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Abstract— In this paper a discrete pre-bundle con-
cept is discussed, of which several properties are
established. Existence results are proven for pre-
bundles of CNF base hypergraphs. Also pre-bundles
are constructed for clause sets and CNF formulas.
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1 Introduction

The propositional satisfiability problem (SAT) for con-
junctive normal form (CNF) formulas settles the basis for
the NP-completeness concept of the computational com-
plexity theory [5]. Due to the high expressiveness of the
CNF language numerous computational problems can be
encoded as equivalent instances of CNF-SAT via reduc-
tion [8]. In applications most often the modelling CNF
formulas are of a specific structure for which fast algo-
rithms are required. Also from a theoretical point of view
one is interested in classes for which SAT can be solved
in polynomial time. There are known several classes, for
which SAT can be tested efficiently, such as quadratic for-
mulas, (extended and q-)Horn formulas, matching formu-
las, nested, co-nested formulas, and exact linear formulas
etc. [1, 3, 4, 6, 9, 10, 11, 12, 17, 18, 20]. In this paper we
investigate a discrete (pre-)bundle approach in order to
gain structural insight into CNF-SAT investigating the
fibre-view on clause sets. First a pre-bundle hierarchy is
established and several of its properties are investigated.
Existence results regarding discrete pre-bundles of base
hypergraphs of CNF formulas are discussed on the ba-
sis of the orbit spaces of their fibre-transversals with re-
spect to the complementation group. Finally we consider
pre-bundles and sections of total clause sets with a fibre-
stable action of the complementation group.

2 Notation and Preliminaries

A Boolean or propositional variable, for short variable, x
taking values from {0, 1} can appear as a positive literal
which is x or as a negative literal which is the negated
variable x also called the flipped or complemented vari-
able. Setting a literal to 1 means to set the correspond-
ing variable accordingly. A clause c is a finite non-empty
disjunction of different literals and it is represented as
a set c = {l1, . . . , lk}. A conjunctive normal form for-
mula, for short formula, C is a finite conjunction of dif-
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ferent clauses and is considered as a set of these clauses
C = {c1, . . . , cm}. Let CNF be the collection of all formu-
las. For a formula C (clause c), by V (C) (V (c)) denote
the set of variables occurring in C (c). Let CNF+ de-
note that part of CNF containing only clauses with no
negated variables. Given C ∈ CNF, SAT asks whether
there is a truth assignment t : V (C) → {0, 1} such that
there is no c ∈ C all literals of which are set to 0. If
such an assignment exists it is called a model of C. Let
SAT ⊆ CNF denote the collection of all clause sets for
which there is a model, and UNSAT := CNF \ SAT.
For a (not necessarily finite) set M , let 2M be its power
set. The set of all positive integers is denoted by N, and
N0 := N ∪ {0}. For n ∈ N, let [n] := {1, . . . , n}. Let P

denote the set of all prime numbers and MP its subset
of all Mersenne primes. For a given (partial) mapping
f , let dom(f) denote its domain, and im(f) its image.
Further denote the (proper) restriction of f to a subset
A ⊂ dom(f) by f |A. As usual a total map is defined
on the whole pre-image set. For a group G acting on a
space M , meaning the existence of a map G × M → M :
(g,m) �→ mg, let O(m) := {mg : g ∈ M} denote the orbit
of m ∈ M (under G) (cf. e.g. [19]). Given a non-empty
set A ⊆ M and g ∈ G, we set Ag := {mg : m ∈ A},
and by convention ∅g := ∅, for all g ∈ G. For m ∈ M ,
respectively A ⊆ M , let G(m) := {g ∈ G : mg = m},
G(A) := {g ∈ G : Ag = A} denote the isotropy group of
m, respectively A. If G(m) = m, respectively G(A) = A,
m respectively A is a fixed point [19]. Finally, as usual
‘iff’ is an abbreviation for ‘if and only if’.

