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Abstract—We examine how modern Applied Pseudoanalytic
Function Theory has provided a better understanding of the
Electrical Impedance Equation, and Dirac Equation; for they
are of mayor importance in Electrical Impedance Tomogra-
phy and Nuclear Medicine Dosimetry, for example. Also, we
briefly review a contribution into Multispectral Photoacoustic
Microscopy Theory.

Index Terms—Pseudoanalytic Funtions, Electrical Impedance
Equation, Dirac Equation.

I. INTRODUCTION

There are only few cases of purely mathematical theories,
as the one created by L. Bers and co-authors [1], which
evolved during less of a century embracing many branches of
both Theoretical and Experimental Physics. Moreover, when
such branches, as separate as they could seem, converge
on an applied discipline, as the Engineering is. This paper
analyze how the modern Applied Pseudoanalytic Function
Theory has strongly contributed at least into three fields
of Electrical Engineering: Electrical Impedance Imaging,
Nuclear Medicine, and briefly presented, in Multispectral
Photoacoustic Microscopy Theory; remarking these fields
were selected as examples, oh behalf of briefness, but the
reader will easily notice the presented results can be imme-
diately extended to other branches (see [2]).

We will show the main advances by studying the Elec-
trical Impedance Equation, specifically the forward Dirichlet
boundary value problem in the plane; and the Dirac Equation,
for which a new class of solutions with unexpected behaviour
has been found. But the work is not restrained to known re-
sults, since for the two first equations, preliminary proposals
and brief descriptions of new results, and new techniques are
presented, and as expected in an State of the Art treatise, we
consider some of the most relevant questions to be answered,
for we expect to achieve significant advances in Applied
Mathematics to be applied Electrical Engineering.

II. PRELIMINARIES

Let us discuss some concepts corresponding to the Applied
Pseudoanalytic Function Theory, and to Applied Quater-
nionic Analysis. They have been slightly modified to better
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fit the main assets of this paper, since they are indispensable
given the diversity of applications in Electrical Engineering,
presented in onward paragraphs.

A. Elements of pseudoanalytic functions

Let C be the set of complex-valued functions. Every
element W belonging to C will be represented in the form
W = ReW + iImW , where ReW is the real part of
W , whereas ImW denotes the imaginary part, and i is the
standard imaginary unit i2 = −1.

Definition 1: Let (F,G) ∈ C, such that they satisfy the
condition:

Im
(
F ·G

)
6= 0; (1)

where the overline-mark on a complex function indicates its
complex conjugation: F := Re F − iIm F . Hence (F,G)
will be referred as a Bers Generating Pair, or on behalf of
briefness, a generating pair.

Corollary 1: Let (F,G) ∈ C satisfy the condition (1).
Thus any complex-valued function W accepts the represen-
tation:

W = φ · F + ψ ·G,

where φ and ψ are purely real-valued functions.
1) Derivative and integral in the sense of Bers, Taylor

series in formal powers, and a special class of Vekua
equation: Let the classical two-dimensional Cartesian axis
be represented by the notations x1, x2. We can introduce
the following notations:

∂z :=
∂

∂x1
− i ∂

∂x2
; ∂z :=

∂

∂x1
+ i

∂

∂x2
.

Usually, these complex differential operators (the Cuachy-
Riemann operators, indeed), are presented with the factor 1

2 .
Nonetheless, in the current study, it will be more convenient
to omit it, without lose of generality. Also, on behalf of the
space, we shall employ the abbreviate notation ∂s := ∂

∂xs
,

where s represents the variable for which the partial deriva-
tive is applied, as well the subindex of its corresponding
Cartesian axis. Therefore, the derivative in the sense of Bers
of a complex-valued function W , represented as ∂(F,G)W ,
is defined according to the expression:

∂(F,G)W := F∂zφ+G∂zψ;

yet, this will exist iff:

F∂zφ+G∂zψ = 0. (2)
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The equation (2) was widely studied by professor Ilia
Vekua in [5], that it is why (2) was named after him. Its
great importance in this work will be clarified forward.

