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Abstract—Cardiovascular diseases (CVDs) are the main
cause of deaths all over the world. To detect the abnormalities
of a heart automatically, convolutional neural networks (CNNs)
learned by using heart sound signals (i.e., the phonocardiogram
or PCG) are proposed. Generally, CNNs need sufficient anno-
tated training data to achieve the high performance. However,
the annotated PCGs (i.e. PCGs labelled with abnormal or
normal) dataset is not sufficient because of personal information
and burden of physicians. Therefore, we need to improve the
classification performance of CNNs even when annotated PCGs
is insufficient. In this paper, in order to solve above problem
we consider two data augmentation (DA) methods, one is
Window Slicing with Spectrogram (WSS), which slices single
PCG to make multiple signals and transforms the signals into
spectrogram data, the other is Synthetic Spectrogram based
GANs (SSG), which generates synthetic data using generative
adversarial networks (GANs). In order to show the validity
of considered two DA methods, we perform some experiments
concerning heart sounds detection and discuss the results of
experiments in point of the accuracy, the sensitivity and the
specificity.

Index Terms—Convolutional Neural Networks, Data Aug-
mentation, Generative Adversarial Networks, Heart Sound
Detection

I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are considered
one of major causes of deaths all over the world. The

estimated 17.5 million people died due to CVDs, represent-
ing 31% of global deaths [1]. Generally, the auscultation
by physicians is used to detect heart abnormalities. Thus,
physicians need extensive training to develop their expertise
in order to understand the auscultation. It is interesting that
the diagnosis accuracy of medical students and physicians
is between 20-40% and the diagnosis accuracy of expert
cardiologists is about 80% [2], [3]. Therefore, we think it
is useful to develop the system detecting the abnormalities
of a heart accurately.

Some CNNs learned by using heart sound signals (PCG)
are proposed to detect heart abnormalities. These methods
are that the classifiers constructed by trained CNNs clas-
sify PCGs into abnormal or normal. Generally, CNNs need
sufficient annotated data to archive the high classification
performance. However, annotated PCGs (i.e. PCGs labelled
with abnormal or normal) dataset is not sufficient because of
personal information and burden of physicians. Therefore,
we should need to develop the method constructing the
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classifier with the high accuracy even when annotated PCGs
are insufficient.

A data augmentation (DA) is one of the methods to
compensate insufficient training data. DA is able to generate
non-real data using real data in order to increase training data
for CNNs. DA (e.g. rotation, cutting, e.t.c.) is often leveraged
in image recognition using CNNs. Moreover, it is reported
that DA does not only improve the classification performance
of the classifier using CNNs but also improve the robustness
[4].

In this paper, we aim to construct the classifier com-
posed of CNNs classifying PCGs with higher classification
performance when the number of PCG is insufficient. We
consider two DA methods to compensate insufficient PCGs,
(i) Window Slicing with Spectrogram (WSS), which slices
single PCG to make multiple signals and transforms the
signals into spectrogram data, (ii) Synthetic Spectrogram
based GANs (SSG), which generates synthetic data using
GANs [5]. We construct the classifier composed of CNNs
trained by using training data including training data gener-
ated by our considered two DA methods. We evaluate the
classification performance of the constructed classifier using
multiple evaluation metrics and discuss the validity of the
considered two DA methods.

II. METHODOLOGY

A. Heart Sound Classification with CNNs

We transform PCGs into the spectrogram data. We con-
struct the classifier composed of CNNs by using the spectro-
gram data. The constructed classifier classifies spectrogram
data into abnormal or normal. Fig.1 shows the process
of heart sound classification. We describe the process of
constructing the classifier and the process of classifying
unannotated PCG (spectrogram data) into abnormal or nor-
mal.

[The process of constructing the classifier]
(i) Measure PCGs (wav file) and annotate them abnor-

mal or normal. (We use PCGs provided by the 2016
PhysioNet/Computing Cardiology Challenge [6]. And
sampling rate is 2000 Hz.)

(ii) Transform PCGs into spectrogram data. (On the process
of transformation, we use first 16,384 samples of a PCG
in order to obtain a spectrogram data.)

