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Abstract—In this paper, we formulate multiobjective bimatrix
games with fuzzy random payoffs, and introduce an equilibrium
solution concept based on the fuzzy decision. By applying
possibility measure and an expectation model to such games, the
corresponding equilibrium solution is defined. To circumvent
the computational difficulties to obtain an equilibrium solution,
the algorithm based on the bisection method is proposed, in
which equilibrium conditions in the membership function space
are replaced into equilibrium conditions in the expected payoff
space.

Index Terms—multiobjective bimatrix games, fuzzy random
variables, expectation model, possibility measure, fuzzy deci-
sion.

I. INTRODUCTION

To deal with bimatrix games with triangular fuzzy num-
bers, Maeda [9] defined an equilibrium solution concept
using possibility measure and the threshold values for the
level sets [2]. He formulated the corresponding mathematical
programming problem to obtain such parametric equilibrium
solutions. Using the expected value concept for possibility
measure and necessity measure, Li et.al. [6], [7] formulated
quadratic programming problems to obtain the corresponding
Nash equilibrium solutions for bimatrix games with triangu-
lar fuzzy numbers. Mako et al. [10] focused on bimatrix
games with LR fuzzy numbers. Corresponding to the fuzzy
Nash-equilibrium solution concept, they proposed the fuzzy
correlated equilibrium solution concept, which is based on a
joint distribution for mixed strategies of both players. Gao
[3] introduced three kinds of uncertain equilibrium solution
concepts based on uncertainty theory [8], which depend on
the values of confidence levels. From a similar point of view
based on uncertainty theory, Tang et al. [16] proposed an
uncertain equilibrium solution concept based on the Hurwicz
criterion.

For multiobjective bimatrix games, Corley [1] first de-
fined a Pareto equilibrium solution concept, and formulated
quadratic programming problems to obtain Pareto equi-
librium solutions through the Karush-Kuhn-Tucker condi-
tions, in which multiobjective functions are scalarized by
the weighting coefficients. Nishizaki et al. [12] formulated
multiobjective bimatrix games incorporating fuzzy goals.
They transformed multiobjective bimatrix games into usual
bimatrix games by applying the weighting methods or the
minimum operator [14], [22], and defined the corresponding
equilibrium solution concepts. They formulated the nonlinear
programming problems to obtain such equilibrium solutions.
Using dominance cones proposed by Yu [21], Nishizaki et
al.[11] defined a nondominated equilibrium solution con-
cept which is a generalization of Nash-equilibrium solution
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concept, and formulate nonlinear programming problem to
obtain nondominated equilibrium solutions by applying the
Karush-Kuhn-Tucker conditions.

On the other hand, the concept of fuzzy random variable
was first introduced by Kwakernaak [4], and its definition
in an n-dimensional Euclidean space were given by Puri
and Ralescu [13]. Roughly speaking, fuzzy random variables
defined by Wang and Zhang [17] can be interpreted as
random variables whose realized values are not real values,
but rather are fuzzy sets. From the perspective that both
randomness and fuzziness are often involved simultaneously
in real-world decision making problems, we have already
formulated several kinds of multiobjective fuzzy random
Stackerberg games with simple recourses, introduced the
equilibrium solution concepts, and proposed the interactive
algorithms to obtain a satisfactory solution of the player from
among an equilibrium solution set [18], [19], [20].

In this paper, we focus on multiobjective bimatrix games
with triangular-type fuzzy random variables. After such
multiobjective bimatrix games are transformed into usual
bimatrix games by applying possibility measure [2] and the
expectation model [15] for stochastic programming prob-
lems, an equilibrium solution concept based on the fuzzy
decision [14], [22] is introduced. In section II, multiobjective
fuzzy random bimatrix games are formulated. In section III,
by applying possibility measure [2] and an expectation model
[15] for stochastic programming problems, the corresponding
equilibrium solution based on the fuzzy decision [14], [22] is
defined. To circumvent the computational difficulties to deal
with each objective function based on possibility measure
directly, the algorithm based on the bisection method is
proposed, in which equilibrium conditions in the membership
function space are replaced into equilibrium conditions in the
expected payoff space. In section IV, a numerical example
of two-objective bimatrix games with fuzzy random payoffs
illustrates interactive processes under a hypothetical player
to show the efficiency of the proposed method.