3 A Hierarchy of Discrete Pre-Bundles

In this section we provide the basics of a discrete pre-
bundle concept. (Continuous) fibre bundles are an impor-
tant concept of topology and geometry (e.g. [7]) and the
concept restricted to discrete structures might be fruitful
as well. Let I be any non-empty discrete (index) set. If
I is infinite it is bijective to N. In case I is finite it is
bijective to [n] where n := |I|. Note that I may have a
discrete structure so that in general (even in the finite
case) I needs not to be isomorphic to N (respectively
[n]). Consider a disjoint union K :=

⋃
k∈I Kk, called

the total space, of certain non-empty, mutually disjoint
and (not necessarily finite) discrete spaces Kk, for ev-
ery k ∈ I, called the fibres. Let π : K → I be a total
map such that for every κ ∈ K one requires π(κ) := k
iff κ ∈ Kk ensuring the identity Kk = π−1(k). Hence
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π is surjective and is called the (discrete bundle) pro-
jection onto the discrete base I. The triple (K, I, π)
is called a discrete pre-bundle over I. A (partial) sec-
tion of the discrete pre-bundle is a (partial) mapping
s : I → K such that π|im(s) ◦s = iddom(s). A total section
s, we shall also call a (discrete) fibre-transversal, because
im(s) contains exactly one member from every fibre. Let
S(I,K) denote the set of all total sections of (K, I, π).
Let K := {κ̂ ∈ 2K : ∃k ∈ I∀κ ∈ κ̂, π(κ) = k} and de-
fine the total map π̂ : K → I induced by π such that for
every κ̂ ∈ K one has π̂(κ̂) := k iff κ̂ ⊆ Kk and κ̂ �= ∅.
Set (K)k := π̂−1(k). A (partial) (multi-)section is a (par-
tial) mapping ŝ : I → K such that π̂|im(ŝ) ◦ ŝ = iddom(ŝ).
Hence for every k ∈ dom(ŝ) one has ŝ(k) ⊆ Kk. As is
explained next, a multi-section is no distinct concept. We
set K0 := K, π0 := π, and K1 := K, π̂ := π1. Further-
more, for any integer ν ≥ 2, defining

Kν :=
{
κ̂ ∈ 2Kν−1 : ∃k ∈ I∀κ ∈ κ̂, πν−1(κ) = k

}

and πν : Kν → I such that for every κ̂ ∈ Kν one sets
πν(κ̂) := k iff ∅ �= κ̂ ⊆ (Kν−1)k, where (Kν−1)k :=
π−1

ν−1(k), we obtain a hierarchy of discrete pre-bundles
as follows:

Lemma 1 If (K0, I, π0) is a discrete pre-bundle over I
then also (Kν , I, πν) is a discrete pre-bundle over I, for
every ν ∈ N.

Proof. The proof proceeds by induction on ν, where the
base is clear. For fixed ν > 0 assume that (Kν−1, I, πν−1)
is a discrete pre-bundle over I. By definition of πν−1, Kν

does not contain the emptyset. Now suppose there are
k1, k2 ∈ I such that (∅ �=)κ̂ ∈ π−1

ν (k1) ∩ π−1
ν (k2) then

κ̂ ⊆ (Kν−1)k1 , κ̂ ⊆ (Kν−1)k2 , by definition meaning that
for all κ ∈ κ̂ we have πν−1(κ) = k1 and also πν−1(κ) =
k2. As κ̂ contains at least one member one has k1 = k2

ensuring that πν is a well-defined (partial) map which of
course is total by construction. Finally, let k ∈ I then
there is κ ∈ Kν−1 with k = πν−1(κ) by its surjectivity
therefore {κ} ∈ Kν by its definition and so πν also is
surjective. �

In view of the preceding discussion a (partial) multi-
section of (Kν−1, I, πν−1) appears as a (partial) section
of (Kν , I, πν), for every fixed ν ∈ N. Let G be a group
acting on the total space K of the pre-bundle (K, I, π)
such that each fibre remains invariant, hence one requires
κg ∈ Kk iff κ ∈ Kk for every k ∈ I and g ∈ G. Let us
call this action fibre-stable. Using the notation as above
one obtains:

Proposition 1 If G acts fibre-stable on (K0, I, π0) then
a fibre-stable G-action on (Kν , I, πν), ν ∈ N, is induced.

Proof. Proceeding by induction on ν, fix ν > 0 and
assume that G acts fibre-stable on the discrete pre-bundle

(Kν−1, I, πν−1). For any κ̂ ∈ Kν and g ∈ G we set by
induction κ̂g := {κg : κ ∈ κ̂}. As Kν does not contain the
empty set, on basis of Lemma 1 one then has κ̂g ∈ (Kν)k

iff k = πν(κ̂g) iff k = πν−1(κg), for all κg ∈ κ̂g iff, by
the induction hypothesis, k = πν−1(κ), for all κ ∈ κ̂ iff
k = πν(κ̂) iff κ̂ ∈ (Kν)k, from which the claim follows. �

Given a fibre-stable action of G, let ϕν := {κ ∈ Kν : ∀g ∈
G, κg = κ} denote the set of fixed points in Kν , ν ∈ N0.

