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Abstract—A supergrid graph is a finite vertex-induced sub-
graph of the infinite graph whose vertex set consists of all points
of the plane with integer coordinates and in which two vertices
are adjacent if the difference of their x or y coordinates is
not larger than 1. The Hamiltonian path (cycle) problem is to
determine whether a graph contains a simple path (cycle) in
which each vertex of the graph appears exactly once. These
two problems are NP-complete for general graphs and they
are also NP-complete for general supergrid graphs. Despite the
many applications of the problem, they are still open for many
classes, including solid supergrid graphs and supergrid graphs
with some holes. A graph is called Hamiltonian connected if it
contains a Hamiltonian path between any two distinct vertices.
In this paper, first we will study the Hamiltonian cycle property
of C-shaped supergrid graphs, which are a special case of
rectangular supergrid graphs with a rectangular hole. Next,
we will show that C-shaped supergrid graphs are Hamiltonian
connected except few conditions. Finally, we will compute a
longest (s, t)-path between two distinct verticess, t in linear time.
The Hamiltonian and longest (s, t)-paths of C-shaped supergrid
graphs can be applied to compute the optimal stitching trace
of computer embroidery machines, and construct the minimum
printing trace of 3D printers with a C-like component being
printed.

Index Terms—Hamiltonicity, Hamiltonian connectivity,
longest (s, t)-path, supergrid graphs, C-shaped supergrid
graphs, computer embroidery machines, 3D printers.

I. I NTRODUCTION

A Hamiltonian path(cycle) in a graph is a simple path
(cycle) in which each vertex of the graph appears

exactly once. TheHamiltonian path (cycle) probleminvolves
deciding whether or not a graph contains a Hamiltonian
path (cycle). A graph is calledHamiltonian if it contains
a Hamiltonian cycle. A graphG is said to beHamiltonian
connectedif for each pair of distinct verticesu and v of
G, there is a Hamiltonian path fromu to v in G. The
Hamiltonian path and cycle problems have numerous ap-
plications in different areas, including establishing transport
routes, production launching, the on-line optimization of
flexible manufacturing systems [1], computing the perceptual
boundaries of dot patterns [33], pattern recognition [2], [34],
[37], DNA physical mapping [12], fault-tolerant routing for
3D network-on-chip architectures [8], and so on. It is well
known that the Hamiltonian path and cycle problems are NP-
complete for general graphs [9], [22]. The same holds true
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for bipartite graphs [30], split graphs [10], circle graphs [7],
undirected path graphs [3], grid graphs [21], triangular grid
graphs [11], supergrid graphs [13], etc.

The longest path problem, i.e., the problem of finding
a simple path with the maximum number of vertices, is
one of the most important problems in graph theory. The
Hamiltonian path problem is clearly a special case of the
longest path problem. Despite the many applications of the
problem, it is still open for some classes of graphs, including
solid supergrid graphs and supergrid graphs with some holes
[14], [15]. There are few classes of graphs in which the
longest path problem is polynomial solvable [5], [20], [24],
[32], [38]. In this paper, we focus on supergrid graphs.
We will give the necessary and sufficient conditions for
the Hamiltonian and Hamiltonian connected ofC-shaped
supergrid graphs. We then present a linear-time algorithm
for finding a longest path between any two distinct vertices
in a C-shaped supergrid graph.

The two-dimensional integer grid graphG∞ is an infinite
graph whose vertex set consists of all points of the Euclidean
plane with integer coordinates and in which two vertices
are adjacent if the (Euclidean) distance between them is
equal to 1. Thetwo-dimensional triangular grid graphT∞

is an infinite graph obtained fromG∞ by adding all edges
on the lines traced from up-left to down-right. Agrid
graph is a finite, vertex-induced subgraph ofG∞ (see Fig.
1(a)). A triangular grid graph is a finite, vertex-induced
subgraph ofT∞ (see Fig. 1(b)). Hunget al. [13] have
introduced a new class of graphs, namelysupergrid graphs.
The two-dimensional supergrid graphS∞ is an infinite
graph obtained fromT∞ by adding all edges on the lines
traced from up-right to down-left. Asupergrid graphis a
finite, vertex-induced subgraph ofS∞ (see Fig. 1(c)). A
solid supergrid graph is a supergrid graph without holes. A
rectangular supergrid graphis a supergrid graph bounded
by a axis-parallel rectangle (see 2(a)). AL-shapedor C-
shapedsupergrid graph is a supergrid graph obtained from
a rectangular supergrid graph by removing a rectangular
supergrid graph from it to make aL-like or C-like shape
(see 2(b) and 2(c)).