II. MULTIOBJECTIVE FUZZY RANDOM BIMATRIX GAMES

In this section, we consider multiobjective bimatrix games
with fuzzy payoffs. Let i ∈ {1, 2, · · · ,m} be a pure strategy
of Player 1 and j ∈ {1, 2, · · · , n} be a pure strategy of
Player 2. ˜̄Ak

def
= (˜̄akij), k = 1, . . . ,K are Player 1’s (m×n)-

payoff matrices, and ˜̄Bl
def
= (˜̄blij), l = 1, · · · , L are Player

2’s (m × n)-payoff matrices, whose elements ˜̄akij and ˜̄blij
are fuzzy random variables [4] (The symbols ”-” and ”˜”
mean randomness and fuzziness respectively). Throughout
this paper, we assume that under the occurrence of scenarios
sk ∈ {1, · · · , Sk} and tl ∈ {1, · · · , Tl}, ãkskij and b̃ltlij are
realizations of fuzzy random variables ˜̄akij and ˜̄blij , which
are fuzzy numbers whose membership functions are defined
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as follows.

µãkskij
(u) =

max
{
1− akskij−u

αkij
, 0
}
, u ≤ akskij

max
{
1− u−akskij

βkij
, 0
}
, u > akskij

i = 1, · · · ,m, j = 1, · · · , n, sk = 1, · · · , Sk,

k = 1, · · · ,K (1)

µb̃ltlij
(v) =

max
{
1− bltlij−v

γlij
, 0
}
, v ≤ bltlij

max
{
1− v−bltlij

δlij
, 0
}
, v > bltlij

i = 1, · · · ,m, j = 1, · · · , n, tl = 1, · · · , Tl,

l = 1, · · · , L (2)

where the spread parameters αkij > 0, βkij > 0, γlij > 0
and δlij > 0 are constants and the mean value akskij and
bltlij vary depending on the scenarios sk and tl. Moreover,
we assume that a scenario sk occurs with a probability p1ksk ,
where

∑Sk

sk=1 p1ksk = 1, and a scenario tl occurs with a
probability p2ltl , where

∑Tl

tl=1 p2ltl = 1.
Then, a multiobjective bimatrix game with fuzzy random

payoffs can be formulated as follows, where T means
transportation.
P1

maximize
x∈X

(xT ˜̄A1y, · · · ,xT ˜̄AKy)

maximize
y∈Y

(xT ˜̄B1y, · · · ,xT ˜̄BLy)

where

X
def
= {x ∈ Rm |

m∑
i=1

xi = 1, xi ≥ 0, i = 1, · · · ,m},

Y
def
= {y ∈ Rn |

n∑
i=1

yj = 1, yj ≥ 0, j = 1, · · · , n},

are mixed strategies for Player 1 and Player 2. It should
be noted here that, the expected payoffs for the scenarios
sk ∈ {1, · · · , Sk} and tl ∈ {1, · · · , Tl} can be expressed as
fuzzy numbers whose membership functions can be defined
as follows [2].

µxT Ãksk
y(u) =


max

{
1− xTAksk

y−u

xTαky , 0
}
,

u ≤ xTAksky

max
{
1− u−xTAksk

y
xTβky

, 0
}
,

u > xTAksky

sk = 1, · · · , Sk, k = 1, · · · ,K (3)

µxT B̃ltl
y(v) =


max

{
1− xTBltl

y−v

xTγly
, 0
}
,

v ≤ xTBltly

max
{
1− v−xTBltl

y
xTδly

, 0
}
,

v > xTBltly

tl = 1, · · · , Tl, l = 1, · · · , L (4)

where Ãksk
def
= (ãkskij), B̃ltl

def
= (b̃ltlij), Aksk

def
= (akskij),

Bltl
def
= (bltlij), αk

def
= (αkij), βk

def
= (βkij), γl

def
= (γlij),

δl
def
= (δlij).

Considering the imprecise nature of each player’s judg-
ment, it is natural to assume that Players 1 and 2 have

fuzzy goals G̃1k, k = 1, · · · ,K and G̃2l, l = 1, · · · , L for
the expected payoffs. In this paper, it is assumed that such
fuzzy goals can be quantified by eliciting the corresponding
membership function defined as follows.

