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Abstract— Attitude dynamics of multi-spin spacecraft is 

considered in cases of redistributions of angular momentum 

between a main body and axial rotors of this multi-rotor 

mechanical system. Direct connections of rotors are described, 

which make it possible to instantly ensure the rotation of 

opposite axial rotors in different directions with equal angular 

velocities. This mechanical scheme of direct connection of 

opposite rotors uses auxiliary gears and provides a 

nonholonomic mechanical constraints. The indicated schemes of 

direct axial connection of rotors can be used for instant 

redistribution of the relative angular momentum between the 

bodies of spacecraft, and can also be used for instant change of 

the motion mode, for example, for instant exit from the arisen 

chaotic regimes of attitude dynamics. 

 
Index Terms—Multi-rotor system, multi-spin spacecraft, 

chaotic regimes, relative angular momentum, nonholonomic 

mechanics 

 

I. INTRODUCTION 

HIS work deals with a problem of redistribution of 

relative angular momentum of multi-spin spacecraft 

between its internal rotors. The mechanical schemes of 

multi-spin spacecraft were indicated in classical works, e.g. 

[1]. An importance of such multi-rotors scheme can be 

defined by the practical tasks of attitude dynamics of 

spacecraft, when it is needed to immediately change the 

parameters of the angular motion [2, 3] and to instantly 

switch to another dynamical mode. Here we can indicate the 

problem the problem of leaving the arisen chaotic regime [4] 

of the angular motion of spacecraft.  

To partially solve this problem in this paper the 

mechanical scheme of the direct connections of rotors of 

multi-spin spacecraft is suggested. The considered here 

direct connections can be implemented with the help of 

auxiliary gears, that provides a nonholonomic mechanical 

constraints arising.   

 So, the considered problem is quite important from the 

scientific point of view in aspects of investigation of 

nonholonomic angular motion of multi-rotor rigid bodies 

systems around the center mass. In addition, the results of 

the research can be applied into practice of space flight 

dynamics in the framework of multi-spin spacecraft attitude 
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dynamics and control.  

II. MECHANICAL AND MATHEMATICAL MODELS 

Let us consider the angular motion of the multi-rotor rigid 

bodies system depicted at the figure 1. This mechanical 

scheme correspond to the structure of the multi-spin 

spacecraft and it contains axial pairs of opposite rotors ({1 

and 2}, {3 and 4}, {5 and 6}).  

 

 
Fig.1. The mechanical model of the multi-spin spacecraft. 

 

Each rotor can have its own independent dynamics. In 

addition, in this work the possibility of instantaneous direct 

connection of opposite rotors is simulated, when their 

subsequent relative rotations are fulfilled in opposite 

directions with equal values of relative angular velocities 

and relative angular momentums. This direct connection can 

be implemented by small auxiliary intermediate gears, as it 

depicted at the figure 2.    

 
Fig.2. The scheme of the direct connection of axial opposite rotors with the 

help of small auxiliary intermediate gears. 

 

This system has six general rotors on the main axial 

directions along the axes x, y, z (fig.1), which coincide with 

the principle axes of the spacecraft main body. Let us 
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consider the case of dynamics with equal rotors parameters. 

The angular momentum of the multi-rotor mechanical 

system written in the frame Oxyz has the form:  
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The vector 
mK  corresponds to the angular momentum of 

the mechanical system with all rotors fixed relative the main 

body; 
rK - is the relative angular momentum of rotors; p, q, 

r – are components of the angular velocity of the main 

body k  - are relative angular velocity of rotors relatively 

the main body; 4 2 ,A A J I    4 2 ,B B J I    

4 2 ;C C J I     , ,A B C  - the general inertia moments 

of the spacecraft main body; I and J - the longitudinal and 

the equatorial inertia moments of the rotor calculated 

relatively the point O (and we will consider the case when I 

and J are equal for all six rotors). The equations of the 

angular motion of the system motion in the connected frame 

Oxyz (O is the center of mass of the complete system) is: 

ed
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 The scalar form of the equation (2) is: 
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 The equations of relative rotations of rotors are also can 

be build from the law of the angular momentum changing: 
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here i

jM  are internal torques acting on the rotor #j, and 

{ , , }

e

j x y zM  - are the external torques. Systems Equations (3)-

(5) describe the attitude dynamics of the multi-spin 

spacecraft, when each rotor is independent and has its own 

degree of freedom without any constraints. 

Let us consider the possibility of the direct connection of 

opposite rotors ## 1 and 2. In this case, the following 

kinematical constraint will be actual: 

2 1             (6) 

As we can see, at the constraint (6) fulfilling, the sum of 

relative angular velocities and accelerations of rotors 1 and 2 

are equal to zero: 

   1 2 1 20; 0       .      (7) 

The conditions (7) represent the nonholonomic 

constraints. And there is important to give short explanations 

about nonholonomic dynamics.  

III. THE NONHOLONOMIC DYNAMICS   

It is possible to briefly give the main approach of the 

nonholonomic system modeling [5-8]. Let the following 

nonholonomic constraints are actual for the mechanical 

system: 
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where qj – are the generalized coordinates of our system (m 

– is quantity of degrees of freedom). The equations of the 

system can be written on the base of the Lagrange 

formalism: 
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The coordinates’ variations jq  due to (8) will be  

connected by the s independent expressions: 
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We can subtract from (9) corresponding expressions (10). 

which are multiplied by multipliers λβ  (so called “indefinite 

Lagrangian multipliers”): 
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Then due to independences of variations 
1,..., nq q  , we 

can to write the equations: 
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Equations (12) with constraints (8) allow us to completely 

investigate the nonholonomic system dynamics and find all 

of the multipliers λβ.  