Previous related works are summarized as follows. Re-
cently, Hamiltonian path (cycle) and Hamiltonian connected
problems in grid, triangular grid, and supergrid graphs have
received much attention. In [21], Itaiet al. proved that the
Hamiltonian path (cycle) problem on grid graphs is NP-
complete. They also gave necessary and sufficient conditions
for a rectangular grid graph having a Hamiltonian path
between two given vertices. Note that rectangular grid graphs
are not Hamiltonian connected. Zamfirescuet al. [39] gave
sufficient conditions for a grid graph having a Hamiltonian
cycle, and proved that all grid graphs of positive width have
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Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) a supergrid
graph, where circles represent the vertices and solid lines indicate the edges
in the graphs.
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Fig. 2. (a) A rectangular supergrid graph, (b) aL-shaped supergrid graph,
and (c) aC-shaped supergrid graph, where circles represent the vertices and
solid lines indicate the edges in the graphs.

Hamiltonian line graphs. Later, Chenet al. [6] improved
the Hamiltonian path algorithm of [21] on rectangular grid
graphs and presented a parallel algorithm for the Hamilto-
nian path problem with two given endpoints in rectangular
grid graphs. Also there is a polynomial-time algorithm for
finding Hamiltonian cycles in solid grid graphs [31]. In
[36], Salman introduced alphabet grid graphs and determined
classes of alphabet grid graphs which contain Hamiltonian
cycles. Keshavarz-Kohjerdi and Bagheri gave necessary and
sufficient conditions for the existence of Hamiltonian paths
in alphabet grid graphs, and presented linear-time algorithms
for finding Hamiltonian paths with two given endpoints
in these graphs [23]. They also presented a linear-time
algorithm for computing the longest path between two given
vertices in rectangular grid graphs [24], gave a parallel
algorithm to solve the longest path problem in rectangular
grid graphs [25], and solved the Hamiltonian path and longest
path problems in some classes of grid graphs [26], [27],
[28], [29]. Reay and Zamfirescu [35] proved that all 2-
connected, linear-convex triangular grid graphs except one
special case contain Hamiltonian cycles. The Hamiltonian
cycle (path) on triangular grid graphs has been shown to
be NP-complete [11]. They also proved that all connected,
locally connected triangular grid graphs (with one exception)
contain Hamiltonian cycles.

Recently, we proved that the Hamiltonian cycle and path
problems on supergrid graphs are NP-complete [13]. We
also showed that every rectangular supergrid graph always
contains a Hamiltonian cycle, and proved linear-convex su-
pergrid graphs to be Hamiltonian [14]. Very recently, we
verified the Hamiltonian connectivity of rectangular, shaped,
alphabet, andL-shaped supergrid graphs [15], [16], [17],
[18]. We also proposed a linear-time algorithm for the
Hamiltonian connected problem on alphabet supergrid graphs
[17]. The Hamiltonian connectivity ofL-shaped supergrid
graphs has been verified in [18], [19]. TheL-alphabet and
C-alphabet supergrid graphs in [17] are special cases ofL-
shaped andC-shaped supergrid graphs, respectively. Note

that C-shaped supergrid graphs containL-shaped supergrid
graphs as their subgraphs.

In this paper, we consider the Hamiltonian, Hamiltonian
connectivity, and longest path ofC-shaped supergrid graphs,
which are special case of rectangular supergrid graph with a
rectangular hole. This can be considered as the first attempts
to solve these problems in supergrid graphs with some holes.

The rest of the paper is organized as follows. In Section II,
some notations and observations are given. Previous results
are also introduced. Section III gives the necessary and
sufficient conditions for the Hamiltonicity and Hamiltonian
connectivity ofC-shaped supergrid graphs. That is, we show
thatC-shaped supergrid graphs are always Hamiltonian and
Hamiltonian connected except few conditions. In Section IV,
we present a linear-time algorithm to compute a longest path
between any two distinct vertices in aC-shaped supergrid
graph. Finally, we make concluding remarks in Section V.

II. T ERMINOLOGIES AND BACKGROUND RESULTS

In this section, we will introduce some terminologies
and symbols. Some observations and previously established
results for the Hamiltonicity and Hamiltonian connectivity
of rectangular andL-shaped supergrid graphs are also pre-
sented. For graph-theoretic terminology not defined in this
paper, the reader is referred to [4].