µG̃1k
(u)

def
=

u− Ek10

Ek11 − Ek10
, k = 1, · · · ,K (5)

µG̃2l
(v)

def
=

v − El20

El21 − El20
, l = 1, · · · , L (6)

where Ek10, El20 represent the maximum value of an un-
acceptable level of the expected payoffs, and Ek11, El21

represent the minimum value of a sufficiently satisfactory
level of the payoffs. Throughout this section, we make the
following assumption.

Assumption 1: The membership functions µG̃1k
(u), k =

1, · · · ,K and µG̃2l
(v), l = 1, · · · , L are continuous and

strictly monotone increasing on the corresponding supports
for the membership functions of xT Ãksky, sk = 1, · · · , Sk

and xT B̃ltly, tl = 1, · · · , Tl, respectively.

[Ek10, Ek11] ⊃
∪

sk=1,··· ,Sk

{u ∈ R1 | µxT Ãksk
y(u) > 0,

∀x ∈ X, ∀y ∈ Y }, k = 1, · · · ,K (7)

[El20, El21] ⊃
∪

tl=1,··· ,Tl

{v ∈ R1 | µxT B̃ltl
y(v) > 0,

∀x ∈ X, ∀y ∈ Y }, l = 1, · · · , L (8)

III. AN EQUILIBRIUM SOLUTION CONCEPT BASED ON
POSSIBILITY MEASURE

To deal with P1, we first apply a concept of possibility
measure [2] to each objective function in P1.
P2

maximize
x∈X

(
ΠxT ˜̄A1y

(G̃11), . . . ,ΠxT ˜̄AKy
(G̃1K)

)
maximize

y∈Y

(
ΠxT ˜̄B1y

(G̃21), . . . ,ΠxT ˜̄BLy
(G̃2L)

)
By applying an expectation model [15] to each objective
function in P2, P2 can be transformed into a usual multiob-
jective bimatrix game as follows.
P3

maximize
x∈X

(E[ΠxT ˜̄A1y
(G̃11)], · · · , E[ΠxT ˜̄AKy

(G̃1K)])

maximize
y∈Y

(E[ΠxT ˜̄B1y
(G̃21)], · · · , E[ΠxT ˜̄BLy

(G̃2L)])

From Assumption 1, the following relations always hold.

0 < ΠxT Ãksk
y(G̃1k) < 1, sk = 1, . . . , Sk,

∀x ∈ X, ∀y ∈ Y (11)

0 < ΠxT B̃ltl
y(G̃2l) < 1, tl = 1, . . . , Tl,

∀x ∈ X, ∀y ∈ Y (12)

To define an equilibrium solution concept to P3, We
assume that both players adopt the fuzzy decision [14],
[22] to integrate multiple objectives in P3. Then, P3 can be
reduced to the following bimatrix game.
P4

maximize
x∈X

min
k=1,...,K

E[ΠxT ˜̄Aky
(G̃1k)] (13a)

maximize
y∈Y

min
l=1,...,L

E[ΠxT ˜̄Bly
(G̃2l)] (13b)
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Now, we can introduce an equilibrium solution concept to
P4.

Definition 1: (x∗,y∗) ∈ X×Y is an equilibrium solution
to P4, if the following inequalities hold.

min
k=1,...,K

E[Πx∗T ˜̄Aky∗(G̃1k)]

≥ min
k=1,...,K

E[ΠxT ˜̄Aky∗(G̃1k)], ∀x ∈ X (14a)

min
l=1,...,L

E[Πx∗T ˜̄Bly∗(G̃2l)]

≥ min
l=1,...,L

E[Πx∗T ˜̄Bly
(G̃2l)], ∀y ∈ Y (14b)

From the definition of the membership functions (5), (6)
and Assumption 1, E[ΠxT ˜̄Aky

(G̃1k)] and E[ΠxT ˜̄Bly
(G̃2l)]

can be expressed as the following forms.

