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Abstract—A supergrid graph is a finite vertex-induced sub- for bipartite graphs [30], split graphs [10], circle graphs [7],
graph of the in.finit.e graph whose vertex set consists of all ppints undirected path graphs [3], grid graphs [21], triangular grid
of the plane with integer coordinates and in which two vertices graphs [11], supergrid graphs [13], etc.

are adjacent if the difference of their x or y coordinates is - .
not larger than 1. The Hamiltonian path (cycle) problem is to The longest path problemi.e., the problem of finding

determine whether a graph contains a simple path (cycle) in @ Simple path with the maximum number of vertices, is
which each vertex of the graph appears exactly once. Theseone of the most important problems in graph theory. The
two problems are NP-complete for general graphs and they Hamiltonian path problem is clearly a special case of the
are also NP-complete for general supergrid graphs. Despite the longest path problem. Despite the many applications of the
many applications of the problem, they are still open for many o . .
classes, including solid supergrid graphs and supergrid graphs prqblem, it |s.st|II open for some cla_sses of graphs, including
with some holes. A graph is called Hamiltonian connected if it Solid supergrid graphs and supergrid graphs with some holes
contains a Hamiltonian path between any two distinct vertices. [14], [15]. There are few classes of graphs in which the
In this paper, first we will study the Hamiltonian cycle property  Jongest path problem is polynomial solvable [5], [20], [24],
of C-shaped supergrld graphs,_whlch are a special case of [32], [38]. In this paper, we focus on supergrid graphs.
rectangular supergrid graphs with a rectangular hole. Next, Wi ' il aive th ’ d sufficient diti f
we will show that C-shaped supergrid graphs are Hamiltonian € wi Q'Ve, € necessary an suficient conaitions for
connected except few conditions. Finally, we will compute a the Hamiltonian and Hamiltonian connected Gfshaped
longest §, t)-path between two distinct verticess, tin linear time.  supergrid graphs. We then present a linear-time algorithm
The Hamiltonian and longest §, t)-paths of C-shaped supergrid  for finding a longest path between any two distinct vertices
graphs can be applied to compute the optimal stitching trace in a C-shaped supergrid graph.

of.colmputer embroidery machin.es, and construct the minim'um The two-di . lint id oo infinit
printing trace of 3D printers with a C-like component being etwo-dimensional integer gri grapﬁ’ IS an infinite
printed. graph whose vertex set consists of all points of the Euclidean
L I - plane with integer coordinates and in which two vertices
Index Terms—Hamiltonicity, Hamiltonian connectivity, . . . . .
longest & t)-path, supergrid graphs, C-shaped supergrid &re adjacent if the _(Euclu_jean) (_jlstance bgtween them is
graphs, computer embroidery machines, 3D printers. equal to 1. Thewo-dimensional triangular grid grapi™
is an infinite graph obtained fro@>> by adding all edges
on the lines traced from up-left to down-right. 4rid
. INTRODUCTION graphis a finite, vertex-induced subgraph 67 (see Fig.
Hamiltonian path(cyde ina graph is a Simp]e pa’[h 1(a)) A triangular grld graph is a ﬁnite, vertex-induced
A(cycle) in which each vertex of the graph appeabgraph of7"™ (see Fig. 1(b)). Hunget al. [13] have
exactly once. Thélamiltonian path (cycle) problemmvolves introduced a new class of graphs, namslpergrid graphs
deciding whether or not a graph contains a Hamiltoniahe two-dimensional supergrid grapi$ is an infinite
path (cycle). A graph is calletfamiltonian if it contains 9graph obtained fron7™> by adding all edges on the lines
a Hamiltonian cycle. A grapl@ is said to beHamiltonian traced from up-right to down-left. Aupergrid graphis a
connectedif for each pair of distinct verticess and v of finite, vertex-induced subgraph df> (see Fig. 1(c)). A
G, there is a Hamiltonian path from to v in G. The solid supergrid graph is a supergrid graph without holes. A
Hamiltonian path and cycle problems have numerous dgctangular supergrid graphs a supergrid graph bounded
plications in different areas, including establishing transpd?y a axis-parallel rectangle (see 2(a)). /Ashapedor C-
routes, production launching, the on-line optimization dfhapedsupergrid graph is a supergrid graph obtained from
flexible manufacturing systems [1], computing the perceptudl rectangular supergrid graph by removing a rectangular
boundaries of dot patterns [33], pattern recognition [2], [343upergrid graph from it to make A-like or C-like shape
[37], DNA physical mapping [12], fault-tolerant routing for(see 2(b) and 2(c)).
3D network-on-chip architectures [8], and so on. It is well Previous related works are summarized as follows. Re-
known that the Hamiltonian path and cycle problems are Npently, Hamiltonian path (cycle) and Hamiltonian connected
complete for general graphs [9], [22]. The same holds tr@oblems in grid, triangular grid, and supergrid graphs have
received much attention. In [21], Itait al. proved that the
Manuscript received November 26, 2018; revised December 09, 2018Hamiltonian path (cycle) problem on grid graphs is NP-
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that C-shaped supergrid graphs contdirshaped supergrid
graphs as their subgraphs.

