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Abstract—This paper presents a two-wheeled robot control
that can balance upright on its own by controlling the angular
speed of the motor to keep the robot upright using measured
data from the gyroscope sensor. The aim of this study is
to demonstrate the design of fractional-order PID controller
(FOPID) that has more controllability and the ability to adjust
outperform traditional PID controller. The design of optimal
FOPID controller based on integer-order PID parameters are
explained and validated its performance compared with the
traditional PID controller using Matlab simulation. As well as
the real system experiment is implemented on Raspberry Pi
using IIR filters cascaded second-order section form II. The
study revealed the appropriate concept of implementation of
FOPID on the real system.

Index Terms—two-wheels self-balancing robot, raspberry pi,
control system, fractional-order PID controller, digital IIR filter

I. INTRODUCTION

SELF-balancing robot is standing on two-wheels and
keeps itself balance without falling as well-known small

personal transporter called “Segway”. Self-balancing robot 
based on an inverted pendulum theory is a popular research 
topic in several years. An inverted pendulum is a chal-
lenge control problem because the system is non-linear and 
completely unstable [1]. To control the robot upright, the 
external force form motor is needed to compensate for the 
angular displacement of the robot. The most important part to 
stabilize the robot’s system is a controller. The most widely 
used and simple controller is a P ID controller (proportional-
integral-derivative controller) which appropriates for improv-
ing both transient and steady-state responses. However, the 
P ID controller is less effective with high order and high 
external noise system [2]. This paper introduces fractional 
order PID controller (FOPID) PIλDµ controller based on 
fractional calculus. The non-integer operators λ and µ are the
order of integral and derivative parts respectively, therefore 
FOPID have more adjustable parameters than traditional PID
so that it has higher performance to control high order and 
delay time system, especially the performance of the non-
linear control system overcome traditional PID controller [3]. 
FOPID will be deeply described in section II. There are more
author several approaches about a self-balancing robot follow
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Fig. 1. Self-balancing robot.

literature reviews [4-8] In section II, we will discuss theories 
related to this paper include of fractional calculus, fractional 
order PIλDµ controller, digital IIR filter, and Kalman filter 
that necessary to eliminate the measurement error from the tilt 
sensor. Section III discusses in mechanical structure, 
mathematical model, and state-space of the robot. 
Section IV demonstrates PID and FOPID controller design 
and their simulation results. Section V demonstrates to 
realization implemented both controllers on the real system 
and result of PID controller on the real system.

II. THEORIES RELATED TO THE SELF-BALANCING
ROBOT

A. Fractional Calculus

As far as we know that the conventional calculus has
integer orders for both derivative and integral operations
while the fractional-order calculus has non-integer order
operations aD

α
t in (1).

aD
α
t =


dα

dtα

1∫ t
a
(dt)−α

<(α) > 0,
<(α) = 0,
<(α) < 0,

(1)

where a, t denote the limits of the operation and α denotes
the fractional order. The fractional differ-integral has multi-
definitions [9] as follows:

1) Riemann-Liouville definition [10]:

aD
α
t f(t) =

1

Γ(m− α)

(
d

dt

)m t∫
a

f(τ)

(t− τ)
α−m+1 dτ (2)

For m − 1 < α < m,m ∈ N where Γ(·) is Euler’s gamma
Function.

2) Grünwald-Letnikov definition:

Dα
t f(t) = lim

h→0

1

hα

[ t−ah ]∑
j=0

(−1)
j

(
α

j

)
f(t− jh) (3)
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In equation (3) part inside [] are integer. The Laplace trans-
form of αth order derivative of a signal x(t) with α ∈ R+

(assuming zero initial conditions) is given by (4).

L{Dαx(t)} = sαX(s). (4)

B. Fractional-order P IλDµ controller

Fractional PID controller or FOPID is well known as
PIλDµ controller based on the fractional calculus, λ and µ are 
non-integer order of integral and derivative part respectively, 
therefor FOPID has total five parameters (Kp, Ki, Kd, λ and 
µ) cause ability to control the dynamic system precisely. In 
(5), u(t) is FOPID control input in time domain and Gc(s) 
denotes the fractional-order PID controller transfer function.

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t) (5)

Gc(s) = Kp +
Ki

sλ
+Kds

µ (6)

When taking λ = µ = 1 result is the traditional PID
controller.

C. Kalman Filter

Kalman filter introduced by Rudolph E. Kalman in 1960
is the best well know filter theory [11] and widely used [12].
Kalman filter is kind of pure time domain filter which differs
from most filter like a low-pass filter that is a frequency
domain designed [13]. Kalman filter can eliminate noise and
recover the real data by comparing error covariance between
previous (7) and current states (8) [11]. Kalman filter time
update equation:

(7)

Kalman filter measurement update equation:

(8)

Where A,B are parameters of state, Q,R denote error co-
variance of process and measurement respectively, P denotes
an estimated error covariance, K is Kalman filter gain, H
is predicted measurement, more information about Kalman
filter in [12] and about self-balancing robot with Kalman
filter are in [14, 15].