E[ΠxT ˜̄Aky
(G̃1k)]

=

Sk∑
sk=1

p1ksk ·ΠxT Ãksk
y(G̃1k)

=

Sk∑
sk=1

p1ksk ·

(∑m
i=1

∑n
j=1(akskij + βkij)xiyj − Ek10

Ek11 − Ek10 +
∑m

i=1

∑n
j=1 βkijxiyj

)

=

∑m
i=1

∑n
j=1(

∑Sk

sk=1 p1ksk · (akskij + βkij))xiyj − Ek10

Ek11 − Ek10 +
∑m

i=1

∑n
j=1 βkijxiyj

def
=ΠxT Ãk(p1k)y(G̃1k) (15)

E[ΠxT ˜̄Bly
(G̃2l)]

=

Tl∑
tl=1

p2ltl ·ΠxT B̃ltl
y(G̃2l)

=

Tl∑
tl=1

p2ltl ·

(∑m
i=1

∑n
j=1(bltlij + δlij)xiyj − El20

El21 − El20 +
∑m

i=1

∑n
j=1 δlijxiyj

)

=

∑m
i=1

∑n
j=1(

∑Tl

tl=1 p2ltl · (bltlij + δlij))xiyj − El20

El21 − El20 +
∑m

i=1

∑n
j=1 δlijxiyj

def
=ΠxT B̃l(p2l)y(G̃2l) (16)

where

Ãk(p1k)
def
= (

Sk∑
sk=1

p1ksk · ãkskij),

B̃l(p2l)
def
= (

Tl∑
tl=1

p2ltl · b̃ltlij),

are (m × n)-fuzzy payoff matrices, respectively, which de-
pends on the probability vectors p1k

def
= (p1k1, · · · , p1kSk

)

and p2l
def
= (p2l1, · · · , p1lTl

).
It is very difficult to obtain the equilibrium solution to P4

in the computational aspect, since (15) and (16) are bilinear
fractional functions. To circumvent such a difficulty, at first,
we consider the following bimatrix game, which is equivalent
to P4.

P5

maximize
x∈X, v1∈R1

v1

subject to

E[ΠxT ˜̄Aky
(G̃1k)] ≥ v1, k = 1, . . . ,K (17a)

maximize
y∈Y, v2∈R1

v2

subject to

E[ΠxT ˜̄Bly
(G̃2l)] ≥ v2, l = 1, . . . , L (17b)

Assume that (x∗,y∗, v∗1 , v
∗
2) is an equilibrium solution to

P5. Then, the following equalities hold at (x∗,y∗, v∗1 , v
∗
2).

min
k=1,...,K

E[ΠxT ˜̄Aky
(G̃1k)]− v∗1 = 0 (18a)

min
l=1,...,L

E[ΠxT ˜̄Bly
(G̃2l)]− v∗2 = 0 (18b)

From (15) and (16), (18a) and (18b) are equivalent to the
following equalities.

min
k=1,...,K

ΠxT Ãk(p1k)y(G̃1k)− v∗1 = 0 (19a)

min
l=1,...,L

ΠxT B̃l(p2l)y(G̃2l)− v∗2 = 0 (19b)

Consider the v∗1-level set for the fuzzy numbers
x∗T Ãk(p1k)y

∗ and v∗2-level set for the fuzzy numbers
x∗T B̃l(p2l)y

∗ as follows.

(x∗T Ãk(p1k)y
∗)v∗

1

def
= [x∗TAL

k, v∗
1
(p1k)y

∗,x∗TAR
k, v∗

1
(p1k)y

∗]

(x∗T B̃l(p2l)y
∗)v∗

2

def
= [x∗TBL

l, v∗
2
(p2l)y

∗,x∗TBR
l, v∗

2
(p2l)y

∗]

where

AL
k, v∗

1
(p1k)

def
= (

Sk∑
sk=1

p1ksk · aLkskij, v∗
1
)

AR
k, v∗

1
(p1k)

def
= (

Sk∑
sk=1

p1ksk · aRkskij, v∗
1
)

BL
l, v∗

2
(p2l)

def
= (

Tl∑
tl=1

p2ltl · bLltlij, v∗
2
)

BR
l, v∗

2
(p2l)

def
= (

Tl∑
tl=1

p2ltl · bRltlij, v∗
2
)

AL
k, v∗

1
(p1k), AR

k, v∗
1
(p1k), BL

l, v∗
2
(p2l), and BR

l, v∗
2
(p2l) are

(m×n)-matrices. aLkskij, v∗
1
, aRkskij, v∗

1
, bLltlij, v∗

2
bRltlij, v∗

2
mean

the extreme points of the v∗1-level set for ãkskij and the
extreme points of the v∗2-level set for b̃ltlij .

