

Abstract—A BPMN is a model that describes a process,
showing the sequence of operations and related business
information. Execution semantics were introduced in BPMN 2.0
to support the definition of executable processes. In order to test
a BPMN model, many researchers focus on test case generation
technique. Mutation Testing is a technique to evaluate the
quality of test cases by introducing a fault to the original
program and the mutated version of the program is called a
mutant. A previous research [1] proposed mutation operators
for a BPMN model. In order to apply the mutation operator, we
need a framework for mutant generation. Thus, this paper
proposes a framework for mutant generation based on Weak
Mutation testing technique which can generate mutants, deploy
mutants on BPMN Engine, and calculate three metrics which
are execution time, mutation score, and test effectiveness.

Index Terms—BPMN, BPMN Engine, Business Process

Automation, Weak Mutation Testing.

I. INTRODUCTION

OWADAYS, many organizations recognize the
importance of developing business process. A Business

Process Modeling Notation (BPMN) [2] is one of a
standardized notation for creating visual models of business
or organizational processes in order to provide a standard
notation readily understandable by all business stakeholders.
BPMN 2.0 was introduced by Object Management Group
(OMG) in 2011. This version is more flexible. The execution
semantics were introduced to support the definition of
executable processes. This makes it possible to test a BPMN
model. Many researches on this field have been published.
Most of them are related to test case generation [3, 4], but
they have not focused on judging the quality of the generated
test cases.

Mutation Testing [5] is one of Software Testing techniques
that can evaluate the quality of test cases. In Mutation testing,
we can introduce a syntax change to the source code. The
source code that is mutated with a syntax change is called a
mutant. We can use test cases that are used to test the original
source code to the test the mutant and check if the test cases
are able to find the injected error by comparing between the
results of the original program and the mutant. If the results
are not the same, we said that the test cases can kill the
mutant. This technique is called strong mutation testing.

However, the strong mutation has a major drawback because
of the expensive computational cost. William E. Howden's
[6] proposed his work for reducing the computational cost by
introducing a technique called "Weak Mutation Testing" that
considers between a component of the original program and
the mutant.

Previously, Phra Pridsadi and Taratip [1] proposed a
Mutation Operator for a BPMN Model. There are twenty-
five mutation operators in four categories which are Identifier
Mutation Operator, Expression Mutation Operator, Activity
Mutation Operator, as well as Exception and Event Mutation
Operator. However, the mutation operators should be applied
to a BPMN model to verify usability of the operators, and
measure quality of test cases.

Thus, we present a weak mutation testing framework by
using BPMN Mutation Operator [1] which can generate
mutants, automatically deploy mutants on a BPMN Engine,
and calculate metrics such as execution time, mutation score,
and test case effectiveness.

We organize the rest of this paper as follows. Section II
describes related work. Section III explains necessary
background knowledge. Section IV presents an analysis of
BPMN Mutation Operators. Section V illustrates an example
of mutant generation by applying candidate mutation
operators. In section VI, we present the proposed Weak
Mutation Testing framework for a BPMN model. Finally,
conclusion and future work are discussed in section VII.

II. RELATED WORK

Phra Pridsadi and Taratip [1] proposed twenty-five BPMN
mutation operators for a BPMN model in four categories as
follows.

1) Identifier Mutation Operator – This category includes
mutation operators which are assignment operators.

2) Expression Mutation Operator – This category includes
mutation operators which control decisions of the
model’s activities including timing and duration.

3) Activity Mutation Operator – This category includes
mutation operators which control the model’s activity
process as concurrent and sequence process.

4) Exception and Event Mutation Operator – This category
includes mutation operators which control the failure
and unpredictable activity in the model during model is
processing.

Details of the BPMN mutation operators are described in
TABLE I. However, this research has not verified usability
of the operators, and measure quality of test cases.