In this paper, we consider the Hamiltonian, Hamiltonian
connectivity, and longest path 6f-shaped supergrid graphs,
e e e - which are special case of rectangular supergrid graph with a

® ®) © rectangular hole. This can be considered as the first attempts
Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (cjupesgrid to solve these problems_ln supe_rgrld graphs with some_holes.
graph, where circles represent the vertices and solid lines indicate the edged he rest of the paper is organized as follows. In Section I,
in the graphs. some notations and observations are given. Previous results
are also introduced. Section Ill gives the necessary and
10 10 10 sufficient conditions for the Hamiltonicity and Hamiltonian
IZOZUZOTUTOIZ0 %0 PIRDIDIIA] |2 connectivity ofC-shaped supergrid graphs. That is, we show
2050 that C'-shaped supergrid graphs are always Hamiltonian and
IR 6 Hamiltonian connected except few conditions. In Section IV,
K we present a linear-time algorithm to compute a longest path
. et between any two distinct vertices in @shaped supergrid

DRI RESERORE0T | DO Jf graph. Finally, we make concluding remarks in Section V.
@ ®) ©

Fig. 2. (a) A rectangular supergrid graph, (bLeshaped supergrid graph, Il. TERMINOLOGIES AND BACKGROUND RESULTS
and (c) aC-shaped supergrid graph, where circles represent the vertices andn this section, we will introduce some terminologies
solid lines indicate the edges in the graphs. and symbols. Some observations and previously established
results for the Hamiltonicity and Hamiltonian connectivity
of rectangular and.-shaped supergrid graphs are also pre-
Hamiltonian line graphs. Later, Chegt al. [6] improved sented. For graph-theoretic terminology not defined in this
the Hamiltonian path algorithm of [21] on rectangular grighaper, the reader is referred to [4].
graphs and presented a parallel algorithm for the Hamilto- The two-dimensional integer grid grap&° is an infinite
nian path problem with two given endpoints in rectangularaph whose vertex set consists of all points of the Euclidean
grid graphs. Also there is a polynomial-time algorithm foplane with integer coordinates and in which two vertices are
finding Hamiltonian cycles in solid grid graphs [31]. Inadjacent if the (Euclidean) distance between them is equal
[36], Salman introduced alphabet grid graphs and determin@d1. A grid graph is a finite vertex-induced subgraph of
classes of alphabet grid graphs which contain Hamiltoni&°. For a nodev in the plane with integer coordinates,
cycles. Keshavarz-Kohjerdi and Bagheri gave necessary detv, andv, represent the: andy coordinatesof nodeuw,
sufficient conditions for the existence of Hamiltonian pathespectively, denoted hy= (v,,v,). If vis a vertexin a grid
in alphabet grid graphs, and presented linear-time algorithiggph, then its possible adjacent vertices incladg v, —1),
for finding Hamiltonian paths with two given endpointv, — 1,v,), (v + 1,v,), and (v, v, + 1) (see Fig. 1(a)).
in these graphs [23]. They also presented a linear-tiniéetwo-dimensional triangular grid grapf™® is an infinite
algorithm for computing the longest path between two givegraph obtained frontz>> by adding all edges on the lines
vertices in rectangular grid graphs [24], gave a paralleiaced from up-left to down-right. Aiangular grid graphis
algorithm to solve the longest path problem in rectangularfinite vertex-induced subgraph @f°. If v is a vertex in a
grid graphs [25], and solved the Hamiltonian path and longasiangular grid graph, then its possible neighboring vertices
path problems in some classes of grid graphs [26], [27hclude (v, v, — 1), (v — 1, vy), (Ve +1,0y), (v, vy + 1),
[28], [29]. Reay and Zamfirescu [35] proved that all 2{v, —1,v, — 1), and (v, +1,v, + 1) (See Fig. 1(b)). Thus,
connected, linear-convex triangular grid graphs except otr@angular grid graphs contain grid graphs as subgraphs. The
special case contain Hamiltonian cycles. The Hamiltonianangular grid graphs defined above are isomorphic to the
cycle (path) on triangular grid graphs has been shown éoiginal triangular grid graphs in [11] but these graphs are
be NP-complete [11]. They also proved that all connectedifferent when considered as geometric graphs.
locally connected triangular grid graphs (with one exception) The two-dimensional supergrid grapf°° is the infinite
contain Hamiltonian cycles. graph whose vertex set consists of all points of the plane with
Recently, we proved that the Hamiltonian cycle and pathteger coordinates and in which two vertices are adjacent if
problems on supergrid graphs are NP-complete [13]. Wiee difference of their: or y coordinates is not larger than
also showed that every rectangular supergrid graph alwalysA supergrid graphis a finite vertex-induced subgraph of
contains a Hamiltonian cycle, and proved linear-convex si§°°. The possible adjacent vertices of a vertex (v, v,)
pergrid graphs to be Hamiltonian [14]. Very recently, wén a supergrid graph hence incluge,, v, — 1), (v, — 1, v,),
verified the Hamiltonian connectivity of rectangular, shapedy, + 1, v,), (vy, vy + 1), (v — 1,0y — 1), (vz + 1,0y + 1),
alphabet, andL-shaped supergrid graphs [15], [16], [17](v, + 1,v, — 1), and (v, — 1,v, + 1) (see Fig. 1(c)).
[18]. We also proposed a linear-time algorithm for th&hus, supergrid graphs contain grid graphs and triangular
Hamiltonian connected problem on alphabet supergrid grapgréd graphs as subgraphs. Notice that grid and triangular
[17]. The Hamiltonian connectivity of.-shaped supergrid grid graphs are not subclasses of supergrid graphs, and the
graphs has been verified in [18], [19]. THealphabet and converse is also true: these classes of graphs have common
C-alphabet supergrid graphs in [17] are special cases-of elements (points) but in general they are distinct since the
shaped and”-shaped supergrid graphs, respectively. Notdge sets of these graphs are different. It is clear that all