(iii) Construction of the classifier by training the CNNs
using spectrogram data.

[The process of classifying a test PCG]
(i) Measure a test PCG at sampling rate of 2000 Hz. (We

use PCGs provided by the 2016 PhysioNet/Computing
Cardiology Challenge [6] as unannotated PCG.)
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Fig. 1. The Process of Heart Sound Classification

(ii) Transform a test PCG into a spectrogram data. (On the
process of transformation, we use first 16384 samples
of a test PCG in order to obtain a spectrogram data.)

(iii) The classifier classifies a spectrogram data into abnor-
mal or normal.

B. Spectrogram Data

Generally, CNNs require two dimensional data like image
data as input data. However, a PCG is one dimensional time-
series data. So, short time Fourier transformation (STFT) is
used to transform one dimensional data into two dimensional
data called spectrogram data. CNNs constructed by using
spectrogram data of PCGs is leveraged in a heart sound
classification [7], [8] and a electrocardiogram classification
[9] [10]. STFT is mathematically represented as Equation
(1) where X[m,ω] denotes the spectrogram data (m is x-
axis and ω is y-axis), x[n] denotes the original PCG and
w denotes the window function. The Window function w is
Hamming window given as Equation (2). In Equation (2),
the window size M is 256. The x-axis of spectrogram data
represents time, y-axis represents frequency, color denotes
each frequency density. We use common logarithm against
spectrogram data and then normalize spectrogram data to [-1,
1].

X[m,ω] =
∞∑

n=−∞
|x[n]w(n−m)e−jωn| (1)

w(n) =

 0.54− 0.46 cos

(
2πk

M − 1

)
, 0 ≤ k ≤ M − 1

0, otherwise
(2)

Fig.2 shows first 16,384 samples (about first 8 seconds) of
PCGs and these spectrogram data. There are abnormal PCG

in Fig.2(a) shows a example of an abnormal PCG and an
abnormal spectrogram data and Fig.2(b) shows a example of
a normal PCG and a normal spectrogram data. The images of
spectrogram data in Fig.2(a) and Fig.2(b) are the visualized
images from spectrogram data.

Fig. 2. Examples of PCG and its Spectrogram Data

C. Convolutional Neural Networks

We use CNNs model called ResNet18 [11] (TABLE I)
in heart sound classification. The feature of ResNet18 is the
skipping connections which are enable to train the deep layer
model. In TABLE I, Conv 7 × 7 represents that the filter
size is 7× 7 and the stride is 2 in the convolution layer, BN
represents the batch normalization [12] and Dense represents
the fully connected layer. Fig.3 shows the architecture of
ResBlock which has twice of BN, ReLU and convolution
layer. And the output y of ResBlock is calculated by adding
the output of second convolution layer and the input x of
ResBlock.

TABLE I
THE ARCHITECTURE OF RESNET18

Classifier Activation Output Shape
Input data - 128× 128× 1
Conv 7× 7 - 64× 64× 64
BN ReLU 64× 64× 64
Maxpool - 32× 32× 64
ResBlock - 32× 32× 64
ResBlock - 32× 32× 64
ResBlock - 16× 16× 128
ResBlock - 16× 16× 128
ResBlock - 8× 8× 256
ResBlock - 8× 8× 256
ResBlock - 4× 4× 512
ResBlock - 4× 4× 512
GlobalAverage - 512
Flatten - 512
Dense ReLU 512
0.5 Dropout - 512
Dense - 1
BN Sigmoid 1

D. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [5] is the gener-
ative model which can generate realistic and diverse images.
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Fig. 3. The Architecture of Resblock

GANs consists of two neural networks, the generator G and
the discriminator D in Fig.4. The generator G generates
the synthetic data G(z) from noise z. The discriminator D
discriminates the inputs x (real data) and G(z) into real
data or synthetic data generated by the generator G. The
generator G is trained in order to generate the synthetic data
that can fool the discriminator D. The discriminator D is
trained in order to be able to discriminate real or synthetic
data accurately.