The two-dimensional integer grid graphG∞ is an infinite
graph whose vertex set consists of all points of the Euclidean
plane with integer coordinates and in which two vertices are
adjacent if the (Euclidean) distance between them is equal
to 1. A grid graph is a finite vertex-induced subgraph of
G∞. For a nodev in the plane with integer coordinates,
let vx andvy represent thex andy coordinatesof nodev,
respectively, denoted byv = (vx, vy). If v is a vertex in a grid
graph, then its possible adjacent vertices include(vx, vy−1),
(vx − 1, vy), (vx + 1, vy), and (vx, vy + 1) (see Fig. 1(a)).
The two-dimensional triangular grid graphT∞ is an infinite
graph obtained fromG∞ by adding all edges on the lines
traced from up-left to down-right. Atriangular grid graphis
a finite vertex-induced subgraph ofT∞. If v is a vertex in a
triangular grid graph, then its possible neighboring vertices
include(vx, vy − 1), (vx − 1, vy), (vx +1, vy), (vx, vy + 1),
(vx − 1, vy − 1), and(vx + 1, vy + 1) (see Fig. 1(b)). Thus,
triangular grid graphs contain grid graphs as subgraphs. The
triangular grid graphs defined above are isomorphic to the
original triangular grid graphs in [11] but these graphs are
different when considered as geometric graphs.

The two-dimensional supergrid graphS∞ is the infinite
graph whose vertex set consists of all points of the plane with
integer coordinates and in which two vertices are adjacent if
the difference of theirx or y coordinates is not larger than
1. A supergrid graphis a finite vertex-induced subgraph of
S∞. The possible adjacent vertices of a vertexv = (vx, vy)
in a supergrid graph hence include(vx, vy−1), (vx−1, vy),
(vx +1, vy), (vx, vy +1), (vx − 1, vy − 1), (vx +1, vy +1),
(vx + 1, vy − 1), and (vx − 1, vy + 1) (see Fig. 1(c)).
Thus, supergrid graphs contain grid graphs and triangular
grid graphs as subgraphs. Notice that grid and triangular
grid graphs are not subclasses of supergrid graphs, and the
converse is also true: these classes of graphs have common
elements (points) but in general they are distinct since the
edge sets of these graphs are different. It is clear that all
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Fig. 3. A rectangular supergrid graphR(m, n), wherem = 10, n = 8,
and the bold dashed lines indicate vertical and horizontal separations.

grid graphs are bipartite [21] but triangular grid graphs and
supergrid graphs are not bipartite. For a vertexv = (vx, vy)
in a supergrid graph, we color vertexv to be white if
vx + vy ≡ 0 (mod 2); otherwise,v is colored to beblack.
Then there are eight possible neighbors of vertexv including
four white vertices and four black vertices.

A rectangular supergrid graph, denoted byR(m,n), is
a supergrid graph whose vertex set isV (R(m,n)) = {v =
(vx, vy)|1 6 vx 6 m and 1 6 vy 6 n}. That is,R(m,n)
containsm columns andn rows of vertices inS∞. The size
of R(m,n) is defined to bemn, andR(m,n) is calledn-
rectangle. Letv = (vx, vy) be a vertex inR(m,n). The
vertex v is called theupper-left (resp.,upper-right, down-
left, down-right) corner of R(m,n) if for any vertexw =
(wx, wy) ∈ R(m,n), wx > vx andwy > vy (resp.,wx 6 vx
andwy > vy, wx > vx andwy 6 vy , wx 6 vx andwy 6 vy).
The edge(u, v) is said to behorizontal (resp.,vertical) if
uy = vy (resp.,ux = vx), and is calledcrossedif it is neither
a horizontal nor a vertical edge. There are four boundaries in
a rectangular supergrid graphR(m,n) with m,n > 2. The
edge in the boundary ofR(m,n) is calledboundary edge. A
path is calledflat of R(m,n) if it visits all vertices and edges
of the same boundary inR(m,n) and its length equals to
the number of vertices in the visited boundary. For example,
Fig. 3 shows a rectangular supergrid graphR(10, 8) which
is called 8-rectangle and contains2× (9+7) = 32 boundary
edges. Fig. 3 also indicates the types of edges and corners. In
the figures we will assume that(1, 1) are coordinates of the
upper-left corner in a rectangular supergrid graphR(m,n),
except we explicitly change this assumption.

A L-shaped supergrid graph, denoted byL(m,n; k, l), is a
supergrid graph obtained from a rectangular supergrid graph
R(m,n) by removing its subgraphR(k, l) from the upper-
right corner, wherem,n > 1 andk, l > 1. Then,m− k > 1
andn−l > 1. A C-shaped supergrid graphC(m,n; k, l; c, d)
is a supergrid graph obtained from a rectangular supergrid
graphR(m,n) by removing its subgraphR(k, l) from its
node coordinated as(m, c + 1) while R(m,n) andR(k, l)
have exactly one border side in common, wherem > 2,
n > 3, k, l > 1, c > 1, d = n − l − c > 1, andm − k >