ISBN: 978-988-14048-5-5 IMECS 2019
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

m m

M
,boundary
edges 40 D4 i I,
. % x
_vertical edge ; L’
% I
) horizontal edge n n
: K4/‘,| k
4 crossed edge AT o o
SERRREEER I
/corner b
(a) (b)

ﬂzit path

Fig. 4. The structure of (a).-shaped supergrid graph(m, n; k, 1), where
Fig. 3. A rectangular supergrid graghi(m, n), wherem = 10, n = 8, k=6,1=8m—k=4,andn —1 = 3 and (b) C-shaped supergrid
and the bold dashed lines indicate vertical and horizontal separations. 9raPhC(m,n;k,l;c,d), wherek =1 =6,c =2, d=n—-1l—-c=3,

anda =m — k = 4.

grid gra_phs are bipartite [2.1] bL.Jt triangular grid graphs an|(rjlstead ofG — {v}. We say that: is adjacentto v, andu
supergrid graphs are not bipartite. For a vertex (v, vy)

in a supergrid graph, we color vertex to be white if and v areincidentto edge(u,v), if (u,v) € E(G). The

vy + vy, = 0 (mod 2); otherwisey is colored to beblack notationu ~ v (resp.,u v). means that vertices andv
. ; . . . are adjacent (resp., non-adjacent). A vertexadjoins edge

Then there are eight possible neighbors of vertéxcluding (u,v) if w ~ u andw ~ v. For two edges: = (u1,v:1)

four white vertices and four black vertices. ’ ' ges1 = (u1,1

. . andes = (ug,v9), if u3 ~ uy andv; ~ vy, then we say
A rectangular supergrid graphdenoted byR(m,n), is N
a supergrid graph whose vertex seti§R(m.n)) = {v = thate; ande, areparallel, denoted by, =~ e,. For a vertex

(vn,0,)|1 < vy < m and1 < v, < n}. That is, R(m, n) v e V(Q), the_degree(_)f v in G, denoted bydeg(v), is the
d ] . . number of vertices adjacentto A path P of length|P| in G,
containsm columns and: rows of vertices inS>°. The size

of R(m,n) is defined to benn, and R(m,n) is calledn- Ocnoted by = vz = - (e R v e
rectangle. Lety — (v,,v,) be a vertex inR(m,n). The (vi,v2,--+ ,v)p|_1,v|p|) OF vertices such thatv;,v;11) €

i . E for 1 < P|, Il i , [
vertex v is called theupper-left (resp.,upper-right down- . (&) or i < .| and a vertices except;, vjp| In
. : it are distinct. The first and last vertices visited Byare
left, down-righ) corner of R(m,n) if for any vertexw =

denoted bystart(P) andend(P), respectively. We will use
(wg, wy) € R(m,n), wy = v, andw, = v, (resp.,w, < vy ystar (‘ ) Hsen (P) B P y
andw, > vy, w, > v, andw, < vy, w, < v, andw, < v,) v; € P to denote P visits vertexv;” and use(v;, vi+1) € P
Yz oy e T Y= Ty Tw s w vy = ¥ to denote P visits edge(v;, v;+1)". A path from v, to
The edge(u,v) is said to behorizontal (resp.,vertical) if 98(vi, vi1) P U1 Uk