Proposition 2 Let G act fibre-stable on (K0, I, π0), and
let κ ∈ Kν−1, for fixed ν ∈ N, then there is a unique
k ∈ I such that the G-orbit of κ satisfies O(κ) ∈ (Kν)k.
Moreover 2ϕν−1 ⊆ ϕν .

Proof. Clearly by the pre-bundle property due to
Lemma 1 there is a unique k ∈ I : πν−1(κ) = k, for
all ν > 0. Thus κ ∈ (Kν−1)k, and by the fibre-stable
action of G one has {κg : g ∈ G} = O(κ) ⊆ (Kν−1)k,
from which the first claim follows. Moreover if ϕν−1 = ∅
then the second claim obviously holds true, as by con-
vention ∅g = ∅, g ∈ G. Otherwise let ∅ �= κ̂ ∈ 2ϕν−1 then
κ̂g = {κg : κ ∈ κ̂} = κ̂, for all g ∈ G. Thus κ̂ ∈ ϕν . �

Regarding the isotropy group of sections one has:

Theorem 1 Let ν ∈ N0 and s ∈ S(I,Kν) arbitrary.
Then the isotropy group of im(s) is given by: G(im(s)) =⋂

k∈I G(s(k)).

Proof. Let g ∈ G(im(s)), then im(s) = im(s)g =
{s(k)g : k ∈ I}. Now s(k) ∈ (Kν)k is equivalent with
s(k)g ∈ (Kν)k, k ∈ I, because G acts fibre-stable. Since
the spaces (Kν)k, k ∈ I, are mutually disjoint one obtains
s(k) = s(k)g for all k ∈ I. Therefore g ∈ ⋂

k∈I G(s(k))
which clearly is a subgroup of G. The reverse inclusion
is obvious and the assertion is proven. �

Next we briefly describe how the pre-bundle notion can
be extended to a discrete fibre-bundle structure. Let
(K, I, π) be a discrete pre-bundle and let U �= ∅ be such
that there are bijections φk : U → Kk, for every k ∈ I.
Clearly, if every Kk is equipped with a specific structure
one would require that U carries the same structure and
that these bijections are isomorphisms in the categorical
sense. Now the tuple (K, I, π, U, Aut(U)) is called a dis-
crete (fibre) bundle, where Aut(U) is the group of all au-
tomorphisms of U . Let {Iμ} be an arbitrary family of dis-
crete local neighborhoods where ∅ �= Iμ ⊂ I, |Iμ| < ∞, and
the μ are taken from any suitable index set J . For every
μ ∈ J there is a unique positive integer nμ with |Iμ| = nμ.
Further assume

⋃
μ∈J Iμ = I and that there are bijections

φμ : Iμ×U → π−1(Iμ) such that φμ(k, u) ∈ Kk, for every
(k, u) ∈ Iμ × U . Every pair (Iμ, φμ), μ ∈ J , is called a
local trivialisation of the discrete bundle. For fixed k ∈ Iμ

let
φμ,k := φμ(k, ·) : U → Kk
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we then have for any k ∈ Iμ1 ∩ Iμ2 �= ∅,
φ−1

μ2,k ◦ φμ1,k : U → U

which obviously is a member of Aut(U). The collection of
all pairs {(Iμ, φμ)μ∈J} plays the role of a discrete bundle
atlas. If specifically U is finite with N := |U |, then also
|Kk| = N , for all k ∈ I, and Aut(U) = SN becomes the
finite symmetric group of degree N and of order N !. Con-
versely, i.e., no pre-bundle is given, suppose that there is
a (structure-preserving) bijection φk : U → Kk mapping
a space U to every member of a collection of mutually
disjoint spaces Kk, k ∈ I, where I is a discrete (possi-
bly infinite) index set. Then the following mapping is
induced for every finite In = {k1, . . . , kn} ⊂ I:

φn : In × U � (kj , u) �→ φkj
(u) ∈

n⋃

j=1

Kkj

Now we have J = N for the index set. The latter map-
pings are (structure-preserving) bijections, because each
φkj , for fixed kj ∈ In is such a bijection on the whole of
Kkj . Further one has

π−1(In) :=
n⋃

j=1

Kkj

as a disjoint union, and for fixed κ ∈ π−1(In), there is a
unique j ∈ [n] such that κ ∈ Kj . Now φn,k = φk, ∀k ∈ In,
and every positive integer n. It follows that the map

π :
⋃

k∈I

Kk → I

thereby defined via π(κ) = k iff κ ∈ Kk is total and
surjective. Note that the fibre-bundle constructed in this
manor is trivial in the sense that K is bijective to I ×U .
Here one typically would have I ∈ {N, Z}, but also other
possibly structured discrete index sets might be useful.