Fig. 4. The Concept Image of GANs

The training of each generator G and discriminator D is
described as minimax game shown in Equation (3).

min
G

max
D

V (D,G) = E
x∼Pr

[logD(x)]

+ E
z∼Pz

[log(1−D(G(z)))]
(3)

Additionally, each loss function of generator G and dis-
criminator D is described as Equation (4) and Equation (5)
respectively.

LG = E
z∼Pz

[log(1−D(G(z)))] (4)

LD = − E
x∼Pr

[logD(x)]− E
z∼Pz

[log(1−D(G(x)))] (5)

where Pr represents the data distribution of real data, Pz

represents the data distribution of noise z ∼ N(0, 1), x
represents the real data, G(z) represents the synthetic data
generated by the generator G.

We use the generator G (TABLE II) and the discriminator
D (TABLE III). In TABLE II and TABLE III, Dense rep-
resents the fully connected layer, Conv represents that the
filter size is 3×3 and the stride is 2 in the convolution layer,
TransConv represents the deconvolution layer that consists
of the convolution layer of the filter size 3 × 3 and the
stride 1 and the pooling layer. And BN represents batch
normalization [12] that is method in order to stabilize the
training of CNNs and SN represents spectral normalization
[13] that can stabilize the training of GANs.

III. DATA AUGMENTATION

A. Window Slicing with Spectrogram (WSS)

When transforming the PCG into the spectrogram data, a
part of data or all data of the PCG are used. Generally, the

TABLE II
THE PARAMETERS OF GENERATOR

Generator Activation Ouput Shape
Latent vector - 128

Dense - 16384

Reshape - 4× 4× 1024

TransConv, BN ReLU 8× 8× 512

TransConv, BN ReLU 16× 16× 256

TransConv, BN ReLU 32× 32× 128

TransConv, BN ReLU 64× 64× 64

TransConv Tanh 128× 128× 1

TABLE III
THE PARAMETERS OF DISCRIMINATOR

Discriminator Activation Ouput Shape
Input data - 128× 128× 1

Conv, SN LReLU(α = 0.2) 64× 64× 64

Conv, SN LReLU(α = 0.2) 32× 32× 128

Conv, SN LReLU(α = 0.2) 16× 16× 256

Conv, SN LReLU(α = 0.2) 8× 8× 512

Conv, SN LReLU(α = 0.2) 4× 4× 1024

GlobalsumPool - 1024

Dense, SN Sigmoid 1

single PCG is handled to generate the single spectrogram
data. So, if we can obtain the multiple spectrogram data from
the single PCG, we can increase the number of training data.

Window slicing [14] is proposed as an effective DA corre-
sponding to time-series data like a PCG. Window slicing can
make multiple time-series data by slicing single time-series
data into a specific length (slice length). So the multiple
PCGs are obtained from the single PCG by using window
slicing. We call the multiple PCGs made by window slicing,
the increased the PCG.

We consider the DA method of transforming the PCGs
including the increased the PCG into the spectrogram data
receptively. Therefore, we can increase the training data of
the spectrogram data. We set the slice length of window
slicing to 16384 samples in this paper. In the following,
we refer the DA using window slicing as WSS. Further the
movement length of each slice is set where slice length ×
slice ratio. Slice ratio is the parameter and set through the
experiments.

B. Synthetic Spectrogram based GANs (SSG)
As one of the DA methods, the synthetic data generated

by GANs is known to be used the training data. GANs based
on the DA is often leveraged for compensating insufficient
medical data such as the MRI classification [15], the CT
classification [16] and so on. CNNs trained by using the
synthetic data generated by GANs based on the DA improved
the classification performance [4].

We consider the DA method based on GANs which
generate the synthetic spectrogram data. We use the synthetic
spectrogram data generated by GANs trained using the spec-
trogram data transformed the original PCG in the training of
CNNs.

We need to choose the synthetic data for the training of
CNNs because some synthetic data generated by GANs are
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Fig. 5. The Flow of Generating the Spectrogram Data by WSS

obviously different from the original data. Therefore, we
generate and choose the synthetic data that is used in the
training of CNNs in the following steps.

Step1: The trained GANs generates 100 × 103 synthetic
spectrogram data.

Step2: Each synthetic spectrogram data (128 × 128 dimen-
sional vector) is transformed into the 512 dimensional
vector (synthetic vector).