1. The structures ofL(m,n; k, l) andC(m,n; k, l; c, d) are
explained in Fig. 4(a) and Fig. 4(b), respectively.

Let G = (V,E) be a supergrid graph with vertex setV (G)
and edge setE(G). LetS be a subset of vertices inG, and let
u andv be two vertices inG. We writeG[S] for the subgraph
of G inducedby S, G− S for the subgraphG[V − S], i.e.,
the subgraph induced byV −S. In general, we writeG− v

m

n

l

k

(a) (b)

m

n
l

k

c

d

a = m k-

Fig. 4. The structure of (a)L-shaped supergrid graphL(m,n; k, l), where
k = 6, l = 8, m − k = 4, andn − l = 3 and (b)C-shaped supergrid
graphC(m,n; k, l; c, d), wherek = l = 6, c = 2, d = n − l − c = 3,
anda = m− k = 4.

instead ofG − {v}. We say thatu is adjacentto v, andu

and v are incident to edge(u, v), if (u, v) ∈ E(G). The
notationu ∼ v (resp.,u ≁ v) means that verticesu and v

are adjacent (resp., non-adjacent). A vertexw adjoinsedge
(u, v) if w ∼ u andw ∼ v. For two edgese1 = (u1, v1)
and e2 = (u2, v2), if u1 ∼ u2 and v1 ∼ v2, then we say
thate1 ande2 areparallel, denoted bye1 ≈ e2. For a vertex
v ∈ V (G), the degreeof v in G, denoted bydeg(v), is the
number of vertices adjacent tov. A pathP of length|P | in G,
denoted byv1 → v2 → · · · → v|P |−1 → v|P |, is a sequence
(v1, v2, · · · , v|P |−1, v|P |) of vertices such that(vi, vi+1) ∈
E(G) for 1 6 i < |P |, and all vertices exceptv1, v|P | in
it are distinct. The first and last vertices visited byP are
denoted bystart(P ) andend(P ), respectively. We will use
vi ∈ P to denote “P visits vertexvi” and use(vi, vi+1) ∈ P

to denote “P visits edge(vi, vi+1)”. A path from v1 to vk
is denoted by(v1, vk)-path. In addition, we useP to refer
to the set of vertices visited by pathP if it is understood
without ambiguity. A cycle is a pathC with |V (C)| > 4
and start(C) = end(C). Two paths (or cycles)P1 andP2

of graphG are calledvertex-disjointif V (P1)∩V (P2) = ∅. If
end(P1) ∼ start(P2), then two vertex-disjoint pathsP1 and
P2 can be concatenated into a path, denoted byP1 ⇒ P2.

Let R(m,n) be a rectangular supergrid graph withm >

n > 2, C be a cycle ofR(m,n), and letH be a boundary of
R(m,n), whereH is a subgraph ofR(m,n). The restriction
of C to H is denoted byC|H . If |C|H | = 1, i.e. C|H is
a flat path onH , then C|H is called flat face on H . If
|C|H | > 1 and C|H contains at least one boundary edge of
H , then C|H is called concave faceon H . A Hamiltonian
cycle ofR(m, 3) is calledcanonicalif it contains three flat
faces on two shorter boundaries and one longer boundary,
and it contains one concave face on the other boundary,
where the shorter boundary consists of three vertices. And,
a Hamiltonian cycle ofR(m,n) with n = 2 or n > 4
is said to becanonical if it contains three flat faces on
three boundaries, and it contains one concave face on the
other boundary. The following lemma states the result in
[13] concerning the Hamiltonicity of rectangular supergrid
graphs.

Lemma 1. (See [13]) LetR(m,n) be a rectangular super-
grid graph withm > n > 2. Then, the following statements
hold true:
(1) if n = 3, thenR(m, 3) contains a canonical Hamiltonian
cycle;
(2) if n = 2 or n > 4, thenR(m,n) contains four canonical
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Fig. 5. Rectangular supergrid graphs in which there is no Hamiltonian
(s, t)-path for (a)R(m, 1), and (b)R(m, 2), where solid lines indicate the
longest path betweens and t.

Hamiltonian cycles with concave faces being on different
boundaries.

Let (G, s, t) denote the supergrid graphG with two
specified distinct verticess andt. Without loss of generality,
we will assume thatsx 6 tx in the rest of the paper.
We denote a Hamiltonian path betweens and t in G by
HP (G, s, t). We say thatHP (G, s, t) does exist if there is
a Hamiltonian(s, t)-path in G. From Lemma 1, we know
that HP (R(m,n), s, t) does exist ifm,n > 2 and (s, t) is
an edge in the constructed Hamiltonian cycle ofR(m,n).

Definition 1. Assume thatG is a connected supergrid graph
and V1 is a subset of the vertex setV (G). V1 is a vertex
cut if G − V1 is disconnected. A vertexv ∈ V (G) is a cut
vertex, if G − {v} is disconnected. For an example, in Fig.
5(b) {s, t} is a vertex cut, and in Fig. 5(a)t is a cut vertex.