4 Discrete Pre-Bundles of Base Hyper-
graphs

Next we consider the question of the existence of base hy-
pergraphs associated to arbitrary given parameter values.
Recall that the hyperedge set B(C) of the base hyper-
graph H(C) = (V (C), B(C)) of a formula ∅ �= C ∈ CNF
is B(C) := {V (c) : c ∈ C} ∈ CNF+. Also a given hyper-
graph H = (V,B) serves as a base hypergraph if its vertex
set V is a finite non-empty set of Boolean variables such
that for every x ∈ V there is a b ∈ B containing x. Thus
ensuring B �= ∅, which is assumed throughout. Recall
that a loop is a hyperedge containing exactly one vertex
[2]. Let H denote the space of all (finite) base hyper-
graphs of non-empty formulas. By Wb := {c : V (c) = b}
denote the collection of all clauses over a fixed b ∈ B.
As usual Cb = C ∩ Wb is the fibre over b of a formula
C ∈ CNF [13]. A hypergraph H = (V,B) is linear if

|b ∩ b′| ≤ 1, for all distinct b, b′ ∈ B. Let Hlin denote
the subclass of all connected, loopless and linear base
hypergraphs. The set of all clauses over H is the to-
tal clause set KH :=

⋃
b∈B Wb. A fibre-transversal F

of KH contains exactly one member of every Wb, b ∈ B,
namely F (b) and F(KH) is the set of all fibre-transversals
[13]. Note that F can be viewed as a map or as a for-
mula which formally results as the image of the map
F . It shall become clear which view of F is meant in
either context. A compatible fibre-transversal satisfies⋃

b∈B F (b) ∈ WV , let those be collected in Fcomp(KH).
A diagonal fibre-transversal has a non-empty intersection
with every member of Fcomp(KH), these are collected in
Fdiag(KH). A base hypergraph H is called diagonal [14]
iff Fdiag(KH) �= ∅. As defined in [15] let β : H → N0

where β(H) =
∑

b∈B |b|− |V |, for every H ∈ H, assuming
that V �= ∅ �= B. Let βlin := β|Hlin .

Proposition 3 (H, N0, β) is a discrete pre-bundle.
Moreover (Hlin, N0, βlin) is a discrete pre-bundle.

Proof. It suffices to verify the second claim which im-
plies the first. So let i = 0, then H0 := ({x1, x2}, {{x1, x :
2}}) satisfies β(H0) = 0 and H0 ∈ Hlin. For i ∈ N take
Vi = {xj : j ∈ [i + 2]}, and Bi = {bl : l ∈ [i + 1]} such
that |b| = 2, for every b ∈ Bi. Setting bl = {xl, xl+1}, for
l ∈ [i+1], obviously yields V (Bi) = Vi and

∑
l∈[i+1] |bl| =

2i+2 hence β(Hi) = i where Hi := (Vi, Bi) and Hi ∈ Hlin.
Thus β is a projection onto Hlin. �

We identify H =: H0 respectively Hlin =: Hlin0 with K0,
and also β =: β0 respectively βlin =: βlin0 with π0. Fur-
ther let Hν , respectively Hlinν , be identified by Kν , and
βν respectively βlinν by πν , for every ν > 0. On basis of
Lemma 1 and the previous result one concludes:

Corollary 1 (Hν , N0, βν), (Hlinν , N0, βlinν) are discrete
pre-bundles for every integer ν ≥ 0.

Recall that for a set V of variables, clause cX results
from c via complementing all variables in X ∩ V (c), for
X ⊆ V (C). As considered in [15] let GV := (2V ,⊕) with
neutral element ∅ denote the (finite) group inducing this
flipping action on CNF by observing that {c} ∈ CNF.
By O(C) := {CX : X ∈ GV } denote the (GV -)orbit of C
in CNF. Given H ∈ H, as defined in [15], ω(H) denotes
the number of all such orbits in F(KH), and δ(H) is the
number of those orbits in Fdiag(KH). In [16] a further
map on H is defined, namely ρ : H → N0, where for
any H = (V,B) ∈ H, ρ(H) denotes the number of orbits
with respect to the GV -action of all fibre-transversals in
F(KH) which are neither compatible nor diagonal.