Antonia et al. [7] were interested in how to calculate test
effectiveness. He revised test effectiveness, proposed by
Anna Derezinska [8] , which defined from the relation
between the mutation score and a test result. He proposed test

A Weak Mutation Testing
Framework for BPMN

 Chatri Ngambenchawong and Taratip Suwannasart

N

Manuscript received January 06, 2019; revised January 26, 2019.
C. Ngambenchawong and T. Suwannasart are researchers with the
Software Engineering Lab, Center of Excellence in Software
Engineering, Department of Computer Engineering, Faculty of
Engineering, Chulalongkorn University, Bangkok, Thailand, E-
mail: Chatri.N@student.chula.ac.th, Taratip.S@chula.ac.th

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

TABLE I
MUTATION OPERATORS FOR BPMN MODEL

Operator Description

Identifier Mutation Operators

IVR Replaces a variable identifier by another of the same type.
ITR Replaces the identifier value by another of different type.

Expression Mutation Operators

EAR Replaces the arithmetic operator in<conditionExpression>.
ERR Replaces the relational operator in <conditionExpression>.
ELR Replaces the logical operator in <conditionExpression>.
ETA Replaces the value by another number in <timeDuration>.
EDA Replaces the date by different date in <timeDate>.
ERA

Replaces the repeating round of timer by different value in
<timeCycle>.

ECA
Replaces the duration of timer by different value in
<timeCycle>.

Activity Mutation Operators

ASR
Replaces a value of “isSequential” between true and false in
<multiInstanceLoopCharacteristics>.

ACR
Replace a value of “loopCardinality” by zero or by half of its
initial value or initial value plus one in
<multiInstanceLoopCharacteristics >.

AAM
Replaces the arithmetic operator of “completionCondition”
in < multiInstanceLoopCharacteristics >.

ARM
Replaces the relational operator of “completionCondition”
in <multiInstanceLoopCharacteristics >.

ALM
Replaces the logical operator of “completionCondition”
in <multiInstanceLoopCharacteristics>.

ATR
Replaces a value of “testBefore” between true and false
in <standardLoopCharacteristics >.

AMR
Replace a value of “loopMaximum” by zero ot by half of its
initial value or initial value plus one in
<standardLoopCharacteristics>.

AAS
Replaces the arithmetic operator of <loopCondition>
in <standardLoopCharacteristics>.

ARS
Replaces the relational operator of <loopCondition>
in <standardLoopCharacteristics>.

ALS
Replaces the logical operator of <loopCondition>
in <standardLoopCharacteristics>.

AAA
Replaces the arithmetic operator of<completionCondition> in
<adHocSubProcess >

ARA
Replaces the relational operator of <completionCondition>
in <adHocSubProcess >

ALA
Replaces the logical operator of <completionCondition>
in <adHocSubProcess>

AOR
Replaces a value of “ordering” between true and false in
<adHocSubProcess>

ARR
Replaces a value of “cancelRemainingInstances” between
true and false in <adHocSubProcess>

Exception and Event Mutation Operators

XBR Replaces a value of “behavior” by “None”, “One”, “All”, or
“Complex” in <multiInstanceLoopCharacteristics>

Note: arithmetic operator (+, -, *, /, mod), relational operator (<, <=,
>, >=, ==, !=) and logical operator (and, or)

effectiveness formula by starting from the average number of
test cases killing dead mutants (���) as shown in equation 1.

��� =
∑ ��

�
 (1)

Km is a number of test cases that kill mutants, and D is a
number of dead mutants. Test effectiveness (E) is calculated
by using equation 2.

� = ��(�, �) �
���

�
 (2)

MS(P, T) is the Mutation Score of Program(P) under Test
Cases(T), ��� is an average number of test cases killing dead
mutants, and T is a total number of test cases. Therefore, in
this paper we use the weak mutation testing for a BPMN
model to generate possible mutants for each mutation

operator. The generated mutants are tested against test cases
that we already have generated to test the original BPMN
model. After that three metrics are calculated which are
execution time, mutation score (representing quality of test
cases), and test effectiveness.