. . : [ n -path. In ition, w refer
uy = vy (resp.,u, = vy), and is callectrossedf it is neither s denoted by(vy, vg)-pat addition, we usé to refe

: ; . h f verti visi if it is under
a horizontal nor a vertical edge. There are four boundarlestlc%]t e set of vertices visited by paifl if it is understood

. Uity . ; 5
a rectangular supergrid gragh(m,n) with m,n > 2. The Without ambiguity. A cycle is a patld’ with [V(C)| > 4

: . and start(C') = end(C'). Two paths (or cyclesp; and P,
edge in the boundary d®(m, n) is calledboundary edgeA i -
path is calledlat of R(m,n) if it visits all vertices and edges of graphG; are calledvertex-disjoinif V(P)nV () = 0. If

of the same boundary i®(m,n) and its length equals to end(Py) ~ start(P,), then two vertex-disjoint path, and

) . . n n n in h, den Ps.
the number of vertices in the visited boundary. For examp[ep2 can be concatenated into a path, denotedby->

. . . 'Let R(m,n) be a rectangular supergrid graph with >
Fig. 3 shows a rectangular supergrid graRfi0, 8) which ’
is called 8-rectangle and contaids (9+ 7) = 32 boundary n > 2, C be a cycle off(m, n), and letf be a boundary of

edges. Fig. 3 also indicates the types of edges and cornersB g, 1), wherel is a subgraph oft(m, n). The restriction

the figures we will assume that, 1) are coordinates of the ©' & © M is denoted byCiy. If [Ci| = 1, i.€. Cypr i
: : a flat path onH, thenCy is calledflat face on H. If
upper-left corner in a rectangular supergrid grapfin, n), Cl| > 1 andCy contains at least one boundary ed f
C . : \H \H y edge o
except we explicitly change this assumption.

: _ . H, then(C,y is calledconcave faceon H. A Hamiltonian
A L-s-haped supergrld grapkienoted by.(m, n; &, 1), ISa oy ole of R(m, 3) is calledcanonicalif it contains three flat
supergrid graph obtained from a rectangular supergrid graTo¥1

S aces on two shorter boundaries and one longer boundary,
R(m, n) by removing its subgrapift(k, ) from the upper- and it contains one concave face on the other boundar
right corner, wheren,n > 1 andk,l > 1. Thenm —k > 1 Y,

andn—1 > 1. A C-shaped supergrid grapti(m, n: &, I c, d) where the shorter boundary consists of three vertices. And,

) . . iltoni i = >
is a supergrid graph obtained from a rectangular supergﬁdHamlltonlan cycle offi(m, n) with n 20rn > 4

graph R(m, n) by removing its subgraptR(k, 1) from its IS said to becanonical if it contains three flat faces on

. ) hr ndari nd i ntains on ncave f n th
node coordinated agn, c + 1) while R(m,n) and R(k,1) three boundaries, and it contains one concave face on the
A other boundary. The following lemma states the result in

have exactly one border side in common, whete> 2,

n>3 k1>l c>lden-l-c>1 andm—k > [13] concerning the Hamiltonicity of rectangular supergrid

1. The structures of.(m,n; k,l) and C(m,n; k,l;c,d) are graphs.

explained in Fig. 4(a) and Fig. 4(b), respectively. Lemma 1. (See [13]) LetR(m,n) be a rectangular super-
LetG = (V, E) be a supergrid graph with vertex 9é{G) grid graph withm > n > 2. Then, the following statements

and edge seF(G). Let S be a subset of vertices @, and let hold true:

u andv be two vertices irG. We write G[S] for the subgraph (1) if n = 3, thenR(m, 3) contains a canonical Hamiltonian

of G inducedby S, G — S for the subgraplG[V — S], i.e., cycle;

the subgraph induced By — S. In general, we write7 —v  (2) if n =2 or n > 4, thenR(m, n) contains four canonical
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Fig. 5. Rectangular supergrid graphs in which there is no Hanin

(s, t)-path for (@)R(m, 1), and (b)R(m, 2), where solid lines indicate the Fig. 6. A schematic diagram for (a) Statement (1), (b) Staten(@), (c)

longest path between and . Statement (3), and (d) Statement (4) of Proposition 1, where bold dashed
lines indicate the cycles (paths) agdrepresents the destruction of an edge
while constructing a cycle or path.