Lemma 2 For H ∈ H one has ρ(H) = 0 iff F(KH) =
Fcomp(KH) iff ω(H) = 1. In this case also δ(H) = 0.
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Proof. Let H = (V,B) ∈ H then ω(H) = 1+ρ(H)+δ(H)
[16]. If F(KH) = Fcomp(KH) then ρ(H) = 0 = δ(H)
implying ω(H) = 1. If ω(H) = 1 = 2β(H) [15] then
β(H) = 0 implying F(KH) = Fcomp(KH). If ρ(H) = 0
then ω(H) = 1 + δ(H). Suppose δ(H) ≥ 1 then there
is a F ∈ Fdiag(KH) containing a minimal unsatisfiable
subformula F ′ ⊆ F . As δ(H(F ′)) ≥ 1, B(F ′) cannot
consist of loops only. So, select any b ∈ B(F ′) with |b| ≥
2. According to [16], Lemma 6, F ′

c := (F ′ \{F ′(b)})∪{c}
is satisfiable, for any c ∈ Wb with c �= F ′(b). Hence
choose c such that F ′

c is non-compatible. This is always
possible: let t be a model of F ′\{F ′(b)} then every literal
in F ′(b) is set by t to 0, and must occur outside F ′(b) as
a complemented literal. As |b| ≥ 2, one can choose c as
required. Now let t′ be a model of F ′

c and extend F ′
c

over the remaining part of B compatible with t′ yielding
F1 ∈ F(KH) ∩ SAT. Thus we obtain ρ(H) > 0 yielding
a contradiction implying δ(H) = 0 thus ω(H) = 1. �

Theorem 2 Let H ∈ H. (1) If δ(H) = 1 then H
is connected. (2) There exist disconnected H such that
ρ(H) < δ(H) and δ(H) ≡ 1 mod 2.

Proof. For H (Hi) set α(H) := α (α(Hi) := αi), α ∈
{ρ, δ, ω}. Assume that H is composed of two disjoint
components Hi, i = 1, 2 such that at least H1 has δ1 ≥
1. In general due to [16], Lemma 1, one has for such a
disjoint union δ(H) = δ1ω2 + δ2ω1 − δ1δ2 and ρ(H) =
ρ1 + ρ2 + ρ1ρ2. Therefore here, as ω1 > δ1, δ > δ1ω2

≥ δ1. It also follows that if δi = 0, i = 1, 2 then δ = 0.
Hence for a disconnected H either δ = 0 or δ > 1 thus (1).
Regarding (2) consider H′ = (V ′, B′) with V ′ = {x1, x2},
B′ = {b1, b2, b3} and b1 = {x1}, b2 = {x2}, b3 = {x1, x2},
for which ω′ = 4, δ′ = 1 (as is easy to see) and ρ′ = 2.
Let H1 be two disjoint copies of H′. Again using the
combination formulas as above one obtains ω1 = ω′2 =
16, δ1 = 7 and ρ1 = 8. Adding another disjoint copy of
H′ to H1 yields a disconnected H with ω = 64, and odd
δ = 37 > ρ = 26. �

Definition 1 Let H0 = (V0, B0), non-empty b �∈ B0 with
H := (V,B), where V := V0 ∪ b, B := B0 ∪{b}. Then the
fluctuation fb is the number of all GV0-orbits in F(KH0)∩
SAT which become GV -orbits in Fdiag(KH).

By Lemma 1 in [16], fb = 0 if b∩V0 = ∅. Setting α(H) =:
α, α ∈ {ρ, δ} then for the remaining case at least one
obtains:

Theorem 3 Let j := |b∩V0| ∈ N. (1) δ = 2jδ0 +fb. (2)
If b \ V0 �= ∅ then fb = 0. (3) If for every x ∈ b there is
{x} ∈ B0 then fb = ρ0 +1. (4) The condition in (3), and
Fcomp(KH0) contributes exactly 1 to fb, are equivalent.