In [15], we showed thatHP (R(m,n), s, t) does not exist
if the following condition hold:

(F1) s or t is a cut vertex, or{s, t} is a vertex cut (see
Fig. 5(a) and Fig. 5(b)).

Let G be any supergrid graphs. The following lemma
showing thatHP (G, s, t) does not exist if(G, s, t) satisfies
condition (F1) can be verified by the arguments in [26].

Lemma 2. (See [26]) LetG be a supergrid graph with two
verticess and t. If (G, s, t) satisfies condition(F1), then
HP (G, s, t) does not exist.

The Hamiltonian(s, t)-pathP of R(m,n) constructed in
[15] satisfies thatP contains at least one boundary edge of
each boundary, and is calledcanonical.

Lemma 3. (See [15]) LetR(m,n) be a rectangular su-
pergrid graph withm,n > 1, and let s and t be its two
distinct vertices. If(R(m,n), s, t) does not satisfy condition
(F1), then there exists a canonical Hamiltonian(s, t)-path
of R(m,n), i.e.,HP (R(m,n), s, t) does exist.

Consider that(R(m,n), s, t) does not satisfy condition
(F1). Let w = (1, 1), z = (2, 1), and f = (3, 1) be three
vertices ofR(m,n) with m > 3 and n > 2. In [19], we
have proved that there exists a Hamiltonian(s, t)-path Q

of R(m,n) such that(z, f) ∈ Q if the following condition
(F2) holds; and(w, z) ∈ Q otherwise.

(F2) n = 2 and {s, t} ∈ {{w, z}, {(1, 1), (2, 2)},
{(2, 1), (1, 2)}}, or n > 3 and{s, t} = {w, z}.

The above result is presented as follows and can be used
in proving our result.

(a)

u1

v1

u2

v2

(b) (c)

x

(d)

C1 C2 C1

P1 P1 P2

u1

v1

u1

v1

u1

v1

u2

v2
C1

Fig. 6. A schematic diagram for (a) Statement (1), (b) Statement (2), (c)
Statement (3), and (d) Statement (4) of Proposition 1, where bold dashed
lines indicate the cycles (paths) and⊗ represents the destruction of an edge
while constructing a cycle or path.
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k > 1

m k-

= 1

n l-

=2

s
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Fig. 7. L-shaped supergrid graph in which there is no Hamiltonian(s, t)-
path for (a)s is a cut vertex, (b){s, t} is a vertex cut, (c) there exists a
vertexw such thatdeg(w) = 1, w 6= s, andw 6= t, and (d)m − k = 1,
n− l = 2, l = 1, k > 2, and{s, t} = {(1, 2), (2, 3)}.

Lemma 4. (See [19]) LetR(m,n) be a rectangular super-
grid graph withm > 3 andn > 2, s andt be its two distinct
vertices, and letw = (1, 1) andz = (2, 1). If (R(m,n), s, t)
does not satisfy condition(F1), then there exists a canonical
Hamiltonian(s, t)-pathQ of R(m,n) such that(z, f) ∈ Q if
(R(m,n), s, t) does satisfy condition(F2); and (w, z) ∈ Q

otherwise.

We then give some observations on the relations among
cycle, path, and vertex. These propositions will be used in
proving our results and are given in [13], [14], [15].

Proposition 1. (See [13], [14], [15]) LetC1 andC2 be two
vertex-disjoint cycles of a graphG, let C1 andP1 be a cycle
and a path, respectively, ofG with V (C1)∩V (P1) = ∅, and
let x be a vertex inG − V (C1) or G − V (P1). Then, the
following statements hold true:
(1) If there exist two edgese1 ∈ C1 and e2 ∈ C2 such that
e1 ≈ e2, thenC1 and C2 can be combined into a cycle of
G (see Fig.6(a)).
(2) If there exist two edgese1 ∈ C1 and e2 ∈ P1 such that
e1 ≈ e2, thenC1 andP1 can be combined into a path ofG
(see Fig.6(b)).
(3) If vertexx adjoins one edge(u1, v1) of C1 (resp.,P1),
then C1 (resp., P1) and x can be combined into a cycle
(resp., path) ofG (see Fig.6(c)).
(4) If there exists one edge(u1, v1) ∈ C1 such that
u1 ∼ start(P1) and v1 ∼ end(P1), thenC1 and P1 can
be combined into a cycleC of G (see Fig.6(d)).

In addition to condition (F1) (as depicted in Fig. 7(a)
and 7(b)), in [19], we showed thatHP (L(m,n; k, l), s, t)
does not exist whenever one of the following conditions is
satisfied.

(F3) assume thatG is a supergrid graph, there exists a
vertexw ∈ G such thatdeg(w) = 1, w 6= s, and
w 6= t (see Fig. 7(c)).