Hamiltonian cycles with concave faces being on different
boundaries. s

Let (G,s,t) denote the supergrid grap& with two , R .
specified distinct vertices and¢. Without loss of generality, UEOC 1 VEOZOTOTOR G 0 I
we will assume thats, < ¢, in the rest of the paper. () (b) (©
We denote a Hamiltonian path betweemnqt i.n G by. Fig. 7. L-shaped supergrid graph in which there is no Hamiltor{igrt)-
HP(G, S, t)- We say thatHP(G, S, t) does exist if there is path for (a)s is a cut vertex, (b)s,t} is a vertex cut, (c) there exists a
a Hamiltonian(s, t)-path in G. From Lemma 1, we know vertexw such thatdeg(w) = 1, w # s, andw # t, and (d)ym — k = 1,
that HP(R(m,n), s,t) does exist ifm,n > 2 and (s,t) is n—!=21=1k>2 and{s,t} = {(1,2),(23)}.
an edge in the constructed Hamiltonian cycleRR{in, n).

Definition 1. Assume that7 is a connected supergrid graph |
and V; is a subset of the vertex sét(G). V; is a vertex Lemma 4. (See [19]) LetR(im, n) be a rectangular super-

cutif G — V; is disconnected. A vertex € V(G) is acut grid graph withim > 3 andn > 2, s andt be its two distinct

vertex if G — {v} is disconnected. For an example, in Fig/ertices, and let = (1,1) andz = (2,1). If (R(m,n), 5,)

5(b) {s, ¢} is a vertex cut, and in Fig. 5(@)is a cut vertex. does_not_satisfy conditioff'1), then there exists a canon_ical
Hamiltonian(s, t)-path@ of R(m,n) such thatz, f) € Q if
In [15], we showed thati P(R(m,n),s,t) does not exist (R(m,n),s,t) does satisfy conditionF2); and (w, z) € Q
if the following condition hold: otherwise.

. . We then give some observations on the relations among
(F1) sortis acutvertex, Os,t} is a vertex cut (See cycje, path, and vertex. These propositions will be used in
Fig. 5(a) and Fig. 5(b)). proving our results and are given in [13], [14], [15].

g’roposition 1. (See [13], [14], [15]) LetC, and (5 be two

vertex-disjoint cycles of a grapi, let C; and P; be a cycle

and a path, respectively, @ with V(C;)NV (P;) = 0, and

let = be a vertex inG — V(Cy) or G — V(P;). Then, the

Lemma 2. (See [26]) LetG be a supergrid graph with two following statements hold true:

verticess and ¢. If (G, s,t) satisfies conditionF1), then (1) If there exist two edges; € C; and ey € C5 such that

HP(G,s,t) does not exist. e1 = eq, thenCy and C> can be combined into a cycle of

I . G (see Fig.6(a).

e a4, ) T hre st o e, < C andes < 11 suen
X . €1 = ez, thenCy and P; can be combined into a path 6f

each boundary, and is calle@nonical (see Fig.6(b)).

Lemma 3. (See [15]) LetR(m,n) be a rectangular su- (3) If vertexz adjoins one edggu,,vq) of Cy (resp., P1),
pergrid graph withm,n > 1, and lets and ¢t be its two thenC; (resp., P1) and x can be combined into a cycle
distinct vertices. If R(m,n), s,t) does not satisfy condition (resp., path) oG (see Fig.6(c)).

(F1), then there exists a canonical Hamiltonigs, t)-path (4) If there exists one edggu;,vi) € C; such that
of R(m,n), i.e., HP(R(m,n), s,t) does exist. uy ~ start(Py) and vy ~ end(Py), thenC; and P, can

) , .. be combined into a cyclé' of G (see Fig.6(d)).
Consider that(R(m,n),s,t) does not satisfy condition

(F1). Letw = (1,1), z = (2,1), and f = (3,1) be three In addition to condition (F1) (as depicted in Fig. 7(a)
vertices of R(m,n) with m > 3 andn > 2. In [19], we and 7(b)), in [19], we showed thali P(L(m,n;k,1),s,t)
have proved that there exists a Hamiltoniant)-path Q does not exist whenever one of the following conditions is
of R(m,n) such that(z, f) € Q if the following condition satisfied.

(F2) holds; andw, z) € Q otherwise.

Let G be any supergrid graphs. The following lemm
showing thatd P(G, s, t) does not exist if G, s, t) satisfies
condition (F1) can be verified by the arguments in [26].

(F3) assume thaty is a supergrid graph, there exists a

(F2) n = 2 and {s,t} € {{w,z}, {(1,1), (2,2)}, vertexw € G_ such thatdeg(w) = 1, w # s, and
{(2,1), (1,2)}}, orn > 3 and {s, t} = {w, z}. w # t (see Fig. 7(c)).
(F) m—k =1,n—-1=21=1,k > 2, and
The above result is presented as follows and can be used {s,t} = {(1,2),(2,3)} or {(1,3),(2,2)} (see Fig.
in proving our result. 7(d))-
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We then verify the following theorem in [19].