Remark 1: Let p be a purely real-valued function, non
vanishing within a certain domain Ω ⊂ R2, where, as usual,
R2 represents the Cartesian two-dimensional plane. The pair
of functions

F = p, G =
i

p
, (3)

satisfy the condition (1); then they conform a generating pair.
Definition 2: Let us introduce the notations:

B(F,G) :=
∂zp

p
, b(F,G) :=

∂zp

p
. (4)

These pair of functions are known as the characteristic
coefficients of the generating pair (F,G).

Remark 2: By virtue of the notations (4), the Vekua
equation (2) can be rewritten in the form:

∂zW −
∂zp

p
W = 0. (5)

This significant form of the Vekua equation will be of
extreme importance for the Biomedical Engineering appli-
cations discussed in this paper.

Definition 3: Let the pairs of functions (F0, G0) and
(F1, G1) be two generating pairs, such that their character-
istic coefficients fulfill the condition:

B(F0,G0) = −b(F1,G1);

Then (F1, G1) is called a successor pair of (F0, G0), as well
(F0, G0) is caller a predecessor pair of (F1, G1).

Definition 4: Let the set of generating pairs

{... (F−1, G−1) , (F0, G0) , (F1, G1) ...} (6)

be such that every (Fs+1, Gs+1) is a successor pair of
(Fs, Gs), where ∀s ∈ P, and P is the set of Whole Numbers.
Afterwards, this set will be called a generating sequence. Par-
ticularly, if it happens that (Fs, Gs) = (Fs+k, Gs+k), where
k ∈ P, the generating sequence will be called periodic, with
period k. Moreover, if a generating pair (F,G) = (Fs, Gs),
we will say that (F,G) is embedded into the generating
sequence of the form (6).

Remark 3: Suppose the function p depends upon only x2

(the vertical axis). Then, the generating pair defined accord-
ing to (3), will be embedded within a periodic generating
sequence, with period k = 1.

Definition 5: Let (F,G) be a generating pair. Its adjoin
pair, denoted as (F ∗, G∗) is defined as follows:

F ∗ = −iF, G∗ = −iG.

Definition 6: The integral in the sense of Bers, when it
exists (see [1] for details), has the form∫

Λ

Wd(F,G) := F Re

∫
Λ

W ·G∗dz +GRe

∫
Λ

W ·G∗dz,
(7)

where Λ is a rectifiable curve going from 0 till z, and z =
x1 + ix2.

Definition 7: The formal power Z0 (a0, 0; z) with a con-
stant coefficient a0 ∈ C, center at 0, and depending upon z,
is defined by the expression

Z0 (a0, 0; z) = λF + µG;

where λ and µ are two constant numbers fulfilling the
relation

λF (0) + µG (0) = a0. (8)

Higher formal powers are approached by the formulae

Zn (an, 0; z) = n

∫
Λ

Zn−1 (an−1, 0; z) d(F,G).

Notice the integral at the right-hand side of the equation, is
an integral in the sense of Bers (7).

Proposition 1: Any pseudoanalytic function W accepts
the expansion

W = Σ∞n=0Z
n (an, 0; z) . (9)

Hence, since by definition W fulfills the Vekua equation
(5), this expansion is a representation of the general solution
for (5), being every formal power Zn (an, 0; z) a particular
solution of (5) itself. As a matter of fact, the expansion (9)
of W is often called Taylor series in Formal Powers of the
complex-valued pseudoanalytic function W . We shall use
this articulation very often in the upcoming paragraphs.

2) One method to fully employ the Applied Pseudoanalytic
Function Theory to certain Electrical Engineering problems:
The following proposition was first posed in [6], but it had
already been used in a variety of works, e.g. [7] or [8], first as
a conjecture [9], thereafter as a proposition. We present here
the proposition only, recommending the reader to review the
previously cited works for the complete proof.