(F4) m − k = 1, n − l = 2, l = 1, k ≥ 2, and
{s, t} = {(1, 2), (2, 3)} or {(1, 3), (2, 2)} (see Fig.
7(d)).
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We then verify the following theorem in [19].

Theorem 1. (See [19]) LetL(m,n; k, l) be a L-shaped
supergrid graph with verticess and t. If (L(m,n; k, l), s, t)
does not satisfy conditions(F1), (F3), and (F4), then
L(m,n; k, l) contains a Hamiltonian (s, t)-path, i.e.,
HP (L(m,n; k, l), s, t) does exist.

The following theorem shows the Hamiltonicity ofL-
shaped supergrid graphs and has been proved in [18].

Theorem 2. (See [18]) LetL(m,n; k, l) be a L-shaped
supergrid graph. Then,L(m,n; k, l) contains a Hamiltonian
cycle if it does not satisfy condition(F5).

Where condition (F5) is defined as follows:
(F5) there exists a vertexw in L(m,n; k, l) such that

deg(w) = 1.

In the following, we usêL(G, s, t) to denote the length of
longest paths betweens andt and Û(G, s, t) to indicate the
upper bound on the length of longest paths betweens andt,
whereG is a rectangular,L-shaped, orC-shaped supergrid
graph. By the length of a path we mean the number of
vertices of the path. In [15] and [19], we showed that a
longest (s, t)-path of a rectangular orL-shaped supergrid
graph can be computed in linear time.

Theorem 3. (See [15], [19]) Given a rectangular supergrid
graph R(m,n) with mn > 2 or L-shaped supergrid graph
L(m,n; k, l), and two distinct verticess andt in R(m,n) or
L(m,n; k, l), a longest(s, t)-path can be found inO(mn)-
linear time.

III. T HE NECESSARY ANDSUFFICIENT CONDITIONS FOR

THE HAMILTONIAN AND HAMILTONIAN CONNECTED OF

C-SHAPEDSUPERGRID GRAPHS

In this section, we will give necessary and sufficient
conditions for C-shaped supergrid graphs to have a
Hamiltonian cycle and Hamiltonian(s, t)-path. First,
we will verify the Hamiltonicity of C-shaped supergrid
graphs. If a(= m − k) = 1 or there exists a vertex
w ∈ V (C(m,n; k, l; c, d)) such thatdeg(w) = 1, then
C(m,n; k, l; c, d) contains no Hamiltonian cycle. Therefore,
C(m,n; k, l; c, d) is not Hamiltonian if condition (F6) is
satisfied, where (F6) is defined below.

(F6) a(= m − k) = 1 or there exists a vertex
w ∈ V (C(m,n; k, l; c, d)) such thatdeg(w) = 1.

By using Lemma 1 and Proposition 1, we can prove the
following theorem. Due to the space limitation, we omit its
proof.

Theorem 4. C(m,n; k, l; c, d) contains a Hamiltonian cycle
if and only if it does not satisfy condition(F6).

Next, we give necessary and sufficient conditions for the
existence of a Hamiltonian(s, t)-path inC(m,n; k, l; c, d).
In addition to condition (F1) (as depicted in Fig. 8(a)–8(b))
and (F3) (as depicted in Fig. 8(c)), if(C(m,n; k, l; c, d), s, t)
satisfies one of the following conditions, then it contains no
Hamiltonian(s, t)-path.
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Fig. 8. SomeC-shaped supergrid graphs in which there is no Hamiltonian
(s, t)-path.

(F7) m = 3, a = m − k = 2, and [(c = 1 and{s, t} =
{(1, 1), (2, 2)} or {(1, 2), (2, 1)}) or (d = 1 and
{s, t} = {(1, n), (2, n−1)} or {(1, n−1), (2, n)})]
(see Fig. 8(d)).

(F8) n = 3, k = c = d = 1, and

1) a > 2 and sx = tx = m − 1 (see Fig. 8(e));
or

2) a = 2, sx = 1, tx = 2, and|sy − ty| = 2 (see
Fig. 8(f)); or

3) a > 2, sx < m− 1, and t = (m − 1, 2) (see
Fig. 8(g)).

(F9) a = m− k = 1, and (sy, ty 6 c or sy, ty > c+ l)
(see Fig. 8(h)).

By using Lemma 1, Lemma 3, Lemma 4, and Theorem
1, we prove the necessary and sufficient conditions for
HP (C(m,n; k, l; c, d), s, t) does exist in the following three
lemmas. Due to the space limitation, the proofs are omitted.

Lemma 5. If HP (C(m,n; k, l; c, d), s, t) exists, then
(C(m,n; k, l; c, d), s, t) does not satisfy conditions(F1),
(F3), (F7), (F8), and (F9).