Theorem 1. (See [19]) LetL(m,n;k,l) be a L-shaped
supergrid graph with vertices and¢. If (L(m,n; k1), s,t)
does not satisfy conditiongF1), (F3), and (F4), then
L(m,n;k,1) contains a Hamiltonian (s,t)-path, i.e.,
HP(L(m,n;k,l),s,t) does exist.

The following theorem shows the Hamiltonicity di-
shaped supergrid graphs and has been proved in [18].

Theorem 2. (See [18]) LetL(m,n;k,l) be a L-shaped
supergrid graph. Thenl.(m, n; k, 1) contains a Hamiltonian
cycle if it does not satisfy conditiof¥'5).

Fig. 8. SomeC-shaped supergrid graphs in which there is no Hamiltonian

Where condition (F5) is defined as follows: (5. )-path.

(F5) there exists a vertexo in L(m,n;k,l) such that

deg(w) = 1.
. (F7) m=3,a=m—k=2,and[(c=1and{s,t} =
In the following, we use.(G, s, t) to denote the length of {(1,1),(2,2)} or {(1,2),(2,1)}) or (d = 1 and
longest paths betweenandt andU (G, s, t) to indicate the {s,t} ={(1,n),(2,n—1)}or{(1,n—1),(2,n)})]
upper bound on the length of longest paths betweandt, (see Fig. 8(d)).

where G is a rectangular[-shaped, oiC-shaped supergrid (F8) n=3k=c=d=1, and
graph. By the length of a path we mean the number of ' '

vertices of the path. In [15] and [19], we showed that a 1) a>2ands, =t, =m— 1 (see Fig. 8(e));

longest (s, t)-path of a rectangular oL-shaped supergrid 5 orﬁ - - B

g . ) a=2,s, =1,t, =2, and|s, —t,| =2 (see
graph can be computed in linear time. Fig. 8(): or |5y =yl
Theorem 3. (See [15], [19]) Given a rectangular supergrid 3) a>2,s, <m-—1,andt = (m —1,2) (see
graph R(m,n) with mn > 2 or L-shaped supergrid graph Fig. 8(9)).
L(m,n; k,1), and two distinct vertices and¢ in R(m,n) or
L(m,n;_k:,l), a longest(s, t)-path can be found i (mn)- (F9) a=m—k=1,and ,,t, <cors,t,>c+I)
linear time. (see Fig. 8(h)).

IIl. THE NECESSARY ANDSUFFICIENT CONDITIONS FOR
THE HAMILTONIAN AND HAMILTONIAN CONNECTED OF
C-SHAPED SUPERGRID GRAPHS

By using Lemma 1, Lemma 3, Lemma 4, and Theorem
1, we prove the necessary and sufficient conditions for
HP(C(m,n;k,l;c,d), s, t) does exist in the following three

In this section, we will give necessary and sufficieNemmas. Due to the space limitation, the proofs are omitted.
conditions for C-shaped supergrid graphs to have a

Hamiltonian cycle and Hamiltonian(s,¢)-path. First, Lemma 5. If HP(C(m,n;k,l;c,d),s,t) exists, then
we will verify the Hamiltonicity of C-shaped supergrid (C(m,n;k,l;c,d),s,t) does not satisfy conditiongt'1),
graphs. Ifa(= m — k) = 1 or there exists a vertex (F'3), (F7), (F8), and (F'9).

w € V(C(m,n; k,l;c,_d)) such tlflatd.eg(w) = 1, then Lemma 6. Let C
C(m,n; k,l; ¢, d) contains no Hamiltonian cycle. Therefore
C(m,n; k,l;e,d) is not Hamiltonian if condition (F6) is
satisfied, where (F6) is defined below.

(m,n;k,l;c,d) be aC-shaped supergrid
graph witha = m — k = 1, and lets and ¢ be its two
distinct vertices such thatC(m,n; k,l; ¢, d), s,t) does not
satisfy conditiongF1), (F3), (F7), (F8), and (F9). Then,
) C(m,n; k,l;c,d) contains a Hamiltonian(s, t)-path, i.e.,
(F6) a(= m — k) = 1 or there exists a vertex HP(C(m,n:k,lic,d), s, t) does exist.
w € V(C(m,n;k,l;c,d)) such thatdeg(w) = 1.