It is obvious that (19a) is equivalent to the following
equalities, since µG̃1k

(·) is strictly monotone increasing and
the right hand side function of the membership function of
xT Ãk(p1k)y is strictly monotone decreasing.

min
k=1,...,K

(
x∗TAR

k, v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
= 0 (20)

Similarly, (19b) is equivalent to the following equalities.

min
l=1,...,L

(
x∗TBR

l, v∗
2
(p2l)y

∗ − µ−1

G̃2l
(v∗2)

)
= 0 (21)
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Corresponding to (20) and (21), we consider the following
bimatrix game, in which (v∗1 , v

∗
2) are given as parameters in

advance.
P6(v∗1 , v∗2)

maximize
x∈X

min
k=1,...,K

{xTAR
k, v∗

1
(p1k)y − µ−1

G̃1k
(v∗1)}

maximize
y∈Y

min
l=1,...,L

{xTBR
l, v∗

2
(p2l)y − µ−1

G̃2l
(v∗2)}

For P6(v∗1 , v
∗
2), we introduce an equilibrium solution concept.

Definition 2: (x∗,y∗) is an equilibrium solution to
P6(v∗1 , v

∗
2), if the following inequalities hold.

min
k=1,...,K

{x∗TAR
k, v∗

1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)}

≥ min
k=1,...,K

{xTAR
k, v∗

1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)}, ∀x ∈ X

(23a)

min
l=1,...,L

{x∗TBR
l, v∗

2
(p2l)y

∗ − µ−1

G̃2l
(v∗2)}

≥ min
l=1,...,L

{x∗TBR
l, v∗

2
(p2l)y − µ−1

G̃2l
(v∗2)}, ∀y ∈ Y (23b)

Then, the following relationships between equilibrium
solutions to P6(v∗1 , v

∗
2) and equilibrium solutions to P5 hold.

Theorem 1: If (x∗,y∗, v∗1 , v
∗
2) is an equilibrium solution

to P5, then (x∗,y∗) is an equilibrium solution to P6(v∗1 , v
∗
2).

(Proof) : Assume that (x∗,y∗) is not an equilibrium
solution to P6(v∗1 , v

∗
2). Then, there exists some x ∈ X such

that

min
k=1,...,K

{
x∗TAR

k,v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

}
<

min
k=1,...,K

{
xTAR

k,v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

}
, (24)

or, there exists some y ∈ Y such that

min
l=1,...,L

{
x∗TBR

l,v∗
2
(p1k)y

∗ − µ−1

G̃2l
(v∗2)

}
<

min
l=1,...,L

{
x∗TBR

l,v∗
2
(p1k)y − µ−1

G̃2l
(v∗2)

}
. (25)

Assume that there exists some x ∈ X such that the inequality
(24) is satisfied. Then, from (20), the following relation
holds.

0 = min
k=1,··· ,K

(
x∗TAR

k,v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
< min

k=1,··· ,K

(
xTAR

k,v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
Since µG̃1k

(·) is strictly monotone increasing and the
right hand side function of the membership function of
xT Ãk(p1k)y is strictly monotone decreasing, the above
relation is equivalent to the following inequality.

v∗1 = min
k=1,··· ,K

Πx∗T Ãk(p1k)y∗(G̃1k)

= min
k=1,...,K

E[Πx∗T ˜̄Aky∗(G̃1k)]

< min
k=1,··· ,K

ΠxT Ãk(p1k)y∗(G̃1k)

= min
k=1,...,K

E[ΠxT ˜̄Aky∗(G̃1k)].

This contradicts the fact that (x∗,y∗, v∗1 , v
∗
2) is an equilib-

rium solution to P5. Similarly, we can prove for the case that
there exists y ∈ Y such that (25) is satisfied.

Theorem 2: If (x∗,y∗) is an equilibrium solution to
P6(v∗1 , v

∗
2), where the following relations hold,

min
k=1,··· ,K

(
x∗TAR

k,v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
= 0 (26)

min
l=1,··· ,L

(
x∗TBR

l,v∗
2
(p1k)y

∗ − µ−1

G̃2l
(v∗2)

)
= 0, (27)

then, (x∗,y∗, v∗1 , v
∗
2) is an equilibrium solution to P5.