Proposition 2: Let p be a a non-vanishing function, de-
fined within a bounded domain Ω ⊂ R2. We can always
introduce an infinitesimally-piece-wise separable-variables
function, according to the expression

px2,∞ := {px2
(x1) = p (x1, x2)} ;

where x2 represents every fixed point at the x2-axis, reflec-
tion of the pair of coordinates (x1, x2) where p is defined,
such that px2,∞ is uniquely related to p at each point (x1, x2),
whence px2,∞ will preserve every property of p, at least
from the numerical point of view (a mayor concern in
Engineering). Moreover, from this perspective, px2,∞ can
be considered a function depending only on x2; a property
that will allow the numerical construction of a periodical
generating sequence, with period k = 1.

B. Elements of Quaternionic Analysis

For a complete explanation and proper proofs of the
subsequent concepts, we recommend to consult the book
[10], since the volume is entirely focused into physical
applications. Let the set of quaternionic complex-valued
functions q be denoted by H (C). Subsequently, each element
q ∈ H (C) will be written as

q = q0 + q1e1 + q2e2 + q3e3 =: q0 +−→q ; (10)

where q0, q1, q2, q3 ∈ C, whereas e1, e2, e3 are the standard
quaternionic units:

e1e2e3 = −1; e2
1 = e2

2 = e2
3 = −1. (11)

By definition, the standard imaginary unit i commutes with
the quaternionic units: ies = esi; where s = 1, 2, 3.

Remark 4: Hereafter, the notation introduced in (10) will
be evoked as we show now: q0, often called the scalar part
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of the quaternion q, will be denoted as Sc q := q0; whereas
q1e1 + q2e2 + q3e3, called the vectorial part of q, will be
denoted as both Vec q = −→q := q1e1 + q2e2 + q3e3.

As these properties ensued, the multiplication of two
quaternionic complex-valued functions q and f is non-
commutative, thus we shall introduce the notation

Mfq := q · f,

to indicate the right hand-side multiplication of q by f .
The Moisil-Theodoresco derivative operator D is defined

as follows:
D = e1∂1 + e2∂2 + e3∂3, (12)

where ∂s := ∂
∂xs

, for s = 1, 2, 3; and when applied on
q ∈ H (C), the result can be written down employing the
classical notation of vector calculus:

Dq = grad q0 − div −→q + rot −→q ; (13)

where “grad”, “div” and “rot” are the classical derivative
operators employed in vector calculus. These isomorphic
relation between the quaternionic derivative D and the clas-
sical vector-derivative operators, is the key to rewrite a set
of equations of Mathematical Physics, specially important
in Biomedical Engineering, in both special complex Vekua
equations, and special bicomplex Vekua equations.

III. REVIEW OF EQUATIONS OF MATHEMATICAL
PHYSICS WITH SPECIAL RELEVANCE IN ELECTRICAL

ENGINEERING

A. The Electrical Impedance Equation

Let us consider the Electrical Impedance Equation

div (σ grad u) = 0; (14)

where σ represents the electrical conductivity, and u is the
electric potential. Also known as the Generalized Ohms
Law, among other names, it describes a significant number
of electrical phenomena, both for the static and dynamical
cases. Nevertheless, the mathematical entanglement embed-
ded within this equation, specially when σ turns a complex-
valued function (called then impedance), has provoked a
tendency to restrict its study to the static case, or to such
frequencies where the wavelength is considerably bigger than
the dimensions of the body under examination.

More precisely, when focusing into Dirichlet boundary
value problems, the inverse problem is of special interest for
Medical Imaging, since it is known as Electrical Impedance
Tomography (EIT). Many important treatises has been writ-
ten on this topic, among which it is worth of mention the
one posed by Webster [11], perhaps one of the first tomes
fully dedicated to enclosure all relevant advances in EIT, at
the time of its first edition. Correctly posed by P. Calderón in
mathematical form [12], the problem can be summarized as
follows. Let Ω ∈ R3 be a bounded domain, and let Γ be its
boundary. Suppose the electric potential u is known at each
point of the boundary Γ. Thus, as Calderón proved, there
can be one and only one conductivity function σ inside the
domain Ω, related to such electric potential u at the boundary.
The challenge: How to determine such function σ within Ω.