D. Digital IIR Filters

Infinite impulse response (IIR) filter contain feedback
paths that can keep infinite impulse response [16]. IIR filter
can be model in transfer function form, H(z) that consists
of poles (bi) and zeros (ai), as the following Equation.

H(z) = k

∑M
i=0 biz

−i

1 +
∑N
i=1 aiz

−i
(9)

IIR cascaded second-order section form II transfer function
defined as follows.

H(z) = k ×
N−1∏
n=0

bn[0] + bn[1]z−1 + bn[2]z−2

1 + an[1]z−1 + an[2]z−2
(10)

Where N is the number of sections, bn is the set of forward
coefficients, and an is the set of reverse coefficients. To
implement the PID controller on the microcontroller, the
transfer function of controller is replaced by the IIR cascaded
second-order section form II filter because it has less delay
term than IIR filters described in (10) which will be discussed
in the implementation section.

III. MODELING FOR SELF-BALANCING ROBOT AND
STATE-SPACE REPRESENTATION

A. Mechanical Struction

The Structure of the self-balancing robot is shown in
Fig.1. The chassis of the robot made by 4 threaded rods,
layered with 3 mm acrylic plates for the equipment installed.
Raspberry Pi 3 model B is used as the main controller
because it’s tiny high-performance computer with 1.4 GHz,
64-bit quad-core processor [8], low power consumption with
an ability to wirelessly access from another device over
the same network that allows monitoring parameters while
the robot is operating. The angular position and angular
acceleration obtained from MPU-9150 Gyroscope and also
accelerometer etc. It can communicate via I2C protocol.
EMG30 gear motor with built-in encoder [17] and MD-25
drive board [18] designed for EMG30 was used as main
drive system that also communicates via I2C. as shown by
Fig.2. Gonçalves et. al. [19] have modeled EMG30 gear
motor both mechanical and electrical and simulation resulted
in estimated parameters of this motor that have been using
in the simulation section of this paper.

Fig. 2. Structure of Self-Balancing Robot.

B. Mathematical model of self-balancing robot

The mathematical model of robot is separated into 3 parts
as follows.

1) DC motor’s model: The circuit of a DC motor show
in Fig.3

Fig. 3. Circuit of a DC motor.

Kk = P−k H
T (HP−k H

T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k )
Pk = (I −KkH)P−k

x̂−k
P−k

= Ax̂k−1 +Buk
= APk−1A

T +Q
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Equation.11 represent Kirchhoff’s voltage law of DC mo-
tor where Va is voltage applied to DC motor, R and L are
equivalent resistance and inductance respectively, i is motor
current, Ve is back emf voltage.

Va = Ri+ L
di

dt
+ Ve (11)

Back emf voltage e V is a linear function of shaft angular
velocity , ω as show in (12).

Ve = keω (12)

Torque produced from a DC motor and total torque are
represented in (13) and (14) respectively.

τm = itotalkm (13)

τtotal = τm − τf (14)

Where τm is no load torque produced from motor, τf
is friction torque, τtotal is total current of a motor. Then
combine (13) and (14) we get the relation between total
torque and total current show in (15).

τtotal = itotalkm − τf (15)

τtotal =
(Va − Ve)

R
km − τf (16)

Substitute (12) into (16) the governing equation of DC
motor obtained (17). IR is moment of inertia of a wheel.

ω̇ =
kmVa
IrR

− kmkeω

IrR
− τf
Ir

(17)

Equation (18) and (19) are state and output equations of
state-space model[

θ̇
ω̇

]
=

[
0 1

0 −kmke
IWR

] [
θ
ω

]
+

[
0 0
km
IWR

− 1
IW

] [
Va
τf

]
(18)

y =
[
1 0

] [θ
ω

]
+
[
0 0

] [Va
τa

]
(19)

2) Robot’s Model: As mentioned previously, self-
balancing robot’s model is also called two-wheels inverted 
pendulum that has similar behavior to the inverted pendulum 
on cart’s model [20]. The cart’s model was replaced with two 
wheels described as follows.

Consider each left and right wheel applied Newton’s 
second law and the relation between torque, force, and radius 
the equations of left and right wheel obtained represent in 
(20) and (21).

MW ẍ =
km
Rr

Va −
kmke
Rr2

ẋ− IW
r2
ẍ−HL (20)

MW ẍ =
km
Rr

Va −
kmke
Rr2

ẋ− IW
r2
ẍ−HR (21)

Combining both (20) and (21) we have:

2

(
MW +

IW
r2

)
ẍ =

2km
Rr

Va−
2kmke
Rr2

ẋ−(HL+HR) (22)

Fig. 4. Free body diagram of robot’s wheels.

