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Abstract— The motion of a nanosatellite with one movable 

unit is considered from the point of view of chaotic regimes 

initiations at the action of small internal perturbations. The 

Poincaré sections are plotted, and these sections illustrate the 

chaotic regimes, which arise in the framework of attitude 

dynamics of nanosatellites. 

 
Index Terms—Nanosatellite, attitude dynamics, chaotic 

regimes,  Poincaré sections 

 

I. INTRODUCTION 

HIS work deals with a problem of chaotic dynamical 

regimes arises in the attitude dynamics of spacecraft and 

nanosatellites with movable parts. 

Here we present short illustration of chaotic regimes 

initiation in the nanosatellite, which consists from two parts - 

a carrying body and a movable unit, attached to carrier body 

by means of flexible rods [1-3]. The mechanical structure of 

the nanosatellite is depicted at the fig.1. 

 

 
Fig.1. The mechanical model: 1 – carrier body, 2 – movable module, 

 3 – control systems of flexible rods extraction, 4 – flexible roads. 
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II. THE MATHEMATICAL MODEL 

The nanosatellite consists of two parts - a carrying body 

and a movable unit, attached to carrier body by means of 

flexible rods. 

The movable unit can perform angular motion relative to 

the carrier body (the main body), that is carried out by 

changing the lengths of the flexible rods (the lengths of the 

rods change by different values depending on the selected 

axis of rotation). Assume here, that the point O is the center 

of rotation of the movable unit that is not moving relative to 

the main body during the unit maneuvers on the rods with 

changing length.  

Let us use the following coordinates frames: 

- CXYZ  is coordinate frame with the origin in the mass 

center, which axes are parallel to the main axes of the main 

body. The point C is the center of mass of the complete 

nanosatellite; 

- 
1 1 1 1C X Y Z  is the frame with the origin in mass center of 

the main body, which axes are parallel to the main axes of 

the main body. The point C1 is the mass center only of the 

main body; 

- 
2 2 2 2C X Y Z  is the main connected frame of the movable 

unit. The point C2 is the mass center only of the movable 

unit. 

Let us write an expression for the angular momentum of 

NS, which is the sum of the angular momentums of its parts. 

In the frame CXYZ  the vector of the angular momentum 

has the form: 

1 1 2
K = K +δ K         (1) 

where 
1
δ  transition matrix from the 

2 2 2 2C X Y Z  

coordinate system to the 
1 1 1 1C X Y Z  coordinate system, 

1
K – 

the angular momentum of the main body in the frame 

1 1 1 1C X Y Z , 
2

K – the angular momentum of movable unit in 

projections on axуs 
2 2 2 2C X Y Z . 

In this research let us assume that the angular 

displacements of the movable unit can be possible only 

about the direction C2X2 on the small angle 1  . Then 

the following linearized matrix takes place (we neglect the 

terms of order
2  or less): 

1 0 0

0 1

0 1





 
 

 
 
  

1
δ         (2) 

The angular momentums of NS parts in CXYZ are: 

1 1 1
K = I ω          (3) 

2 2 2K = I ω          (4) 
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where 
2,

1
I I  – are the inertia tensors of the main body 

and the movable units: 

1

1 1

1 1

0 0

0

0

x

y

z

I

I k

k I





 
 


 
  

1
I  ,        (5) 

2

2 2 2

2 2

0 0

0

0

x

y

z

I

I k

k I





 
 


 
  

I ,        (6) 

where 
1m  is the mass of the carrier body, 

2m – mass of 

the movable unit, 
1 1 2 ( )1 1 2k m l l - z - l  , 

2 2 1 2( )1 2k m l l z - l   ,  1 1 1 2 2l m z m m  , 

 2 2 2 2 2l m z m m  , 
1z  – the distance the distance between 

points 
1С  and O, 

2z  – the distance between points 
2С  and 

O.   