The relevance for Electrical Impedance Imaging becomes
obvious. Lets focus into Medical Imaging. Every interior

tissue of an organic system possesses a specific conductivity.
If we can conveniently allocate a finite set of electrodes
around a body, whose electric potential values are known,
and then we are able to obtain the conductivity within, we
will possess a map of the location, kind, shape, and perhaps
even dynamics, of all tissues inward, with a minimal risk
of damaging the tissues. In other words, we would obtain
a full image of the inner body by applying extremely small
electrical currents.

Yet, the advances on this direction seem to have been
slowed down for the complexity explained above. They were
V. Kravchenko [3], and K. Astala and L. Päivarintä [13] who,
independently, first noticed the close relation of the two-
dimensional case of (14) and the special Vekua equation
(5) (as a matter of fact, Astala and Päivarintä studied the
Beltrami equation, but is is well known that it is fully
equivalent to the Vekua equation (5)). The relation comes
along these lines. Let us introduce the notations

−→
E :=

√
σ gradu, −→σ :=

D
√
σ√
σ

; (15)

then it is possible to rewrite the equation (14) into the
quaternionic equation(

D +M
−→σ
)−→
E = 0, (16)

indicating that
−→
E can be expanded as

−→
E := e1E1 + e2E2 +

e3E3; where Es :=
√
σ∂su; s = 1, 2, 3. Suppose now

that σ depends upon only x2 (this would seem a very
strong restriction, nevertheless, by virtue or Proposition 2, for
numerical analysis purposes, there is no lose of generality),
and let us analyze the equation in the plane, by dismissing
x3. Introducing another set of notations

∂z := ∂1 + i∂2, W = E1 − iE2,
the quaternionic equation will turn into the Vekua equation

∂zW −
∂z
√
σ√
σ
W = 0;

which possesses exactly the same structure that (5), therefore
it can be studied employing the full set of mathematical
principles introduced in the previous Section.

Kravchenko focused into the forward problem (a funda-
mental matter for many algorithms that recursively solve
it, in order to approach a solution for the inverse problem
[11]), finally proving that the real parts of the formal powers
(9), are indeed a complete set to approach solutions of
the forward problem, obtaining impressively high accuracy
when numerical calculations were performed. Astala and
Päivarintä did likewise, concentrating their efforts on the
inverse problem, obtaining also very important results in
subsequent works (see e.g. [14]).

Yet again, the important contributions of V. Kravchenko
had perhaps a slight mathematical limitation before fully
applying his results in Electrical Impedance Imaging: It is
required that the electrical conductivity σ can be represented
by means of a separable-variables function.

When analyzing the work [14], one can immediately notice
that there is no separable-variables function capable to ap-
proach the non-smooth conductivities posed there. Therefore,
the bridge among these important advances is still to be
made, and it is a central question that needs to be carefully
studied.
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1) A technique to overpass some of the pure-mathematical
restrictions: This was of the essence in the works [7] and
[8], because, from the numerical point of view, and by
means of Proposition 2, any function (analytically expressed
or not) depends solely on one single variable (this is, σ
is a infinitesimally-piece-wise separable-variables function
for numerical purposes). Thus all mathematical elements
analyzed before can be perfectly applied to approach nu-
merical solutions of the forward Dirichlet boundary value
problem, and therefore to be employed into the algorithms
that approach solutions of the inverse problem.

2) A special case for novel further research: But there is a
special case that has not be properly studied in this direction,
perhaps because the Proposition 2 contributes, at the present
time, only for numerical purposes.