(Proof) : Assume that (x∗,y∗, v∗1 , v
∗
2) is not an equilib-

rium solution to P5. Then, there exists some x ∈ X such
that

v∗1 = min
k=1,...,K

E[Πx∗T ˜̄Aky∗(G̃1k)]

< min
k=1,...,K

E[ΠxT ˜̄Aky∗(G̃1k)]

or, there exists some y ∈ Y such that

v∗2 = min
l=1,...,L

E[Πx∗T ˜̄Bly∗(G̃2l)]

< min
l=1,...,L

E[Πx∗T ˜̄Bly
(G̃2l)].

From (15) and (16), this means that there exists some x ∈ X
such that

v∗1 = min
k=1,...,K

Πx∗T Ãk(p1k)y∗(G̃1k)

< min
k=1,...,K

ΠxT Ãk(p1k)y∗(G̃1k), (28)

or, there exists some y ∈ Y such that

v∗2 = min
l=1,...,L

Πx∗T B̃l(p2l)y∗(G̃2l)

< min
l=1,...,L

Πx∗T B̃l(p2l)y(G̃2l). (29)

Assume that there exists some x ∈ X such that (28) is
satisfied. Then, the following relation holds.

0 = min
k=1,··· ,K

(
x∗TAR

k,v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
< min

k=1,··· ,K

(
xTAR

k,v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
This contradicts the fact that (x∗,y∗) is an equilibrium
solution to P6(v∗1 , v

∗
2). Similarly, we can prove for the case

that there exists y ∈ Y such that (29) is satisfied.
From the above theorems, instead of solving P5 directly,

we can obtain an equilibrium solution to P5 by solving
P6(v∗1 , v

∗
2), where (v∗1 , v

∗
2) satisfies the equality conditions

(26) and (27). On the other hand, an equilibrium solution
to P6(v∗1 , v

∗
2) is obtained by solving the following nonlinear

programming problem [12].
P7(v∗1 , v∗2)

maximize
x∈X, y∈Y, p, q, σ1, σ2

σ1 + σ2 − p− q (30a)

subject to

AR
k, v∗

1
(p1k)y − µ−1

G̃1k
(v∗1)e1 ≤ pe1, k = 1, . . . ,K (30b)

xTBR
l, v∗

2
(p2l)− µ−1

G̃2l
(v∗2)e2 ≤ qe2, l = 1, . . . , L (30c)

xTAR
k, v∗

1
(p1k)y − µ−1

G̃1k
(v∗1) ≥ σ1, k = 1, . . . ,K (30d)

xTBR
l, v∗

2
(p2l)y − µ−1

G̃2l
(v∗2) ≥ σ2, l = 1, . . . , L, (30e)

where e1 and e2 are (m × 1) and (n × 1) column vectors
whose elements are all ones. It should be noted here that
p ≥ σ1, q ≥ σ2, and σ1 + σ2 − p − q ≤ 0 always hold,
because of the constraints in P7(v∗1 , v

∗
2).
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The following theorem shows the relationship between an
optimal solution to P7(v∗1 , v

∗
2) and an equilibrium solution to

P5.
Theorem 3: Let (x∗,y∗, p∗, q∗, σ∗

1 , σ
∗
2) be an optimal

solution to P7(v∗1 , v
∗
2). If σ∗

1 = p∗ = 0, σ∗
2 = q∗ = 0, then

(x∗,y∗) is an equilibrium solution for P5.
(Proof) : Since (x∗, y∗), p∗ = q∗ = σ∗

1 = σ∗
2 = 0 is

a feasible solution to P7(v∗1 , v
∗
2), the following inequalities

hold.

AR
k, v∗

1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)e1 ≤ 0, k = 1, . . . ,K (31a)

x∗TBR
l, v∗

2
(p2l)− µ−1

G̃2l
(v∗2)e2 ≤ 0, l = 1, . . . , L (31b)

x∗TAR
k, v∗

1
(p1k)y

∗ − µ−1

G̃1k
(v∗1) ≥ 0, k = 1, . . . ,K (31c)

x∗TBR
l, v∗

2
(p2l)y

∗ − µ−1

G̃2l
(v∗2) ≥ 0, l = 1, . . . , L, (31d)

From (31c) and (31d), it holds that

min
k=1,··· ,K

(
x∗TAR

k, v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
= 0,

min
l=1,··· ,L

(
x∗TBR

l, v∗
2
(p2l)y

∗ − µ−1

G̃2l
(v∗2)

)
= 0.