In our case with one constraint (6) we can write the 

expression (8) in the form: 

11 1 12 2 11 120, 1b b b b           (13) 

After differentiation we have: 

11 1 12 2 0b b            (14) 

Nonholonomic dynamical equations (4) and (5) for relative 

rotations of rotors at the constraints (13) take the shape: 
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From systems (15), (16) and (14) we can find the Lagrangian 

multipliers: 
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So, now we can to investigate the nonholonomic dynamics 

of the multi-rotor system with the direct connection of two 

rotors (##1 and 2). 

IV. THE NUMERICAL MODELING  

In this section we try to give some illustrations of step-

wise dynamics of the angular motion of our multi-spin 

spacecraft though the tree intervals: (I) starting without 

constraint  (13),  (II) moving to the internal active constraint 

(13), and (III) again go to the interval with disabled 

constraint. 

Let us to consider the following conditions for rotors 

dynamics of the indicated intervals I-III: 

I). The internal torques correspond to free rotations of 

rotors ##1 and 3, to the small harmonically perturbed rotor 

#5, and to fixed relative the main body rotors ## 2, 4, 6 

(when the we formally use the torque of a liquid friction with 

large value of a medium resistance ν), at all zero values of 

the external torques: 
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II). The rotors ##1 and 2 are directly connected with 

constraint (13) without any other torques, but at the small 

harmonically perturbed rotor #5: 
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III). The rotors ##1-4 and 6 are free, the constraint (13) is 

disabled, still at the small harmonically perturbed rotor #5: 
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In other words, the system goes through successive stages 

without the constraint, with the active constraint, and again 

without the constraint.  

The following parameters for numerical modeling are 

used: A=5, B=6, C=7, I=0.03 [kg*m2]; ε=0.05 [N*m]; η=0.1 

[1/s]; ν=1000 [N*m*s], T=200 [s]. 

The “initial” conditions correspond to time t=0 [s], but 

here we need take into account the some impact phenomena, 

when the constraint arising: the conditions before and after 

enabling constraint must match each other by the angular 

momentum and kinetic energy value. Therefore, the initial 

condition can be defined at the time t=0-δ (δ is 

infinitesimal), and after enabling constraint (t=0+δ) these 

“initial” conditions are recalculated from the conservation of 

axial relative angular momentum and corresponded kinetic 

energy due to some impact at the initiation of constraint. 

This aspect defines the dynamics “in the past” and “in the 

future” by the time axis.  So, in our research the following 

conditions for modeling: 

1) before activation of constraint (13): p(0-)=-0.13, 

q(0-)=0.25, r(0-)=0.353, σ1(0-)=18.44, σ2(0-)=0, σ3(0-)=1, 

σ4(0-)=0, σ5(0-)=6, σ6(0-)=0 [1/s]:    

 2) after activation of constraint (13):  p(0+)=0.02, 

q(0+)=0.25, r(0+)=0.353, σ1(0+)=- σ2(0+)=13, σ3(0+)=1, 

σ4(0+)=0, σ5(0+)=6, σ6(0+)=0 [1/s]. 

 

Moreover, in our research the indicated above initial 

conditions were chosen in a special way to show the 

implementation of chaotic dynamics before the constraint 

(13) was turned on, as well as to demonstrate the fact of 

getting out of chaos when the constraint was turned off and 

always further. So, in the considered case point of time t=0 

defines the border of switching on constraint (13) and 

exiting from dynamical chaos.  

 

The dynamical chaos, which we see before t=0, 

corresponds to heteroclinic type of chaos – it can arise when 

the phase point of the system came in the neighborhood of 

the separatrix region in the phase space, and when a small 

perturbation (in our case it is the internal torque 

 5 siniM t  ) is active [4]. Thus, we not only 

demonstrate the dynamics in the process of switching on the 

limitation, but also show the possibility of getting out of 

chaos in this way. 

The modeling results are depicted at the figures 3-5. 

 

 

 

 

 

 
Fig.3. The time-history of the angular velocity components  

(in electronic version: p – red, q – blue, r – green) 
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Fig.4. The time-history of the angular velocity components at the 

realization of the heteroclinic chaos 

(in electronic version: p – red, q – blue, r – green) 

 

 

 

 

 

 
Fig.5. The time-history of the relative angular velocities of rotors:  

σ1(t) – red (1), σ2(t) – blue (2), σ3(t) – green (3),  

σ4(t) – gray (4), σ5(t) – black (5), σ6(t) – magenta (6). 

 

 

 

 
Fig.5. The time-history of the Lagrangian multiplier λ(t)  

V. CONCLUSION 

The attitude dynamics of multi-spin spacecraft was  

considered in cases of redistributions of angular momentum 

between the main body and axial rotors of this multi-rotor 

mechanical system. The direct connection of rotors was  

described, which make it possible to instantly ensure the 

rotation of opposite axial rotors in different directions with 

equal angular velocities. This mechanical scheme 

corresponds to the arising nonholonomic mechanical 

constraints. The indicated schemes of direct axial connection 

of rotors can be used for instant redistribution of the relative 

angular momentum. Also it can be applied to change of the 

current motion mode, e.g., to instant exit from the chaos.  
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