III. BACKGROUND

A. Business Process Model and Notation (BPMN)

The BPMN [2] is a modeling language that is managed and
updated by the Object Management Group (OMG™) for
describing functional behaviors of a business process. The
main purpose of a BPMN is to create a visual model of
business or organizational processes in standardized notation
in order to provide readily understandable by all business
stakeholders. Currently, the specification is version 2.0, and
ISO adopted the BPMN and published it as ISO/IEC
19510:2013 [9] which improved model’s capability such as
BPMN model interchange between a BPMN designer that is
managed by the BPMN Model Interchange Working Group
(BPMN MIWG).

The components of a BPMN model are classified into five
main groups

1) Flow Objects - Flow objects are controls that are used
for describing a business process behavior. There are
three Flow Objects: Events - Events can occur at the
beginning, the middle, and the end of a process,
Activities - Activities are tasks or steps that occur
during a process, and Gateways - Gateways are used to
control a flow of a process.

2) Data - Data is represented with the four elements: Data
Object, Data Input, Data Outputs, and Data Stores.

3) Connecting objects - Connecting objects are used for
connecting flow objects together and connecting
between flow objects and other information objects.
There are four types of connecting objects: Sequence
Flows are used to show a sequence of an activity,
Message Flows are used to show sequences of messages
between senders and receivers, associations are used for
connecting data and artifacts and Data Associations are
used to show the relation of between a data and an
activity.

4) Swimlanes - Swimlanes are used for categorizing
objects of the model, consisting of Pools and Lanes.

5) Artifacts - Artifacts are used as additional descriptions
of a process. There are two types of Artifacts: Group
and Text Annotation.

B. BPMN Engine

A BPMN engine [10] is a tool that helps a process architect
to put programming logic into a BPMN model. It can execute
a BPMN model without converting the model to source code.
In general, a BPMN engine consists of three elements: BPMN
Designer, BPMN Model, and Process Engine. The BPMN
Designer is a tool that helps business analysts and technical
analysts work together by using standard modeling language,
and graphical notation. The BPMN Model is a business
process that is stored in XML format under
<bpmn:definitions> tag. The Process Engine is a tool that can
create a BPMN model to an executable workflow.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

C. Mutation Testing

Mutation testing or Strong Mutation [5] is one of the most
effective techniques to evaluate the quality of a test suite
which has been well-known and studied in many years. This
testing technique is a fault-based approach in the unit level of
software testing by introducing only one fault in the program.
A fault is created by applying a mutation operator to the
original program. The source code that is mutated from an
original program is called a mutant. However, the major
disadvantage is expensive computational cost and time since
we can create many mutants from an original program.

The mutation testing process is started from an original
program P and corresponding test cases T and described as
follows:

1) Program P produces a collection of mutants by using
mutation operators to seed a simple fault into P.

2) The original Program P and mutants are executed by
using test cases T. Next, the output would be considered
if the output of mutant is different from the original
program with same input data, the mutant would be
killed. Otherwise, the mutant is live.

3) We have to create new test cases to kill Live mutants.
In case that the Live mutants cannot be killed, we will
call these Live mutants as equivalent mutants.

To measure the test case quality, a tester calculates
mutation score: MS(P,T) which represents the ratio of number
of killed mutants (Mk) divided by difference of number of
total mutants (Mt) and number of equivalent mutants (Mq) as
shown in equation 3.

��(�, �) =
��

�����
 (3)

D. Weak Mutation Testing
 Weak Mutation Testing [6] is another mutation testing that

reduces the expensive computational cost and time. William
E. Howden's proposed this technique by focusing only a
component in a program from giving an example. The
program P which C is a simple component of P and mutated
version of C produces C'. So, P' is the mutated version of P
containing C'. There are five types of program components
which William E. Howden defined as follows:1) Variable
Reference 2) Variable Assignment 3) Arithmetic Expression
4) Relation Expression and 5) Boolean Expression.
Nevertheless, there was no clear definition of a program
component.