But when it comes to numerical analysis, in the light of
the preceding paragraphs, we have already considered the
non-static case of (14). After the proper and well known
calculations, derived from the the Maxwell equations for
isotropic inhomogeneous media, we shall obtain an equation
of the form

div (γ grad u) = 0; (17)

where γ := σ + iωε is the electrical impedance, ω is the
frequency of the electromagnetic wave, and ε is the electrical
permittivity. It is well known in Electromagnetic Theory
that, in general, ε is a function depending at least upon
x1, x2, x3; and on the frequency ω. Still, the influence of
ω turns considerable only for certain high frequencies. Since
our concern in these paragraphs is the Electrical Impedance
Tomography, such frequencies would not be employed, or
even detected, by the measurement equipments. But the
dependence of the spacial axis is highly important. This
directed our attention into the conditions imposed by the
mathematical analysis for continuous variables. It would only
be possible to use the theory in its pure form, when σ and ω
depended both on the same one single variable, meaning they
compose a separable variable function; which immediately
would retrieve any possibility to directly apply the theory
into Electrical Imaging.

For these reasons, two steps leaded us into Engineering
applications in the plane. The first one has already been
mentioned for the case of a purely real conductivity: γ
shall be considered an infinitesimally-piece-wise separable-
variables function, by the utilization of the Proposition 2.
Hence we can already numerically analyze arbitrary isotropic
functions ε and ω. The second one is to examine again
the quaternionic equation (16), but introducing a slightly
variation for a new set of notations.

∂z(H) = ∂1 + e1∂2; W(H) := E1 − e1E2; (18)

where Es :=
√
γ ∂su for s = 1, 2. Then, equation (17) will

turn into the bicomplex Vekua equation

∂z(H)W(H) −
∂z(H)

√
γ

√
γ

W (H) = 0; (19)

where W (H) denotes the quaternionic conjugation of W(H):
W (H) := ScW(H) −VecW(H).

Of course, this is not the first time that a bicomplex Vekua
equation arise from Mathematical Physics. In several works
they have been detected and analyzed. A quite advisable

reference about such bicomplex equations is [3], since the
included authors list will guide the reader thereafter.

Still, it is necessary to remark that, perhaps, this paper
is one of the first works fully dedicated to Engineering
applications, whatever method could have been employed
before. We dare to appoint such because, as it was already
mentioned in [3], most of the properties and main assets of
Pseudoanalytic Theory can be generalized for the bicomplex
Vekua equation (19), and also because we just preliminary
posed a method for numerically solving the forward Dirichlet
boundary valued problem of a bicomplex Vekua equation,
where arbitrary impedance complex-valued functions are
considered.

As a conjecture, it had already been noticed in [15] that the
scalar parts of the formal powers, constitute a complete set
for approaching solutions of the forward Dirichlet boundary
value problem, when separable variables complex-valued
functions are studied.

From the numerical point of view, bias the employment
of Proposition 2, we rediscovered the conjecture, considering
not only separable variables functions, but arbitrary conduc-
tivity complex-valued functions too, approaching solutions
for the forward Dirichlet boundary value problem with high
accuracy. Of course, these are preliminary results, but a full
work about it is onward.

In other words, the new achievement for Electrical Engi-
neering is the capability of approaching solutions for the
forward Dirichlet boundary value problem in the plane,
considering arbitrary electrical permittivities ε, and arbitrary
conductivities σ. This implies that we can immediately use
the numerical method into the algorithms that recursively
solve the forward problem (see [11]) to approach solutions
for the inverse problem.