The angular velocity of the main body in projections on 

the axes of the 
1 1 1 1C X Y Z  coordinate system is: 

  , ,
T

p q r
1

ω           (7) 

Taking into account the relative rotation of the movable 

unit, the angular velocity of the mobile module in 

projections on the axes of the 
2 2 2 2C X Y Z  is: 

0

0

p p

q q r

r r q

 





     
     

   
     
          

2 2
ω δ     (8) 

where 
2
δ – linearized transition matrix from the 

1 1 1 1C X Y Z  coordinate system to the 
2 2 2 2C X Y Z  coordinate 

system: 

1 0 0

0 1

0 1





 
 


 
  

2
δ          (9) 

To analyze the attitude dynamics of the nanosatellite, it is 

appropriate to write dynamical equations using the well-

known canonical Andoyer-Deprit variables 

 , , , , ,l g h L G H (fig.2).  

 

 
 

Fig.2. The canonical Andoyer-Deprit coordinates and impulses 

 

The angular momentum components in Andoyer-Deprit 

variables take the form: 

2 2

2 2

sin ;

cos ;

x

y

z

K G L l

K G L l

K L

  



 




       (10) 

Also we must add the canonical impulse   for the relative 

rotation of the movable unit: 

 2x

T
I p 




   


       (11) 

where T  is the kinetic energy of the nanosatellite: 

 
1

2
T    

1 1 2 2
K ω K ω      (12) 

Using (7)-(12) we can explicitly express , , ,p q r   in terms 

of Andoyer-Deprit variables: 

 

2 2

2

2 2

2 2

2 2

2

2 2

sin

cos

cos

sin

x cx

cz

cy cz

cy

cy cz

x cx

x x cx

G L l
p

I I

I G L l kL
q

I I

I L k G L l
r

I I

I G L l I

I I I







  





  




 





   
 

     (13) 

where 
1 2cx x xI I I  , 

1 2cy y yI I I  , 
1 2cz z zI I I  , 

2 2 1 2y zk I k k I    . The symbol “⁀” above the variable 

indicates the explicit expressions for angular velocity 

components throw the Andoyer-Deprit canonical variables – 

exactly these expressions will be substituted into the 

expression of the kinetic energy to write the explicit 

expression of the Hamiltonian. On the base of equations (12) 

and (13) we can write the explicit expression for the 

Hamiltonian of the mechanical system and fulfill the 

investigation of the dynamics at presence of any external and 

internal potential fields: 

 
   

, , , ,

, , , , , , , , , ,

p q r

l g h L G H l hT P g

 

 




  (14) 

So, for complete investigation of the dynamics of the 

nanosatellite with movable unit we can use the Hamiltonian 

expression (14), where it is needed only to write the concrete 

form of the potential energy P, corresponding to the concrete 

potential forces and torques. 

III. THE CHAOTIC REGIMES INVESTIGATION AT SMALL SLOW 

INTERNAL OSCILLATIONS BY THE α-ANGLE 

In this work we will consider the torque-free dynamics of 

our system in “monobody” format without any external and 

internal forces. This will be the general unperturbed case, 

when we investigate the torque-free motion of the 

nanosatellite as the mechanical system consisting from two 

rigid bodies glued into a single rigid form (at small and slow 

relative angular displacement of the movable unit by the 

angle α). Due to the smallness of the angle of the relative 

position of the movable unit, the described mechanical 
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system can be considered as a rigid body, but at the presence 

of small change of its inertia-geometrical parameters that 

depend on the   value. Then we can consider the angle α as 

the geometrical parameter (it will define a 

geometrical/kinematical constrain ( )t  ). 

It is possible to divide the expressions (14) on parts, 

proportional to a small parameters powers: the “generating 

part” 
0
 and the part caused by the formal parametrical 

perturbations 2

1 2,  : 

2

0 1 2 ...          (15) 

where  

 
2 2 2

2 2

0 2 2 2

1 sin cos

2 cx cy cz

l l L
G L

I I I

  
     

    

  (16) 

2 2

1 cos
cy cz

L
k G L l

I I
         (17) 

Here   is the formal small dimensionless parameter 

 1   denoting the small deviation of the relative angular 

motion of the movable unit   . So, the Hamiltonian 

(15) corresponds to the usual Hamiltonian of the 

unperturbed rigid body 
0
 with small perturbations 

formally defined by the Hamiltonian’s parts proportional to 

small parameters powers 
1( ,...) , which corresponds to 

the variability of the “geometrical” parameter α. Here we 

neglect the terms 2

2 . The corresponding system of 

Hamilton’s equations in the Andoyer-Deprit canonical 

coordinates is:  

; ;

; ;

;

L l
l L

H h
h H

G g
g G

 
  

 

 
  

 

 
  

 

      (18) 

As we can see from the Hamiltonian (15)-(17), the 

mechanical system is completely described by the pare of 

coordinates {l, L}, since 

0H
h


  


,     0h

H


 


,    0G
g


  


 

Coordinate g(t) can be integrated separately after the 

integrations for {l, L}, and, therefore, coordinate g(t) do not 

influence on the main dynamical properties. 