Step3: The original spectrogram data generated by the
trained GANs is transformed into the vector (original
vector) same as Step2.

Step4: Each synthetic spectrogram data is scored by calcu-
lating the score using the synthetic vector and the
original vectors.

Step5: 5 × 103 (10 × 103) synthetic spectrogram data are
choosen from the order of the highest score.

In Step1, GANs are trained by using the original spectro-
gram data in order to generate the synthetic spectrogram
data. In Step2, each synthetic spectrogram data generated
by the trained GANs is transformed into each vector by
using the encorders sucn as CNNs trained using the original
spectrogram data. The encorder is composed of the input
layer and second layer from the end of fully connected layer
of CNNs (The output units of the fully connected layer is
512) and compresses the synthetic spectrogram data into the
vector. Therefore, the number of dimensions of each vector

equals the outputs of second from the end of fully connected
layer and the number of dimensions of the vector is 512. In
Step3, each original spectrogram data is transformed into
each vector as with Step2. In Step4, score of each synthetic
spectrogram data is calculated by the sum of the cosine
similarity of the synthetic vector and all original vectors as
Equation (6).

score =
N∑
i

similarity(q⃗, d⃗i) (6)

similarity(⃗a, b⃗) =
a⃗ · b⃗
|⃗a||⃗b|

(7)

where q⃗ represents a synthetic vector, d⃗i represents a original
vector and N is the number of the original spectrogram
data. And the cosine similarity is derived by Equation (7).
We calculated the score for 100 × 103 synthetic vectors
respectively. Then we choose 5×103 (10×103) synthetic data
from the order of the highest score and the chosen synthetic
vectors are used as the training data of CNNs. Moreover the
synthetic data of abnormal and the synthetic data of normal
are separately generated by GANs. Finally, we obtain 5×103

(10× 103) abnormal synthetic spectrogram data and 5× 103

(10× 103) normal synthetic spectrogram data.
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IV. EXPERIMENT

A. Heart Sound Dataset

We used the PCG dataset provided by the 2016 Phys-
ioNet/Computing in Cardiology Challenge [6]. We made the
PCG dataset for experiment (the original dataset) by selecting
PCGs that have more than 16384 samples among the PCG
data set. And we prepared the original dataset including 558
abnormal PCGs and 2174 normal PCGs.

B. Evaluation method

We compare the classification performance of CNNs con-
structed by using the considered DA with CNNs constructed
not using DA in order to evaluate the effectiveness of the
considered DA methods. We use the accuracy, the sensitivity
and the specificity as the evaluation metrics. We adopt 5-fold
validation.

C. Experiment I: ResNet18

In this Experiment I, we construct the classifier (i.e. CNNs)
trained by using only the original training data and evaluate
the classification performance of the constructed CNNs. We
use CNNs composed of ResNet18 as shown in TABLE
I. We use the training data 1968 PCGs (402 abnormal /
1566 normal), the validation data 217 PCGs (44 abnormal
/ 173 normal) and the test data 347 PCGs (112 normal /
235 normal) by dividing the original PCG dataset in this
experiment I. All PCGs are transformed into the spectrogram
data. And We use the spectrogram data as the input data of
CNNs. The parameters of CNNs are 200 epochs, 128 batch
size and 0.001 learning rate in the training of CNNs. And
the loss function is binary cross entropy and the optimizer
is Adam [17].

We show the result of this experiment I in TABLE IV.
From the result of Experiment I in TABLE IV, we can see
that the accuracy 91.5 %, the sensitivity 82.2 % and the
specificity 93.8 %.

D. Experiment II: WSS

In this Experiment II, we construct the classifiers (i.e.
CNNs) trained by using the training data augmented by WSS
and the original training data, and evaluate the classification
performance of the classifiers. We use the same training
data of PCGs, the validation data of PCGs and the test
data of PCGs as experiment I. The training data of PCGs
are augmented by WSS, that is the augmented training data
of PCGs. We use 5 slice ratios of [0, 0.2, 0.4, 0.6, 0.8]
as the parameter of WSS. Thus, we generate 5 sets of the
augmented training data of PCGs.