J.Offutt [11] proposed his work that given a clear definition
of component (C) which are categorized into four types as
follows:

1) EX-WEAK/I (Expression-WEAK/1) The first type of
weak mutation testing is comparing the state after the
first execution of the innermost expression between an
original program and a mutant. There is the expression
of the original program Z = (A+B) * (C+D) and a
mutant which is Z = (A+B) * (C-D). The result of the
expression (C+D) and (C-D) must be compared
between the original program and the mutant.

2) ST-WEAK/I (Statement-WEAK/1) This mutation type
compares the state after the first execution between the
statement of the original program and the mutated
statement. The statement of the original program is Z =

(A+B) * (C+D) and the mutated version is Z = (A+B) *
(C-D), are compared after the first execution.

3) BB-WEAK/1 (Basic-Block-WEAK/1) This type of
weak mutation considers a basic block which is the
maximal sequence of instructions with one entry and
one exit. The result of for the original program of loop
i is i <= 50 and the result of the mutated version is i <
50.

4) BB-WEAK/N (Basic-Block-WEAK/N) The type of
weak mutation is the extended type of BB-WEAK/1.
This type considers N times execution of a basic block.
Since, a mutant in a basic block component sometimes
cannot be killed at the first loop of execution. This
technique compares each loop execution between the
original program and the mutant. An example of the
basic block component for BPMN is <multiinstance
LoopCharacteristics>, and <testbefore>.

E. Mutation Operator

In mutation testing, we use mutation operators to create a
set of mutants. Thus, in mutation operators have been
proposed for supporting many programming languages.
Mutation operators are categorized into four types as.
Procedural Programming Language such as C [12], and
Fortran [13]. As time passes Object-Oriented was introduced
and adapted to mutation testing Technique such as Java [14],
Python [15]. Set-Oriented Language is for database
management like SQL [16] and the last type Process
Modeling Languages is for WS-BPEL [17] and BPMN [1].
Mutation operators are designed for each programming
language, but some mutation operators are designed based on
the same concept such as arithmetic expression.

IV. ANALYZE BPMN MUTATION OPERATOR

This section describes BPMN mutation operators proposed
in [1] in order to adapt in weak mutation technique

1) EX-WEAK/1: This mutation type considers only an
expression so the mutation operator in categories
Identifier Mutation Operators mostly in Expression
Mutation Operators and Activity Mutation Operators,
except ERA, ECA, ASR, ACR ATR, AMR, AOR and
ARR can be considered in this expression analysis.

2) ST-WEAK/1: This second type of weak mutation
testing covers all mutation operators of EX-WEAK/1
and XBR which in Exception and Event Mutation
Operators, for instance ARS: <completionCondition>
under adHocProcess Notation which check the
completeness of AdHoc Process like if-else statement
and XBR:<multiInstanceLoopCharacteristics>attribute
which invoke call back after the instance of task
completed like switch-case statement.

3) BB-WEAK/1 and BB-WEAK/N These types consider
a block component of BPMN and cover mutation
operator which cannot use EX-WEAK/1 and ST-
WEAK/1 to kill mutants. BB-WEAK/1 used for the
first-time execution and BB-WEAK/N is extended from
BB-WEAK/1 that handle mutant in basic block which
alive in the first round but can kill after n round of
executions.

As the result, TABLE II demonstrates between the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

availability (✓) of mutation operators and each type of weak

mutation that can be used with BPMN Model

TABLE II
WEAK MUTATION OPERATORS FOR BPMN MODEL

Operator Weak Mutation for BPMN Model
EX-WEAK/1 ST-WEAK/1 BB-WEAK/1 BB-WEAK/N

Identifier Mutation Operators

IVR    

ITR    

Expression Mutation Operators
EAR    

ERR    

ELR    

ETA    

EDA    

ERA - -  

ECA - -  

Activity Mutation Operators

ASR - -  

ACR - -  

AAM    

ARM    

ALM    

ATR - -  

AMR - -  

AAS    

ARS    

ALS    

AAA    

ARA    

ALA    

AOR - -  

ARR - -  

Exception and Event Mutation Operators

XBR -   

V. GENERATE MUTANT

This section is an example of mutant generation by applying
candidate mutation operators of each category for weak
mutation testing.

