

novel method for the selection of regularization is based on 

the idea of a posteriori regularization was introduced for 

linear PDE’s based problems [3] and extended to the 

nonlinear problems by the author [7]. The further 

experiments were performed on a posteriori regularization as 

[8]-[10]. All the previous approaches [11]-[17] are based on 

the idea of optimization then discretization. This work is 

dedicated to the interesting idea of FEM based discretization 

then a posteriori optimization of the discrete solution which 

is of main interest in this work and a fresh contribution for 

the nonlinear variational problems. The special type of the 

mesh refinement yields the dramatic improvement in the 

solution of the coupled set of partial differential equations as 

a velocity image at each step of the computation. 

II. OPTIMIZATION PROBLEM 

The following nonlinear constraint optimization problem is 

proposed for the computation of two directional motions. 
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where 
22(u) ( ) dxT x u d 


    represents 

the convex regularization and the velocity vector   

1 2( , )Tu u u   describes the image motion in a video image 

sequence called optical flow. The ( ) 0x   continuous 

scaling function given on the domain .  

Here 2( , )Tx x x  and f  is image sequence designed as 

: ,f      where   is two dimensional space 

domain. The terms 
1 2
,x x tf f and f  are denoted as the 

derivatives with respect to
1 2,x x and t . The optimization 

constraint given in problem (01) is directly obtained from 
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the first order Taylors’s theorem on the following constancy 

assumption on the grey values of the of the moving image in 

the image sequence [12], [14]
 

              
1 2 1 1 2 2( , , ) ( , , 1)f x x t f x u x u t             (2) 

The goal is to determine the two directional pixel velocities 

1 2u ( , )u u (ill-posed problem). The unconstraint settings 

for the above problems can be given by the following energy 

functional 
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The first part of (03) (u)T called the smoothness term and 

the second term is called the data term. The solution of the 

given variational problem is given as 

           inf ( (u) : u X)m E                                     (4) 

The problem (4) is solved as optimization problem in the 

space X  of functions of the bounded variations in 2 . The 

existence of the minimizers of (03) follows from the direct 

methods of the calculus of variations. Since the smoothing 

term is convex and assuming that the data f  is smooth 

enough. Applying the direct method of the calculus of 

variation, the minimization of the energy functional (03) 

yields the following Euler-Lagrange equations 
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III. WEAK FORMULATION AND DISCRETIZATION  

Weak formulation of (5) is give 

1
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The problem is being discretized in the space hX X  of 

1P  finite elements, here 1( )P K  denotes space of degree one 

polynomials in
2 . The discrete domain is considered as 

triangular grid hT  with elements of maximum size 0h  . 

 0
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Discrete problem is given as   
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The a posteriori optimization process for the initial 

optimized solution is based on the isotropic mesh adaptive 

procedure which is performed by a posteriori error estimates 

called residual error indicator [19] and the weight function 

( ).x  The residual error indicator for nonlinear variational 

model is defined in the spirit of [3, 7, 19].  
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IV. COMPUTATIONAL STRATEGY AND NUMERICAL RESULT 

The numerical experiments are performed using the 

FreeFem++ which is a programming language for the 

determination of FEM based solution of the PDE’s (Partial 

Differential Equations) [18]. We present the following a 

posteriori optimization adaptive process for the initial 

obtained solution (optic flow) in the spirit of [3, 7] 

i. Compute minimizer of the problem (3) 0u (initial 

optic flow) on 
0

hT  with large  .h  

ii. Perform adaptation and build new refined grid 
1

hT  

using the metric as a posteriori estimate (9). 

iii. Set a local optimal choice for .h as new function 

1h  and go to step ii to compute 1u  on 
1

hT . 

Such a choice of h at each adaptive step is 

proposed as 
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 Where  
Thr  is a threshold and   controls the variations 

in 
k

h . The goal of this a posteriori regularization method 

is process is to refine those regions where the flow occurs 

and error density is large. On other hand the automatic 

coarsening of the grid is performed where the image motion 

does not occur, consequently the dramatic improvement in 

the initially optimized solution is performed. In this paper 

following two experiments have been carried out to justify 

the performance of the a posteriori optimization process for 

the given nonlinear problem.   

Example 1:  In this example the moving marble block image 

sequence has been considered for testing the given strategy. 

The test data was downloaded from the website 

http://i21www:ira:uka:de/imagesequences. The results are 

shown as eight plots in the figure. 2(a-h), every plot is 

placed with caption showing the purpose.  The plots Fig.2. 