All PCGs are transformed into spectrogram data. And we
construct 5 CNNs by using the augmented training data of
the spectrogram data and the original training data of spec-
trogram data. And we evaluate the classification performance
of 5 constructed classifiers. We use CNNs composed of
ResNet18 as shown in TABLE I. The parameters of each
CNNs are 200 epochs, 512 batch size and 0.001 learning
rate in the training of CNNs. And the loss function is binary
cross entropy and the optimizer is Adam [17].

We show the result of this experiment II in Experiment II
of TABLE IV. In TABLE IV, WSS x represents that WSS

uses the slice ratio x. By comparing the result of experiment
I with experiment II, the accuracy, the sensitivity and the
specificity are improved. Therefore, we think that WSS
improves the classification performance of the classifier.
And it has a tendency where the sensitivity decreases and
the specificity increases when the slice ratio increase. We
think it is caused by increasing the difference between the
number of the abnormal spectrogram data and of the normal
spectrogram data when the slice ratio increases and then
CNNs is trained using the normal spectrogram data more
times than the abnormal spectrogram data.

E. Experiment III: SSG

In this Experiment III, we construct the classifiers (i.e.
CNNs) trained by using the training data augmented by SSG
and the original training data, and evaluate the classification
performance of the classifiers. We used the same training
data of PCGs, the same validation data PCGs and the same
test data PCGs as experiment I. All PCGs are transformed
into spectrogram data.

We conduct the training of GANs which is able to generate
the synthetic abnormal spectrogram data and the synthetic
normal spectrogram data separately. We generate 5 × 103

abnormal and 10 × 103 normal synthetic spectrogram data
as the training data after training GANs. Fig.6 shows the
examples of the synthetic abnormal spectrogram data (Fig.6-
(a)) and the synthetic normal spectrogram data (Fig.6-(b))
respectively. We use CNNs composed of ResNet18 as shown
in TABLE I. We use GANs composed of the generator
(TABLE II) and the discriminator (TABLE III) and the
original training spectrogram data as the training data.The
parameter of GANs are 2000 epochs, 32 batch size and 0.001
learning rate in the training of GANs. And the optimizer
of GANs is Adam [17]. The parameter of CNNs are 200
epochs, 512 batch size and 0.001 learning rate in the training
of CNNs. And the loss function is binary cross entropy and
the optimizer is Adam [17].

Fig. 6. Examples of the Visualised Synthetic Spectrogram Data

We show the result of this experiment III in TABLE IV.
In TABLE IV, SSG x represents that the GANs generate
the number of x synthetic spectrogram data of abnormal and
normal respectively. By comparing the result of experiment
I with experiment III, we can see that SSG improves the
accuracy, the sensitivity and the specificity. While, we com-
pare SSG 5000 with SSG 10000 and the accuracy was not
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TABLE IV
RESULTS OF EXPERIMENTS

DA set up Accuracy (%) Sensitivity (%) Specificity (%)

Experiment I

Not using 91.5 82.2 93.8

Experiment II

WSS 0 93.1 90.8 93.7
WSS 0.2 92.9 87.4 94.3
WSS 0.4 91.7 88.7 92.4
WSS 0.6 93.2 85.4 95.1
WSS 0.8 93.7 84.8 95.9

Experiment III

SSG 5000 92.6 84.2 94.8
SSG 10000 92.5 86.3 94.0

improved despite of increasing the number of the synthetic
data as using training data of CNNs. Additionally, the
accuracy of SSG decreases by about 1 % compared with
the accuracy of WSS.

V. CONCLUSION

In this study, we considered two DA methods, WSS and
SSG, in order to improve the classification performance of
the classifier (CNNs) for heart sound classification when
the PCGs are insufficient. We constructed the classifiers
by using the training data augmented by WSS and SSG
respectively. From the results of some experiments, we
knew that the accuracy, the sensitivity and the specificity
of the constructed classifiers are improved. Therefore, we
confirmed the validity of our considered DA methods for
improving the performance of heart sound classification.

In our future works, we consider the method combined
WSS and SSG, the improvement of the architecture and the
training methods of GANs, the selection method of synthetic
data, the construction of the classifier corresponding the
variable length data.
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