For convenience, we write the system of differential 

equations (18) in the following form: 

;L L l lL f g l f g          (19) 

where 

0 1

0 1

; ;

;

L L

l l

f g
l l

f g
L L

 
   

 

 
 

 

      (20) 

So, the system (19) completely describe the dynamics of the 

rigid body at the presence of the small perturbations in its 

inertia parameters due to small variability of its shape, that 

describe in linear approximation the dynamics of the 

nanosatellite with small inclinations of movable unit. In this 

consideration, the fourth canonical coordinate and 

corresponding canonical impulse  ,   lose their 

independent meaning, but they are still important to 

consideration of the perturbed dynamics. 

 

It is known, that the rigid body at the action of external 

perturbations or at the presence of internal asymmetric 

rotator can have the chaotic regimes of the angular motion 

dynamics [4-6]. What can be realized in the case of torque-

free motion of the rigid body in cases of small internal 

changes of its inertial/geometrical parameters from the 

chaotic motion point of view – it is the question, which is 

solving in this section of the paper. 

The chaotic dynamics is associated with the presence in 

the phase space of the system such objects like 

homo/heteroclinic nets and/or strange chaotic attractors. The 

possible presence of the homo/heteroclinic nets, first of all, 

can be detected by the Melnikov’s method [7] and its 

developments, including Wiggins [5] or Holmes-Marsden 

[4] multidimensional methods. Also the heteroclinic nets can 

be detected using direct integration of the dynamical 

equations and Poincare sections plotting. 

To show chaotic regimes arising in the dynamics of the 

rigid body with the small variability of inertia parameters 

(the nanosatellite with small inclinations of movable units), 

we will use in this work the classical Melnikov’s method. 

The Melnikov’s method is based on the Melnikov 

function evaluation. The Melnikov function expression for 

the perturbed system (19) has the form: 

 
    0

0 , ,
( ) L l l L L t l t t t

M t f g f g dt






      (21) 

where    ,L t l t  - are the explicit exact solutions 

corresponding to the heteroclinic orbit, which can be 

expressed throw the well-known [4] heteroclinic solutions 

      0 0 0, ,p t q t r t  for the torque-free dynamics of a rigid 

body: 

   

 
 
   

 
 
   

0

0

0

0

0

0

th

1

ch

1

ch

cy

cx cy

cz cx cz

cy cz

cx cx cz

T
q t at

I

T I I
r t

I I I at

T I I
p t

I I I at








 









     (22) 

where coefficient     0 cx cy cy cz cx cy cza T I I I I I I I   , 

0T  - the constant of the kinetic energy of a rigid body at the 

absence of any external forces and torques: 

  2 2 2

0 0 0 0

1
const

2
cx cy czT I p I q I r       (23) 

Now we need to write the , , ,L l L lf f g g  functions. After 

differentiation fulfilling (20) and after substituting the 

heteroclinic solutions (22), we can obtain: 
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      
   

 

          

    

     
 

          

2 2

0 0

0 0 2 2 2

0

0 0

0

2

0 0 0

02 2 2

0

0 0 0 0

, ;

, ;

, ,

;

, ,

cx cy

l cz

cz

L cx cy

l

cz

czcz

cx

L

cy

p t I q t I
f L t l t r I r t

G r t I

f L t l t I I p t q t

g L t l t t t

q t r t I q t
k t t

IG r I

kI
g L t l t t t p t r t t t

I






 



 

 

 
     

   

 (24) 

Then the integrand of (21) has the following form: 

 
    

        
0, ,

0 0 0 0, , ;

L l l L L t l t t t
f g f g

t t f p t q t r t


 

 
   (25) 

      0 0 0

2 2

2 0

0 0 2 2 2

0

2 2

0 02

0 2 2 2

0

, ,

1

1

cx cy cz

cz cz

cx cycx

cz

cy cz

f p t q t r t

I I r I
kp q

I G r I

p I q II
r I

I G r I



   
      

 
  

  

  (26) 

Taking into account the fact, that the component 
0 (t)p  is 

even function (this follows from (22)), and squared values 
2 2 2

0 0 0, ,p q r  also are even functions, we can sure, that the 

function (26) is even function. 