This means that the following equalities hold.

v∗1 = min
k=1,...,K

Πx∗T Ãk(p1k)y∗(G̃1k) (32a)

v∗2 = min
l=1,...,L

Πx∗T B̃l(p2l)y∗(G̃2l) (32b)

On the other hand, from (31a) and (31c), the following
inequality holds.

min
k=1,··· ,K

(
x∗AR

k, v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
≥ min

k=1,...,K

(
xTAR

k, v∗
1
(p1k)y

∗ − µ−1

G̃1k
(v∗1)

)
,

∀x ∈ X (33a)

From (31b) and (31d), the following inequality holds.

min
l=1,··· ,L

(
x∗BR

l, v∗
2
(p2l)y

∗ − µ−1

G̃2l
(v∗2)

)
≥ min

l=1,...,L

(
x∗TBR

l, v∗
2
(p2l)y − µ−1

G̃2l
(v∗2)

)
,

∀y ∈ Y (34a)

The above inequalities (32a), (32b), (33a) and (34a) can be
equivalently expressed as follows.

v∗1 = min
k=1,...,K

Πx∗T Ãk(p1k)y∗(G̃1k)

≥ min
k=1,...,K

ΠxT Ãk(p1k)y∗(G̃1k),∀x ∈ X

v∗2 = min
l=1,...,L

Πx∗T B̃l(p2l)y∗(G̃2l)

≥ min
l=1,...,L

Πx∗T B̃l(p2l)y(G̃2l),∀y ∈ Y

From (15) and (16), it holds that

min
k=1,...,K

E[Πx∗T ˜̄Aky∗(G̃1k)]

≥ min
k=1,...,K

E[ΠxT ˜̄Aky∗(G̃1k)], ∀x ∈ X,

min
l=1,...,L

E[Πx∗T ˜̄Bly∗(G̃2l)]

≥ min
l=1,...,L

E[Πx∗T ˜̄Bly
(G̃2l)], ∀y ∈ Y.

This means that an optimal solution to P7(v∗1 , v
∗
2) is an

equilibrium solution to P5.
Unfortunately, we cannot obtain an equilibrium solution

to P5 by solving P7(v∗1 , v
∗
2), because the parameters (v∗1 , v

∗
2)

are unknown. However, since the first term xTAR
k, v∗

1
(p1k)y

in the left hand of the inequality constraint (30d) is strictly
monotone decreasing with respect to v∗1 , and the second term
µ−1

G̃1k
(v∗1) in the left hand of the inequality constraint (30d) is

strictly monotone increasing with respect to v∗1 , there exists
some value of v∗1 such that xTAR

k, v∗
1
(p1k)y = µ−1

G̃1k
(v∗1). In

a similar way, we can fined v∗2 such that xTBR
l, v∗

2
(p2l)y =

µ−1

G̃2l
(v∗2).

From such a point of view, we can develop the algorithm
to find the values of (v∗1 , v

∗
2) such that σ∗

1 = 0,σ∗
2 = 0 by

updating (v∗1 , v
∗
2) sequentially, in which the conditions (26),

(27) are satisfied. Using the bisection method with respect to
(v∗1 , v

∗
2), we can find the values of (v∗1 , v

∗
2) such that σ∗

1 =
σ∗
2 = 0.

Algorithm 1

Step 1 Set the initial values of the parameter (v∗1 , v
∗
2) as

(0.5, 0.5).
Step 2 Solve P7(v∗1 , v

∗
2), and obtain the optimal solution

(x∗,y∗, p∗, q∗, σ∗
1 , σ

∗
2).

Step 3 If σ∗
1 > 0, then v∗1 ← v∗1+∆v1, else if σ∗

1 < 0, then
v∗1 ← v∗1 −∆v1. If σ∗

2 > 0, then v∗2 ← v∗2 +∆v2,
else if σ∗

2 < 0, v∗2 ← v∗2−∆v2, where ∆v1 and ∆v2
are sufficiently small positive constants, and return
to Step 2. If | σ∗

1 |≤ ϵ and | σ∗
2 |≤ ϵ, then stop,

where ϵ is a sufficiently small positive constant.