Fig. 1 shows an original BPMN model in XML format, and
Fig. 2 to Fig. 6 are mutated versions by using ERR mutation
operator which replaces a relational operator in the
expression INPUT_A + INPUT_B >=5. In this case, the
original BPMN model will result in five mutants. The >= is
replaced by other types of relational operator including >, <=,
<, ==, and !=.

Fig. 1. Original BPMN Model

Possible Mutants BPMN Model (Change from >= to >)
 <bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">
 <![CDATA[${INPUT_A + INPUT_B>5}]]>
 </bpmn:conditionExpression>

Fig. 2. A Mutant after applying ERR Operator (Change from >= to >)

Possible Mutants BPMN Model (Change from >= to <=)
 <bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">
 <![CDATA[${INPUT_A + INPUT_B<=5}]]>
 </bpmn:conditionExpression>

Fig. 3. A Mutant after applying ERR Operator (Change from >= to <=)

Possible Mutants BPMN Model (Change from >= to <)
 <bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">
 <![CDATA[${INPUT_A + INPUT_B<5}]]>
 </bpmn:conditionExpression>

Fig. 4. A Mutant after applying ERR Operator (Change from >= to <)

Possible Mutants BPMN Model (Change from >= to ==)
 <bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">
 <![CDATA[${INPUT_A + INPUT_B==5}]]>
 </bpmn:conditionExpression>

Fig. 5. A Mutant after applying ERR Operator (Change from >= to ==)

Possible Mutants BPMN Model (Change from >= to !=)
 <bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">
 <![CDATA[${INPUT_A + INPUT_B!=5}]]>
 </bpmn:conditionExpression>

Fig. 6. A Mutant after applying ERR Operator (Change from >= to !=)

VI. BPMN WEAK MUTATION TESTING FRAMEWORK

Phra Pridsadi and Taratip [1] proposed mutation operators
for a BPMN Model and they generate only limited numbers
of mutants using strong mutation testing and they test the
mutants with test cases manually.

We have proposed a weak mutation testing framework for
a BPMN Model by applying weak mutation testing
techniques to generate a set of mutants and automatically
execute mutated BPMN models on a BPMN engine. The
structure of our proposed framework shown in Fig. 7. The
components and main functions of the framework are
described as follows:

1) Mutant Analyzer & Generator: At this stage there are
sub-steps below.
1.1) BPMN Validator: Testers upload a BPMN Model

which consists of tags <bpmn:process> and
<bpmndi:BPMNDiagram>. Then, the BPMN
model is checked by using BPMN XSD schema if
it is a BPMN Model or not.

1.2) Mutant Generator: This step a set of mutants is
generated based on BPMN mutation operators [1]
and the mutants are stored into the mutant
database.

2) Test Execution: At this stage there are sub-steps below.
2.1) Test Controller: The original BPMN model and

Mutants are loaded from the database. Firstly, the
Test Controller deploys the original BPMN model
to the BPMN Engine server via REST API. The
Test Controller executes the original BPMN
model with test cases and save the results of
original BPMN model. Secondly, the Test
Controller deploys each mutated BPMN model to
the BPMN Engine server, executes each mutant
with the same test cases used with the original
BPMN model and save the results of mutants.

2.2) Result Comparator: This step retrieves test results
from the original BPMN model and mutants and
compares these results and record to see if each
mutant is killed or live in the test result database.

3) Metric Calculation: At this stage, the results from Test

Original BPMN Model
<bpmn:processid="Process_1" isExecutable="true">
 ...
 <bpmn:sequenceFlow id="SeqFlow1" sourceRef="Task01"
 targetRef="ExclusiveGateway1">
 <bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">
 <![CDATA[${INPUT_A + INPUT_B >= 5]]>
 </bpmn:conditionExpression>
 </bpmn:sequenceFlow>
 ...
</bpmn:process>

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

Execution are retrieved to calculate metrics.
3.1) Mutation Score Calculation: This step, test results

are retrieved from the database and are measured
sufficient of test cases by the ratio of number of
dead mutants divided by the difference between
total mutants and the number of equivalent
mutants as described in section 3.