Lemma 6. Let C(m,n; k, l; c, d) be aC-shaped supergrid
graph with a = m − k = 1, and let s and t be its two
distinct vertices such that(C(m,n; k, l; c, d), s, t) does not
satisfy conditions(F1), (F3), (F7), (F8), and (F9). Then,
C(m,n; k, l; c, d) contains a Hamiltonian(s, t)-path, i.e.,
HP (C(m,n; k, l; c, d), s, t) does exist.

Lemma 7. Let C(m,n; k, l; c, d) be aC-shaped supergrid
graph with a = m − k > 2, and let s and t be its two
distinct vertices such that(C(m,n; k, l; c, d), s, t) does not
satisfy conditions(F1), (F3), (F7), (F8), and (F9). Then,
C(m,n; k, l; c, d) contains a Hamiltonian(s, t)-path, i.e.,
HP (C(m,n; k, l; c, d), s, t) does exist.

From Lemmas 5–7, it immediately follows that the fol-
lowing theorem holds true.

Theorem 5. Let C(m,n; k, l; c, d) be aC-shaped supergrid
graph with verticess and t. C(m,n; k, l; c, d) contains
a Hamiltonian (s, t)-path, i.e.,HP (C(m,n; k, l; c, d), s, t)
does exist if and only if(C(m,n; k, l; c, d), s, t) does not
satisfy conditions(F1), (F3), (F7), (F8), and (F9).
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IV. T HE LONGEST(s, t)-PATH IN C-SHAPEDSUPERGRID

GRAPHS

From Theorem 5, it follows that if(C(m,n; k, l; c, d), s, t)
satisfies one of the conditions (F1), (F3), (F7), (F8), and (F9),
then(C(m,n; k, l; c, d), s, t) contains no Hamiltonian(s, t)-
path. So in this section, first for these cases we give upper
bounds on the lengths of longest paths betweens andt. Then,
we show that the derived upper bound is equal to the length
of longest paths betweens andt. Notice that the isomorphic
cases are omitted. The following lemmas give the bounds.
Due to the space limitation, the proofs of the following four
lemmas are omitted.

Lemma 8. Let a = 1 and w = (1, c + 1). Suppose that
(C(m,n; k, l; c, d), s, t) satisfies one of the conditions(F1)
and (F9). Then, the following statements hold true:
(FC1) If sy, ty > c, then the length of any path between
s and t cannot exceed̂L(G1, s, t), whereG1 = L(m,n −
c; k, l).
(FC2) If (sy 6 c and ty > c+ l) or (ty 6 c andsy > c+ l),
without loss of generality assume thatsy 6 c, then the length
of any path betweens and t cannot exceed̂L(G1, s, z) +
L̂(G2, w, t), whereG1 = R(m, c), G2 = L(m,n − c; k, l),
and z = (1, c) if s 6= (1, c); otherwisez = (2, c).

Lemma 9. Assume thata > 1, {s, t} is a vertex cut, and
(k > 1, sy, ty > n − 1, and a + 1 6 sx = tx 6 m − 1) or
(c + 1 6 sy = ty 6 c + l)]. Then, the following statements
hold true:
(FC3) If a = 2 andsy = ty, then the length of any path be-
tweens and t cannot exceedmax{L̂(G1, s, t), L̂(G2, s, t)},
where G1 = L(m,n′; k, l′), G2 = L(sy,m; k′, l′′), n′ =
n− sy + 1, l′ = n′ − d, k′ = l − l′ + 1, and l′′ = k.
(FC4) If c = 1, d = 2, and sx = tx,
then the length of any path betweens and t can-
not exceedmax{L̂(G1, s, t), L̂(G2, s, t)}, where G1 =
C(m′, n; k′, l; c, d), G2 = R(m−m′ + 1, d), m′ = sx, and
k′ = m′ − a.
(FC5) If c > 1, d = 2, and sx = tx, then the length of any
path betweens and t cannot exceed̂L(G1, s, t) + |G2| =
L̂(G1, s, t) + k × c, where G1 = L(m,n; k, l + c) and
G2 = R(k, c).

Lemma 10. Let a > 1 and c = 1. Then, the following
statements hold true:
(FC6) If a = 2, sy, ty 6 2, sy 6= ty, and sx 6= tx,
then the length of any path betweens and t cannot exceed
L̂(L(m,n; k, l+ c), s, t).
(FC7) If (C(m,n; k, l; c, d), s, t) satisfies condition(F8)) or
(sx = tx = m − 1 and sy, ty 6 2), then the length of
any path betweens and t cannot exceed̂L(G′, s, t), where
G′ = L(m,n; k, l+ c).