IV. A NUMERICAL EXAMPLE

To show the efficiency of the proposed algorithm, consider
the following numerical example, in which each player
has two kinds of fuzzy random payoff matrices ˜̄A1,

˜̄A2,
˜̄B1,

˜̄B2. Assume that under the occurrence of scenarios
sk ∈ {1, 2, 3}, k = 1, 2 and tl ∈ {1, 2, 3}, l = 1, 2,
realizations of fuzzy random payoff matrices are expressed as
the following fuzzy payoff matrices Ã1s1 , Ã2s2 , B̃1t1 , B̃2t2 .

Ã11 =

[
(100, 40, 40) (180, 50, 50)
(170, 42, 42) (70, 21, 21)

]
Ã12 =

[
(110, 40, 40) (228, 50, 50)
(176, 42, 42) (88, 21, 21)

]
Ã13 =

[
(150, 40, 40) (240, 50, 50)
(230, 42, 42) (130, 21, 21)

]
Ã21 =

[
(40, 20, 20) (70, 30, 30)
(40, 15, 15) (120, 40, 40)

]
Ã22 =

[
(60, 20, 20) (100, 30, 30)
(30, 15, 15) (100, 40, 40)

]
Ã23 =

[
(50, 20, 20) (100, 30, 30)
(26, 15, 15) (80, 40, 40)

]
B̃11 =

[
(100, 30, 30) (16, 10, 10)
(37, 20, 20) (75, 25, 25)

]
B̃12 =

[
(110, 30, 30) (21, 10, 10)
(47, 20, 20) (93, 25, 25)

]
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B̃13 =

[
(150, 30, 30) (35, 10, 10)
(60, 20, 20) (120, 25, 25)

]
B̃21 =

[
(40, 20, 20) (85, 25, 25)
(25, 10, 10) (13, 5, 5)

]
B̃22 =

[
(65, 20, 20) (70, 25, 25)
(35, 10, 10) (15, 5, 5)

]
B̃23 =

[
(45, 20, 20) (76, 25, 25)
(30, 10, 10) (17, 5, 5)

]
In the above matrices, each element is a triangular-type fuzzy
number denoted as (akskij , αkij , βkij) and (bltlij , γlij , δlij),
respectively. The corresponding probabilities are set as
p1ksk = 1/3, k = 1, 2, sk = 1, 2, 3 and p2ltl = 1/3, l =
1, 2, tl = 1, 2, 3, respectively. Assume that hypothetical
players set their membership functions as follows.

µG̃11
(u) =

u− 0

230− 0
, µG̃12

(u) =
u− 0

110− 0

µG̃21
(v) =

v − 0

150− 0
, µG̃22

(v) =
v − 0

90− 0

The step sizes and the terminal condition at Step 3 of the
proposed algorithm are set as ∆v1 = ∆v2 = 0.001 and ϵ =
0.1. Then, applying Algorithm 1 proposed in the previous
section, the equilibrium solution based on the fuzzy decision
is obtained as follows.

(x∗
1, x

∗
2) = (0.322157, 0.677843)

(y∗1 , y
∗
2) = (0.643082, 0.356918)

(E[ΠxT ˜̄A1y
(G̃11)], E[ΠxT ˜̄A2y

(G̃12)])

= (0.725596, 0.617737)

(E[ΠxT ˜̄B1y
(G̃21)], E[ΠxT ˜̄B2y

(G̃22)])

= (0.54552, 0.472824)

V. CONCLUSION

In this paper, we have formulated multiobjective fuzzy
random bimatrix games, and introduced an equilibrium so-
lution concept based on the fuzzy decision, in which the
expectation model and possibility measure are applied to
deal with fuzzy random payoffs. By applying Algorithm
1, we can efficiently obtain such equilibrium solutions to
multiobjective fuzzy random bimatrix games, in which the
equilibrium conditions in the membership function space are
transformed into the equilibrium conditions in the expected
payoff space to circumvent the computational difficulties. In
the proposed method, it is assumed that a realization of each
element of fuzzy random payoffs is a triangular-type fuzzy
number, and fuzzy goals for the objective functions of two
player are expressed as linear membership functions. In the
near future, we would like to deal with more generalized
models of multiobjective fuzzy random bimatrix games, in
which nonlinear membership functions are involved.
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