3) Chassis’s model: According to part of inverted pen-
dulum model in the free body diagram of chassis shown in
Fig.5

Fig. 5. Free body diagram of robot’s chassis.

The Equations of robot’s chassis calculated and integrated
with the DC motor’s model (for more information see also
[20], [21]) shown as follows.

(IP + l2MP )θ̈P − 2kmke
Rr ẋ+ 2km

R Va +MP gl sin θP
= −MP lẍ cos θP

(23)

2km
Rr Va = (2MW + 2IW

r2 +MP )ẍ+ 2kmke
Rr ẋ+MP lθ̈P cosθP

−MP lθ
2
P cos θP

(24)
Linearize system with vertical upward equilibrium posi-

tion condition, θ = π, if ϕ denotes the deviation of the
pendulum’s position from equilibrium (assume as a small
deviation), that is, θP = π + ϕ then we get the following
conditions.

cos θP = cos(π + ϕ) ≈ −1 (25)

sin θP = sin(π + ϕ) ≈ −ϕ (26)

(θ̇P )2 = (ϕ̇P )2 ≈ 0 (27)

Then substitute approximations in (25), (26) and (27) into
(23) and (24) result to two main governing equations as
follows.

ϕ̈ = MP l
(IP+l2MP ) ẍ+ 2kmke

Rr(IP+l2MP ) ẋ−
2km

R(IP+l2MP )Va

+ MP gl
(IP+l2MP )ϕ

(28)

ẍ = MP l(
2IW
r2

+MP+2MW

) ϕ̈− 2kmke

Rr2
(

2IW
r2

+MP+2MW

) ẋ
+ 2km

R
(

2IW
r2

+MP+2MW

)Va (29)

Combine (28) and (29) into state-space model shown in
(30) and (31).
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ẋ
ẍ
ϕ̇
ϕ̈

 =


0 1 0 0

0 2kmke(MP lr−IP−MP gl
2)

Rr2α
MP gl

2

α 0
0 0 0 1

0 2kmke(rβ−MP l)
Rr2α

MP glβ
α 0



x
ẋ
ϕ
ϕ̇



+


0

2km(−MP lr+IP+MP l
2)

Rrα
0

2km(−rβ+MP l)
Rrα


(30)

y =

[
1 0 0 0
0 0 1 0

]
x
ẋ
ϕ
ϕ̇

 (31)

Where β = 2MW + 2IW
r2 + MP and α = IPβ +

MP l
2
(
MW

IW
r2

)
TABLE I

PAREMETERS OF THE SYSTEM

Parameters Description Value

g Gravitational acceleration 9.81 m/s2

r Wheel’s radius 0.05 m.
MW Mass of a wheel 0.13 kg.
MP Mass of pendulum 1.24 kg.
l Length to chassis’s center of mass 0.213 m.
IW Wheel’s moment of inertia 0.0002899 kg.m2

IP Chassis’s moment of inertia 0.05626 Kg.m2

km Motor’s torque constant 0.2774 N.m/A
ke Back EMF constant 0.509 V/(rad/s)
R Equivalent resistance of motor 7.101 Ω

IV. CONTROLLER DESIGN AND SIMULATION RESULT

This section discusses the design technique of PID and
FOPID controller and then simulate and compare control
results using Simulink at the end of this section.

A. PID controller design
After state-space and parameters of self-balancing robot

obtained in the previous section. The PID controller’s gains
(Kp,Ki,Kd) obtained by minimizing the difference between
reference position (ϕ = 0, balance in vertical upward) and
actual output using trial and error method based on mathe-
matical model and balance ability of real robot’s system.

Step 1: Create a closed-loop control system in Simulink
represented in Fig.6, Auto-tune parameters using PID con-
troller toolbox with 30-degree initial condition, adjusting
proper response time and transient behavior. Controller out-
put value required between -12 to 12 V. Too fast response
time and strong transient behavior lead to the insufficient
torque produced by two motors cause the robot can’t keep
itself upward.

Fig. 6. Block diagram of closed-loop control.

Step 2: Applying PID controller gains to Raspberry Pi
board using block diagram language available in CODESYS
V3.5 (discussing at section V), start step 1 over again until
achieving the best result. Optimal PID gains represented in
Table II.

B. FOPID controller design

The design of FOPID controller performed by fraction-
alorder PID controller optimization tool form FOMCON
toolbox for MATLAB called by command fpid_optim
using the following steps.

Step 1: Convert state-space of the system to transfer
function using ss2tf() for optimizing by FOPID controller
optimization toolbox.