3.2) Test Effectiveness Calculation: This step
retrieves mutation score and test results to
calculate test effectiveness by using equation from
Antonia Estero-Botaro’s experiment showing the
relation between mutation score and the ratio of
the average of number of the test cases that kill
mutants divided by total number of test cases as
discussed in section 2.

3.3) Report Generator: This step creates the summary
of the test results that include total number of
mutants, killed mutants, live mutants, mutation
score, test effectiveness, and execution time.

Fig. 7. BPMN Weak Mutation Testing Framework

VII. CONCLUSION

This paper proposes a weak mutation testing framework
for a BPMN model that provides a result from comprehensive
analysis that guides the tester for using all mutation operators
in [1] by each level of weak mutation testing technique as
shown in section IV with an example of a mutation operator
in section V. The future work is to implement a tool that fully
supports with all mutation operators with an open source
BPMN Engine.

REFERENCES

[1] P Tadeesom and T. Suwannasart. Mutation Operators in BPMN Model.
in ICIDE 2017. 2017.

[2] OMG. Business Process Model and Notation V.2.0.2 [Online]. 2014;
Available from: https://www.omg.org/spec/BPMN/2.0.2 [2019,Jan 15]

[3] P. Yotyawilai and T. Suwannasart, Design of a tool forgenerating test
cases from BPMN, in Proceedings of 2014 International Conference
on Data and Software Engineering,ICODSE 2014. 2014. p. 1-6.

[4] C. Nonchot and T. Suwannasart, A tool for generating test casefrom
BPMN diagram with a BPEL diagram, in IMECS2016. 2016.

[5] DeMillo, R.A., R.J. Lipton, and F.G. Sayward, Hints on test data
selection: Help for the practicing programmer, 1978: p. 34-41.

[6] Howden, W.E., Weak mutation testing and completeness of test sets.
IEEE Transactions on Software Engineering, 1982(4): p. 371-379.

[7] Estero-Botaro, A., F. Palomo-Lozano, and I. Medina-Bulo.
Quantitative evaluation of mutation operators for WS-BPEL
compositions.(ICSTW), 2010 Third International Conference on. 2010.
IEEE.

[8] Derezinska, A. Quality Assessment of Mutation Operators Dedicated
for C# Programs. in 2006 Sixth International Conference on Quality
Software (QSIC'06). 2006.

[9] ISO/IEC, ISO/IEC 19510:2013 – Information technology - Object
Management Group

[10] Silver, B., BPMN Method and Style, with BPMN Implementer's Guide:
A structured approach for business process modeling and
implementation using BPMN 2.0. 2011: Cody-Cassidy Press Aptos.

[11] Offutt, A.J. and S.D. Lee, An empirical evaluation of weak mutation.
IEEE Transactions on Software Engineering, 1994: p. 337-344.

[12] Delamaro M. E., M.J.C. Proteum - A Tool for the Assessment of Test
Adequacy for C Programs. in In: Proc. of the Conf. on Performability
in Computing Systems (PCS 96). 1996.

[13] King, K.N. and A.J. Offutt, A Fortran language system for mutation-
based software testing. Softw. Pract. Exper., 1991: p. 685-718.

[14] Ma, Y.-S., J. Offutt, and Y.R. Kwon, MuJava: an automated class
mutation system: Research Articles. Softw. Test. Verif. Reliab., 2005:
p. 97-133.

[15] Halas, K. MutPy. 2017; Available : https://github.com/mutpy/mutpy.
[16] Tuya, J., M.J. Suarez-Cabal, and C.d.l. Riva, Mutating database

queries. Inf. Softw. Technol., 2007: p. 398-417.
[17] A. Estero-Botaro, F.P.-L., and I. Medina-Bulo. Mutation operators for

WS-BPEL 2.0. in ICSSEA 2008: 21th International Conference on
Software & Systems Engineering and their Applications. 2008. . Paris,
France.

.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