Lemma 11. Assume thatk, a > 1, c = 1, and
(C(m,n; k, l; c, d), s, t) does not satisfy(FC6). Let w =
(a+ 1, 1). Then, the following statements hold true:
(FC8) If tx > 1, ty = 1, and [(sx 6 a) or (sx > a

and sy > c + l)], then the length of any path between
s and t cannot exceed̂L(G1, s, z) + L̂(G2, w, t), where
G1 = L(m,n; k, l + c), G2 = R(k, c), and z = (a, 1) if
s 6= (a, 1); otherwisez = (a, 2).
(FC9) If sx, tx > 1 andsy = ty = 1, then the length of any

path betweens and t cannot exceedtx − sx + 1.
(FC10) If deg(s) > 1, deg(t) > 1, and (C(m,n; k, l;
c, d), s, t) does not satisfy condition(F1), then the length
of any path betweens and t cannot exceed̂L(G1, s, t) + 1,
whereG1 = L(m,n; k, l+ c).

It is easy to show that any(C(m,n; k, l; c, d), s, t)
must satisfy one of conditions (C1), (FC1), (FC2),
(FC3), (FC4), (FC5), (FC6), (FC7), (FC8), (FC9),
and (FC10). If (C(m,n; k, l; c, d), s, t) satisfies (C1),
then Û(C(m,n; k, l; c, d), s, t) is mn − kl. Otherwise,
Û(C(m,n; k, l; c, d), s, t) can be computed using Lemmas
8–11. Where (C1) is defined as follows:

(C1) (C(m,n; k, l; c, d), s, t) does not satisfy any of
conditions (F1), (F3), (F7), (F8), and (F9).

We then conclude the upper boundŝU(C(m,n; k, l;
c, d), s, t) as follows:

Û(C(m,n; k, l; c, d), s, t) =



























































L̂(G1, s, t), if (FC1),

L̂(G1, s, z) + L̂(G2, w, t), if (FC2) or (FC8),

max{L̂(G1, s, t), L̂(G2, s, t}, if (FC3) or (FC4),

L̂(G1, s, t) + k × c, if (FC5),

L̂(L(m,n; k, l+ c), s, t), if (FC6) or (FC7),

tx − sx + 1, if (FC9),

L̂(G1, s, t) + 1, if (FC10),

mn− kl, if (C1).

Finally, we show how to obtain a longest(s, t)-path
for C-shaped supergrid graphs in Lemma 12. Due to
the space limitation, its proof is omitted. Notice that if
(C(m,n; k, l; c, d), s, t) satisfies (C1), then by Theorem 5,
it contains a Hamiltonian(s, t)-path.

Lemma 12. If (C(m,n; k, l; c, d), s, t) satisfies one of con-
ditions (FC1)–(FC10), then L̂(C(m,n; k, l; c, d), s, t) =
Û(C(m,n; k, l; c, d), s, t).

We finally conclude the following theorem.

Theorem 6. Given aC-shaped supergridC(m,n; k, l; c, d)
and two distinct verticess and t in C(m,n; k, l; c, d), a
longest(s, t)-path can be constructed inO(mn)-linear time.

The algorithm is formally presented as Algorithm IV.1.

V. CONCLUDING REMARKS

Based on the Hamiltonicity and Hamiltonian connectiv-
ity of rectangular andL-shaped supergrid graphs, we can
prove C-shaped supergrid graphs to be Hamiltonian and
Hamiltonian connected except few conditions. On the other
hand, we give a linear-time algorithm to find the longest
(s, t)-path in C-shaped supergrid graph with two distinct
verticess, t. Whether the result can be applied toO-shaped
supergrid graphs which are rectangular supergrid graphs with
a rectangular hole. We leave it to interesting readers. On
the other hand, the Hamiltonian cycle problem on solid grid
graphs was known to be polynomial solvable. However, it
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Algorithm IV.1: The longest(s, t)-path algorithm

Input : A C-shaped supergrid graphC(m,n; k, l; c, d)
with mn > 2, and two distinct verticess and t
in C(m,n; k, l; c, d).

Output : The longest(s, t)-path.
1. if a(= m− k) = 1 then output

HP (C(m,n; k, l; c, d), s, t) constructed from Lemma 6;
// (C(m,n; k, l; c, d), s, t) does not satisfy the forbidden
conditions (F1), (F3), (F7), (F8), and (F9);

2. if a(= m− k) > 1 then output
HP (C(m,n; k, l; c, d), s, t) constructed from Lemma 7;
// (C(m,n; k, l; c, d), s, t) does not satisfy the forbidden
conditions (F1), (F3), (F7), and (F8);

3. if (C(m,n; k, l; c, d), s, t) satisfies one of the forbidden
conditions (F1), (F3), (F7), (F8), and (F9),then output
the longest(s, t)-path based on Lemma 12;

remains open for solid supergrid graphs in which there exists
no hole.
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