(c,d,e) are interesting as the optic flow is shown on the 

constructed meshes and  clearly showing the stepwise 

refinement at various mesh adaptive iterations. The vector 

plot Fig.2 (f) is showing the optic flow as optimized solution 

on 7
th

 iteration of the adaptation. The results are observed 

with sharp edges (Contribution from the Non quadratic 

regularization).  

    One can observe from the original image which shows 

three marble blocks but in computed optic flow image shows 

only two blocks, the question arises that why?   The answer 

is the fulfillment of the actual definition of the optic flow as 

separation of moving objects from static objects in the given 

video sequence. Here in this image sequence, only two 

blocks are shown as moving and the third one is static which 

is not appeared in the optimized approximate optic flow. 

Initially we consider a large value of alpha as 1000  .  

   The plots Fig.2. (g, h) are given for the  smoothness 

function ( )x  to show the role of regularization parameters 

in ill-posed inverse problems, moreover to know that how 

the regularization parameters effect on the solution of ill-

posed inverse problem specially in this method. To check 

the confidence level of this method, the Table.1 and its plot 

Fig.1 is presented, which consists of the useful results for the 

maximum norm of the error indicator  K  at various 

adaptive iterations.  It is observed that error density from the 

obtained solution is more or less decreasing by refining the 

solution at each adaptive step and build the good confidence 

measures for the obtained solution. 

 

   Table.1. Error Indicator Maximum norm  
Adaptive 

Iterations 
     Error Indicator K  

01 0.001 

02 0.00027 

03   4.35 x 10-05 

04  1.96 x 10-05 

05  3.94 x 10-06 

06 1.14 x 10-06 

07 1.95  10-06 

 

 

                 Fig.1. Plot for Maximum Norm of Error Indicator  K  

 

        
  (a) Marble block first frame                (b)  Time derivative ft 

      
(c) Flow Mesh after first Iteration      (d) Flow Mesh after sixth  Iteration   

         
(e) Mesh after seventh  Iteration         (f)  Flow vector  after seventh  

Iteration 

           

       
 (g) Plot of  at first iteration        (h) Plot of  at fourth iteration 

 Fig. 2. A posteriori adaptive optimization process for the determination of 

optic flow for the marble block image sequence 

 

Example. 2: To test the method another experiment was 

performed on the Minicooper image sequence has been 

considered as test data, which is available at http: 

//vision.middlebury.edu/flow/data/.  The initial choice of the 

weight function is considered as  500   and the 

parameter    is kept very small. In this experiment four 

adaptive iterations of the given algorithm have been 

performed and the dramatic improvement in the flow vector 
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and the construction of a nice mesh at each step of adaptive 

process is observed. The plots for various parameters have 

been presented to show the performance of the given a 

posteriori optimization process. The numerical results are 

given in Figure.3.(i-r) below. 

 

       
(i) Mini cooper first frame                        (j)  Time derivative ft 

    
(k) Flow vector after first adaptation  (l) Flow vector after fourth adaptation 

 

   
(m) Flow Mesh after first adaptation  (n) Flow Mesh after fourth adaptation   

 

        
(o) Flow Magnitude after first adaptation (p) Flow Magnitude after fourth 

adaptation 

 

       
(q) Plot of  at first iteration           (r) Plot of  at fourth iteration 

Fig. 3. A posteriori adaptive optimization process for the determination of 

optic flow for Minicoper image sequence. 

V. CONCLUSION 

A posteriori adaptive strategy introduced in [3, 7] was 

applied to the nonlinear variational model (3) to refine the 

initial optimized approximate solution (optic flow) in a 

posteriori way of optimization process. It was observed that 

the adaptive procedure presented in this paper improved the 

quality of initial optimized approximate solution (optic flow) 

from the nonlinear optimization model (03) at each step of a 

posteriori local adaptation.  

  It was shown with simulations for this moving Marble 

block example that the initial approach of [3] performs even 

better when the model is improved as nonlinear and thus 

furnishes a general tool which could be used with many 

existing models in the literature of computer vision 

problems. As the method given in this paper is quite new and 

stills requires some improvements like the settings of the 

thresholds and other regularization parameters appearing in 

the given nonlinear model.  

     The strategy for the given a posteriori adaptation to select 

the regularization parameter, furnishes a distribution of     

which reveals the precise effects of the regularization for an 

efficient computation of the flow. Moreover the work is 

interesting should be pursued for various other applications 

in imaging techniques. The further numerical experiments 

along with error profiles and comparisons with existing well 

rated methods are under consideration with more real world 

images will be performed in near future.  

.  
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