B. The Dirac Equation

The analysis of the Dirac Equation in, e.g., Biomedical
Engineering, does not require extended justifications. It shall
be enough to mention its relevance in Nuclear Medicine Ra-
diation Dosimetry, an advanced branch of Nuclear Medicine
with mayor importance [17]. Let us examine a special class
of the Dirac Equation: The case of a massive particles, with
spin 1/2, under the influence of an arbitrary electric potential,
just as it is the case of the electron. We shall point out that
the basis of this technique were early presented in [16]. The
technique does not provide general solutions for the Dirac
Equation, but we would like to underline that, in Engineering
procedures, quite often we restrain the available technology
to the cases that are mostly understood, so we can have
certain control of them. Thus, let us study the Dirac Equation
of the form[

γ0∂t −
3∑

n=1

γn∂n + im+ γ0u (x1)

]
Φ (t,x) = 0, (20)

where m is the mass of a particle with spin 1
2 , u (x1)

represents the electric potential, ∂t := ∂
∂t , t is the time

variable, x denotes any point (x1, x2, x3) belonging to R3,
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and γs, s = 0, 1, 2, 3; are the classical Pauli-Dirac matrices:

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

γ2 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , γ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

As mentioned before, this equation was previously studied
in a variety of works. One of them is [18], where numerical
calculations were performed, and unexpected behaviors were
detected for the very first time, related to different kind
of electric potentials, when new sets of solutions were
approached. We now review the techniques posed there,
showing the clear contribution of the Pseudoanalytic function
Theory to this area. Lets introduce a pair of matrix transfor-
mations, first discovered in [3]:

A =


0 −1 1 0
i 0 0 −i
−1 0 0 −1

0 i i 0

 , (21)

A−1 =


0 −i −1 0
−1 0 0 −i

1 0 0 −i
0 i −1 0

 .

Considering the particle-wave de Broglie duality principle,
we can write Φ(t, x) = φeiωt, where ω is the energy of the
particle, and applying the operators A and A−1 as follows:

Aγ1γ2γ3

[
γ0∂t −

3∑
n=1

γn∂n + im+ γ0u(x1)

]
A−1,

we will obtain the biquaternionic equation:(
D −Mge1+me2

)
f = 0; (22)

where g := iu (x1) + iω, and f := Aφ. Suppose f = αQ,
where α is purely scalar, and Q = q1e1 + q3e3. We can
obtain special solutions splitting the main quaternionic Dirac
equation into a pair of decoupled equations:

DQ−Qge1 = 0, ∂1α+mα = 0.

The second equation is solved immediately: α = Ke−mx2 ,
where K is a scalar constant. Consequently, the first equation
will turn into

∂z(H)Q(H) −
∂z(H)p

p
Q(H) = 0,

where ∂z(H) := ∂1 + e3∂3, Q(H) := q1 − q3e1 and
p = e

∫
gdx1 . Once again, we find a biquaternionic Vekua

equation, for which we can go all the way around to numer-
ically approach the Taylor series in formal powers for Q(H).
The very contribution of this special technique for obtaining
a new class of solutions for the massive Dirac Equation,
raised at the moment of approaching the probability density
functions obtained when the solutions were rewritten in
classical form. Surprisingly, the functions corresponding to
higher formal powers, shown a very similar behavior, as if
they were independent of the electric potential influencing

them. No other experiments have been performed in this
direction, and the physical interpretation remains unknown.

Because of this, we enhance the importance of continuing
exploring the new results, given their high importance in
Nuclear Medicine. Also, it is very important to remark that
such theoretical results had never been noticed, or at least
formally described, before employing the modern elements
of pseudoanalytic functions.

C. Other area of Engineering where Applied Pseudoanalytic
Function Theory has contributed

1) Multispectral Photoacoustic Microscopy: On behalf
of space, and since it would perhaps require a separated
work (even the same Mathematical principles are employed)
worth of mention in this work are some advances into
the Photoacoustic Microscopy Theory (see e.g. [19]). Many
works bare witnesses of the complexity for Mathematical
Physics in this area; shall it serve as an example [20], entitled
“Near-infrared multispectral photoacoustic microscopy using
a Graded-Index Fiber Amplifier.”

Let us examine some results to analyze Graded-Index Op-
tical Fibers. In order to reach this, we provide an explanation
without employing single details of mathematical modelling.
Also, we will cite and follow the paper [21], for avoiding
an overflow of specific bibliography, given the extensive
evolving of the full techniques.