Step 2: Fix Kp,Ki,Kd with optimized integer-order PID
parameters obtained from section A. λ, µ = 1 and set search
limit for λ = [0.01, 10], µ = [0.01, 2], controller output =
[−12, 12].

Step 3: Using integrate square of error (ISE) performance
matrix for faster response. Set setpoint to 0.078 rad (small
deviation angle because fpid_optim toolbox focuses on
transfer function optimization with zero initial condition
there is not possible to set the setpoint to 0). Optimal FOPID
controller’s parameters are also represented in Table. II

TABLE II
PARAMETERS OF THE CONTROLLER

Parameters PID controller FOPID controller

Kp 194.534 194.534
Ki 1432.586 1432.586
Kd 5.551 5.551
λ 1 1.357
µ 1 0.803

The simulation results of both controllers with 2 sec 
simulation time compared in Fig.7, Fig.7 and Table III. show 
that the result of closed-loop control with proper FOPID 
controller (red line) overshoot improved from 29.22% to 
18.45%, rise time decreases from 74.74 ms to 46.91 ms 
compared with integer-order PID controller. The fractional-
order P IλDµ controller can achieve the system stability, great 
transient response and robustness compared with con-
ventional PID controller.

Fig. 7. Angle displacement results compared PID and FOPID controller.
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Fig. 8. Control signal of PID and FOPID controller.

TABLE III
RESULT SPECIFICATION OF PID AND FOPID CONTROLLER

Parameters PID controller FOPID controller

Rise Time 74.74 ms 46.91 ms
Delay Time 49 ms 49 ms
Peak Time 0.13 sec 0.10 sec

Settling Time % 335 ms 544 ms
Percent Overshot 29.22 % 18.45 %

V. FOPID CONTROLLER IMPLEMENTATION ON REAL
SYSTEM

This section briefly demonstrates implementation of the
controller into microcontroller board (Raspberry Pi 3) in
term of IIR cascaded second-order section form II transfer
function using CODESYS V3.5 Fig.9 represent the concept
of a closed-loop control system of the self-balancing robot.

Fig. 9. Block diagram of closed-loop control.

Using PID implementation MATLAB toolbox pidim to
convert continuous PID controller and Fractional-order PID
controller to discrete-time transfer function with zero-order
hold discretization method and convert to IIR cascaded
second-order section form II matrix by d2sos() as follows.

PID controller:

FOPID controller:

Create IIR cascaded second-order section form II function
block using CODESYS V3.5 for controlling real system of
the self-balancing robot the angular displacement of the robot
with PID and FOPID controller shown in Fig.10 and Fig. 11

Fig. 10. Angular displacement of robot with PID controller.

Fig. 11. Angular displacement of robot with FOPID controller.

Fig.10 represents raw angle measured from MPU-9150 gy-
roscope (blue line) and noiseless angle filtered by Kalman’s
filters (red line). The result has shown that the angular
displacement controlled by the PID controller of the robot is
oscillated with amplitude less than ±5 degree and keep the
robot upward.

From Fig.11 the angular displacement of the robot con-
trolled by FOPID controller also oscillates with ±20 degree
amplitude that varies more than the result of PID controller.
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Unfortunately, there have two main problems with this im-
plementation. First, the complexity of calculation and many 
loops per task circle cause the process slow response. The 
robot can’t balance itself. Second, because of i2c communi-
cation, we used in this paper is limited speed.

VI. CONCLUSION

Fractional-order PIλDµ controller (FOPID) for the self-
balancing robot has been studied on this paper. The proper 
FOPID parameters obtained by FOMCON toolbox for MAT-
LAB based on proper integer-order PID parameters to 
achieving system performance and stability using MATLAB 
and SIMULINK. The realize implementation on Raspberry 
Pi concept for both controllers has been introduced using IIR 
cascaded second-order section form II transfer function in 
filter form on CODESYS V3.5, In theoretical term. simulated 
results show that the FOPID controller can stabilize the 
system and improve transient response with less percent 
overshoot and rise time than PID controller. Whereas the 
implementation of PID controller on real robot system can 
keep the robot stable better than FOPID controller because 
of this implementation on raspberry or microcontroller using 
numerical method of filter l ead t o over computing and slow 
overall process. The FOPID implementation on Raspberry Pi 
has been studying in the future.

The future study will focus on the implementation of 
fractional-order PID controller on a microcontroller board 
(Raspberry Pi), the improvement of program cycle speed for 
FOPID controller calculation and communication speed of 
robot’s components.
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Modification date : 28 May 2019
editing detail:
1. author's name below the name of the paper.

old version: "K.Kankhunthodl"
edited version: "K. Kankhunthod"

2. Change the wrong word.
edit the wrong symbol of the Fractional-order PID controller 
from  "P^(lambda) ID^(mu) Controller" to 
the colected word "PI^(lambda)D^(mu) Controller"

       To avoid confusion of readers.
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