Now to make a judgment about presence of chaotic 

regimes using the Melnikov’s function (21) we only need to 

know the concrete functional form of dependence 

 0t t   , because this dependence defines the result of 

improper integration of the integrand (25). 

So, the first simplest but very important case of dynamical 

analysis, we take the time-dependence of the angle 

 t  , which corresponds to a simplest harmonic form: 

 0cos ;

const; 1

t + t  



   

  
    (27) 

The form (27) can simulate simplest flexible oscillations 

of the movable unit about a flexible elastic joint in the point 

O, or small harmonic self-oscillations of the movable unit 

due to a backlash in the blocks of the flexible rods, or other 

dynamical aspects. Substituting the expression (27) into (25) 

gives after simplifications the following Melnikov’s 

function: 

0 0

0

( ) cos( ) cos( ) ( )

sin( ) sin( ) ( )

M t t t f t dt

t t f t dt









   

  





   (28) 

Since ( )f t  is an even function, and sin( )t  is the odd 

function, the improper integral of the odd function 

( )sin( )f t t  will be equal to zero, and, therefore: 

0 0( ) cos( ) cos( ) ( )M t t t f t dt





       (29) 

The integrand in (29) is even function, and then the value 

of the improper integral can be calculated by the following 

way: 

0 0

0

1 0

( ) 2cos( ) cos( ) ( )

cos( ),

M t t t f t dt

t



   

 

    (30) 

where 
1  is constant depended on the inertial-mass 

parameters of the mechanical system and the initial 

conditions: 

1

0

2 ( )cos( ) const 0f t t dt


        (31) 

As we can see, the Melnikov’s function in the considered 

simplest case is the usual harmonic function (30) with 

nonzero amplitude (31), and it has infinity quantity of simple 

roots. This fact analytically proves the presence of infinity 

quantity of intersections of split manifolds of the heteroclinic 

points – it implies the heteroclinic net and chaos arising. 

To illustrate the heteroclinic chaos at the perturbation (27) 

we can plot the Poincaré sections of the phase portrait of the 

system in coordinates {l, L/G} for zero and nonzero values 

of the small parameter μ. Here (fig.3 and 4) it is not 

important numerical values for the system motion 

parameters; here only quality properties are important. 

 

 
Fig.3. The Poincaré section of the unperturbed system  0   

 
Fig.4. The Poincaré section of the perturbed system 

 0.1, 1     
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We see at the fig.4 the the heteroclinic net in the 

separatrix-region of the phase space: the points of the 

Poincaré  section cover the separatrix region with a “dense 

fog”, and the secondary heteroclinic bundles and new 

heteroclinic trajectories are born. This is the main sign of the 

realization of chaotic regimes near the heteroclinic region of 

the phase space. 

IV. CONCLUSION 

As can we see from the analytical and numerical 

modeling, the chaotification of the dynamical regimes near 

the separatrix region of the phase space takes place at the 

action of any simplest harmonical perturbation (27). This is 

the first and more important conclusion of the work. It is 

worth to indicate the case of research of chaotic dynamics of 

the nanosatellite with flexible panels, that is quit close case 

by the natural properties of the motion [8, 9]. 

But if will consider the perturbed dynamics at the 

complete modeling of the system and oscilations relative the 

angle α, then we can take into our account more aspects 

(such the vibration stiffness, damping and friction in the 

structure of the nanosatellite), then the chaotic regimes can 

be suppressed. The possibility of the suppression of the 

chaos is the quite important task for further research.  

For example, if we try to consider the dynamics of the 

angle α with the help of the Lagrange equation 

d T T
M

dt


 

  
  

  
       (32) 

at the action of the internal torque 

 1 2 sinM с с t            (33) 

with damping and natural vibration stiffness, then the factors 

of the chaotic dynamics and the factor of the energy 

dissipation (due to internal damping) will define the 

resulting dynamics of the system – it can turn out to be both 

chaotic and regular, and this is the direct task of our 

research. 
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