Lemma 7. Let C(m,n;k,1;c,d) be aC-shaped supergrid

By using Lemma 1 and Proposition 1, we can prove tH§@Ph witha = m —k > 2, and lets and ¢ be its two

following theorem. Due to the space limitation, we omit itdistinct vertices such thatC'(im, n; k, l; ¢, d), s,t) does not

proof. satisfy conditiongF1), (F3), (F7), (F8), and (F9). Then,
C(m,n; k,l;c,d) contains a Hamiltonian(s, t)-path, i.e.,

Theorem 4. C(m, n; k,I; ¢, d) contains a Hamiltonian cycle g p(C(m,n;k,I; ¢, d), s,t) does exist.

if and only if it does not satisfy conditiof¥6).

) - N From Lemmas 5-7, it immediately follows that the fol-
Next, we give necessary and sufficient conditions for thgywing theorem holds true.

existence of a Hamiltoniafs, ¢)-path in C(m,n; k,l; ¢, d).

In addition to condition (F1) (as depicted in Fig. 8(a)-8(b)Jheorem 5. Let C(m, n; k. l; ¢, d) be aC-shaped supergrid

and (F3) (as depicted in Fig. 8(c)), (€ (m, n; k,l;c,d),s,t) 9raph with verticess and t. C(m,n;k,l;c,d) contains

satisfies one of the following conditions, then it contains n@d Hamiltonian (s, t)-path, i.e., HP(C(m, n; k,l;¢,d), s,1)

Hamiltonian s, t)-path. does exist if and only ifC(m,n;k,l;¢c,d),s,t) does not
satisfy conditiongF1), (F3), (F7), (F8), and (F9).
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IV. THE LONGEST(s,t)-PATH IN C-SHAPED SUPERGRID  path betweers and¢ cannot exceed, — s, + 1.
GRAPHS (FC10) If deg(s) > 1, deg(t) > 1, and (C(m,n;k,I;
c,d),s,t) does not satisfy conditio('1), then the length

From Theorem 5, it follows that ifC (m, n; k, l; ¢, d), s,t)  of any path betwees and ¢ cannot exceed.(G1, s,t) + 1,
satisfies one of the conditions (F1), (F3), (F7), (F8), and (F%}/hereGl = L(m,n;k,1 + ¢)

then(C'(m,n;k,l;c,d), s, t) contains no Hamiltoniags, t)-

path. So in this section, first for these cases we give uppert iS easy to show that any(C(m,n;k,l;c,d),s,t)
bounds on the lengths of longest paths betweandt. Then, must satisfy one of conditions (C1), (FC1), (FC2),
we show that the derived upper bound is equal to the lendfC3). (FC4), (FC5), (FC6), (FC7), (FC8), (FC9),
of longest paths betweenandt. Notice that the isomorphic and (FC10). If (C(m,n;k,l;c,d), s, t) satisfies (C1),
cases are omitted. The following lemmas give the bound8en U(C(m,n;k,l;c,d),s,t) is mn — kl. Otherwise,

Due to the space limitation, the proofs of the following fout/ (C(m, n; k,l;c, d), s, t) can be computed using Lemmas
lemmas are omitted. 8-11. Where (C1) is defined as follows:

Lemma 8. Leta = 1 andw = (1,c¢ + 1). Suppose that (C1)
(C(m,n;k,l;c,d), s, t) satisfies one of the conditiorf§'1)
and (F9). Then, the following statements hold true:

(FC1) If s,,t, > ¢, then the length of any path between .
s andt cazr/mgt exceed.(G1, 5,t), whereG, = L(m,n — We then conclude the upper bounds(C(m,n;k,!l;
¢ k,l) T ’ c,d), s, t) as follows:

(C(m,n;k,l;¢,d), s, t) does not satisfy any of
conditions (F1), (F3), (F7), (F8), and (F9).

(FC2) If (sy < candt, > c+1) or (t, < cands, > c+1),
without loss of generality assume thgt< ¢, then the length
of any path betweer and ¢ cannot exceed.(Gq, s, z) +

U(C(m,n; kylye,d), s, t) =

ﬁ(Gg,w,t), whereG1 = R(m,¢), Gy = L(m,n — ¢ k,1), €<G17S’t)’ . ?f (FC1),

and z = (1,¢) if s # (1,¢); otherwisez = (2, c). L(G1,5,2) + L(G2, w, 1), if (FC2) or (FC8),
) max{L(G1,s,t), L(Ga,s,t}, if (FC3) or (FC4),

Lemma 9. Assume that > 1, {s,t} is a vertex cut, and L(Gr,s,t) +k x ¢ i (FC5)

(k>1,sy,ty>n—1anda+1<s, =t, <m—1)or AT S ’ ) ’

(c+1<s, =t, <c+1). Then, the following statements | L(L(m,nik, 1+ ¢),s,1), if (FC6) or (FCT),

hold true: te — 8z + 1, if (FC9),

(FC3) If a = 2 and s, = t,, then the length of any path be- | L(Gy,s,t) + 1, if (FC10),

tweens and ¢ cannot exceethax{L(G1,s,t), L(Ga,s,t)}, mn — K, it (C1).