Kravchenko had already analyzed the Sturm-Liouville
equation in [4]:

d

dx

(
p
du

dx

)
+ qu = 0,

where p, q and u are complex-valued functions of the real
variable x; by means of a factorization of its differential
operator, where a Vekua equation with the form (5) appeared.
After several important works published in the midtime, he
and Porter studied the spectral parameter power series for
the Sturm-Liouville problems in 2010

d

dx

(
p
du

dx

)
+ qu = λu,

where λ is an arbitrary complex constant; based on the
results upcoming from the Taylor series in formal powers.
As we all know, possessing the spectral parameters of any
differential equation is the backbone to fully understand it.
This becomes clearer when analyzing the obtained results of
Castillo, Khmelnytskaya, Kravchenko and Oviedo, referring
the reflectance and transmittance of finite inhomogeneous
layers [22]:

d

dx

(
p
du

dx

)
+ qu = β2ru, (23)

where r is a complex-valued function of the real variable
x, and β is an arbitrary complex constant; such that the
coefficients p, q, r, and u are supposed to allow the existence
of a solution u0 of:

d

dx

(
p
du0

dx

)
+ qu0 = 0.

More details about the properties of u0 are provided in [22].
Then, again, the general solution of (23) can be expressed
by means of the linear combination of two Taylor series in
formal powers. Finally, Castillo, Kravchenko and Torba, in

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



2013, used the new tools to give a quite novel perspective of
the Bessel equations, reaching our topic of interest, since the
main differential equation of the Graded-Index Optical Fibers
is one of them (in [21] they wrote cylindrical waveguides in
lieu of Graded-Index Optical Fibers). They achieved this by
analyzing the an equation of the form:

−d
2u

dx2
+

(
l (l + 1)

x2
+ q

)
u = Υ

(
r1
du

dx
+ r2u

)
;

where l is a real number such that l ≥ −1
2 , q is a

complex-valued continuous function within a certain interval,
depending upon a real variable x ∈ (0, a] (see [21] for
details), satisfying a growth bound |q| ≤ Cx$ at the origin
for some $ ≥ −2; r0, r1 ∈ C [0, a] are complex-valued
functions, 0 < a ∈ R, and Υ is a complex spectral parameter.

Thereafter, employing this last result, in [21] Castillo,
Kravchenko and Torba examined the specific case of Graded-
Index Optical Fibers, without mayor lose (or not anyone)
of generality. In short terms, by means of the expanded
knowledge of the special Vekua equation (5), and of its
general solution, written in terms of Taylor series in formal
powers, they obtained an infinite set of solutions for the
equation

d2

dt2
ξ +

1

2

d

dr
ξ +

(
κ2η2 (r)− β2 − ϕ2

r2

)
ξ = 0; (24)

where, as explained in [21], the obtention of ξ will allow
the approaching of the corresponding electromagnetic field,
η (r) represents the refractive index profile, κ = 2π

τ is the
vacuum wave number, β is the propagation constant, and ϕ
is a mode parameter.

Even more, they were able to give full explanations of
the physical meaning for most of the results, and showed
the improvement of accuracy obtained by using this novel
numerical method, in comparison to other classical numer-
ical methods, fully dedicated to approach solutions of the
equation (24).

A specific question comes after these paragraphs. Clearly,
the technology at hand can manufacture a wide class of
Graded-Index Optical Fibers, warranting to follow, with high
precision and accuracy, the specifications imposed for such
fibers. Would the results presented in [20] be improved if
it were considered some Graded-Index Fiber, deeply-enough
studied with the results posed in [21]? In our opinion, it is
an important question for Electrical Engineering.

IV. DISCLOSURE

Given the diversity of applications examined in this work,
to write a single section for conclusions turned inconvenient.
Nonetheless, the reader can notice that the closing paragraphs
of each Section are precisely the corresponding conclusions.
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