where G1 = L(m,n’; k1), Go = L(sy,m; k',1"), n' =

- LU=n-d kK =1-0+1,andl” = k. _ _
?FCE;J +|f . " 1 d = ;L and s - Finally, we show how to obtain a longess,¢)-path
then the length of any path between and ¢ can- for C-shaped supergrid graphs in Lemma 12. Due to
not exceedmax{L(Gl 5.1) E(GQ s,1)}, where G; — the space limitation, its proof is omitted. Notice that if
Clm! n: K, s ¢, d), Gy _ I’Q(T’n S j’L 1 c,l) m — s and (Clm,niklie,d), s t) satisfies (C1), then by Theorem 5,
ol — Y o it contains a Hamiltoniars, t)-path.

(FC5) If ¢ >1,d =2, ands, = t,, then the length of any Lemma 12. If (C(m,n;k,l;c,d), s, t) satisfies one of con-

path betweers and ¢ cannot exceed.(G1,s,t) + |G2| = ditions (FC1)~(FC10), then L(C(m,n;k,l;c,d), s,t) =
L(G1,s,t) + k x ¢, where G; = L(m,n;k,l + ¢) and  {(C(m,n; k,l;c,d), s,t).
G2 = R(k,c)

We finally conclude the following theorem.
Lemma 10. Leta > 1 and ¢ = 1. Then, the following
statements hold true:
(FC6) If a = 2, sy,ty < 2, 8y # by, and s, # tg,
then the length of any path betweerand ¢ cannot exceed

L(L(m,n; k,l+¢), s,1). The algorithm is formally presented as Algorithm 1V.1.
(FCT7) If (C(m,n;k,l;c,d),s,t) satisfies conditiorfF8)) or
(sz =ty = m —1 and s, t, < 2), then the length of
any path between and ¢ cannot exceed.((, s, t), where
G' = L(m,n; k,1+ c).

Theorem 6. Given aC-shaped supergrid’(m, n; k,[; ¢, d)
and two distinct verticess and ¢ in C(m,n;k,l;¢c,d), a
longest(s, t)-path can be constructed if(mn)-linear time.

V. CONCLUDING REMARKS

Based on the Hamiltonicity and Hamiltonian connectiv-
ity of rectangular andL-shaped supergrid graphs, we can

Lemma 11. Assume thatk,ea > 1, ¢ = 1, and prove C-shaped supergrid graphs to be Hamiltonian and
(C(m,n; k,l;¢c,d), s, t) does not satisffFC6). Let w = Hamiltonian connected except few conditions. On the other
(a +1,1). Then, the following statements hold true: hand, we give a linear-time algorithm to find the longest

(FC8) If t, > 1, t, = 1, and [(s; < a) or (s, > a (s,t)-path in C-shaped supergrid graph with two distinct
and s, > ¢+ )], then the length of any path betweemwerticess, t. Whether the result can be applied@shaped

s and ¢ cannot exceedl(G1,s,z) + L(Gs,w,t), where supergrid graphs which are rectangular supergrid graphs with
G1 = L(m,n;k,l + ¢), Go = R(k,c), andz = (a,1) if a rectangular hole. We leave it to interesting readers. On
s # (a,1); otherwisez = (a,2). the other hand, the Hamiltonian cycle problem on solid grid
(FCI) If s4,t, > 1 ands, =t, = 1, then the length of any graphs was known to be polynomial solvable. However, it
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Algorithm IV.1: The longest(s, t)-path algorithm

(18]

Input: A C-shaped supergrid graghi(m, n; k, [; ¢, d)

Output: The longest(s, t)-path.

with mn > 2, and two distinct vertices andt

in C(m,n;k,l;c,d). [19]

1. if a(=m — k) = 1 then output

HP(C(m,n;k,l;¢c,d), s, t) constructed from Lemma 6;

[20]

I (C(m,n;k,l;e,d), s, t) does not satisfy the forbidden

conditions (F1), (F3), (F7), (F8), and (F9);

2. if a(=m — k) > 1 then output
HP(C(m,n;k,l;c,d),s,t) constructed from Lemma 7;
I (C(m,n;k,l;e,d), s, t) does not satisfy the forbidden

[21]
[22]

(23]

conditions (F1), (F3), (F7), and (F8);

3. if (C(m,n;k,l;¢c,d), s, t) satisfies one of the forbidden

[24]

conditions (F1), (F3), (F7), (F8), and (F3hen output

the longest(s, t)-path based on Lemma 12;

[25]

remains open for solid supergrid graphs in which there exis
no hole.
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