Proof. (1) If δ0 = 0 then clearly δ = fb by defini-
tion. Assume that δ0 > 0. Take an arbitrary fixed

fibre-transversal Fk, refered to as the orbit base, of every
GV0-orbit in Fdiag(KH0). These Fk, k ∈ [δ0], are mu-
tually distinct as their orbits are mutually disjoint. Let
b =: b′ ∪ b̃ as disjoint union where b′ := V0 ∩ b. Defining
Fk(c) := Fk ∪{c} ∈ Fdiag(KH) where c := d∪ b̃, for every
d ∈ Wb′ , yields the collection of 2j mutually disjoint GV -
orbit bases in Fdiag(KH) because all variables of b′ occur
as constant fixed literals in Fk. The negation of any mem-
ber of b̃, if non-empty, results in an orbit member, hence
yields no additional orbit base. Thus in the same man-
ner running through all members of {Fk : k ∈ [δ0]} yields
exactly 2jδ0 further distinct GV -orbits in Fdiag(KH) as
their defining parts Fk are mutually distinct. In summary
we obtain δ = 2jδ0 + fb. (2) If |b \ V0| > 0 then any F ∈
F(KH0)∩SAT =: FSAT(KH0) yields F∪{c} ∈ FSAT(KH),
as every c ∈ Wb can be satisfied independently of all
clauses in F . Thus fb = 0. (3) First it is shown that the
condition is sufficient for that every orbit in FSAT(KH0)
contributes at least 1 to fb meaning fb ≥ |FSAT(KH0)|.
So let b = {xi : i ∈ [r]}, for r ∈ N appropriately, let
bi := {xi} ∈ B0, i ∈ [r], and let F0 ∈ FSAT(KH0) be
an arbitrarily fixed orbit base. There are fixed clauses
ci ∈ Wbi such that {ci : i ∈ r} ⊆ F0. Let c ∈ Wb be
selected such that it contains the complements of the lit-
eral in ci, for every i ∈ [r] then F0∪{c} ∈ UNSAT. As all
orbit bases in FSAT(KH0) are mutually distinct one has
fb ≥ |FSAT(KH0)|. Finally observe that a given orbit in
FSAT(KH0) can contribute at most 1 to fb. Indeed sup-
pose there is an orbit base F0 and distinct clauses ci ∈ Wb

such that Fi := F0 ∪ {ci} ∈ Fdiag(KH0), i = 1, 2. Then
any model of F0 simultaneously sets all literals in c1 and
c2 to 0 which is impossible. So fb ≤ |FSAT(KH0)| and
in summary fb = |FSAT(KH0)| = ρ0 + 1. (4) Since (3)
means that any GV0-orbit in FSAT(KH0) increases fb of
exactly 1 it specifically is sufficient for Fcomp(KH0). Re-
garding the necessity, let F0 ∈ Fcomp(KH0) and c ∈ Wb

be arbitrary, and let t0 be the model of F0 setting every
literal in F0 to 1. Assume there is x ∈ b but {x} �∈ B0

then every edge in B0 contains a variable distinct to x.
So, modifying t0 such that the literal over x in c is set
to 1 yields F0 ∪ {c} ∈ SAT and the proof is finished by
contraposition. �

Corollary 2 Let b and H0,H ∈ H as in Definition 1,
then the fluctuation always ranges in 0 ≤ fb ≤ ρ0 + 1.
Moreover there are instances for which the boundary val-
ues are valid.

Theorem 4 There are connected H ∈ H such that
δ(H) > ρ(H).

Proof. Consider the disconnected base hypergraph H =
(V,B) with ω = 64, δ = 37, and ρ = 26 as constructed in
the proof of Theorem 2, (2). Recall that H is the union of
three disjoint copies of H′ = (V ′, B′) with V ′ = {x1, x2},
B′ = {{x1}, {x2}, {x1, x2}}. So one may assume that

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



V = {xi : i ∈ [6]}, and B = {{xi} : i ∈ [6]} ∪
{{x1, x2}, {x3, x4}, {x5, x6}}. Setting B̃ := B ∪ {b} with
b := V yields a connected base hypergraph H̃ = (V, B̃),
for which the condition (3) of Theorem 3 is valid. Thus
fb = ρ + 1 = 27, ω̃ = 212, and δ̃ = 26 · 37 + 27 = 2395 >
ρ̃ = 212 − 2395 − 1 = 1700. �

Lemma 3 Let i ∈ N0. (1) There is H ∈ Hlin with
ω(H) = 2i. (2) If there is a H0 ∈ H with ρ0 = i then
there is H1 ∈ H with ρ1 = 2i + 1.

Proof. (1) directly follows from Proposition 3 due to
ω(H) = 2β(H), H ∈ H. For (2) consider H1 = (V1, B1)
with V1 = {x1, x2} and B1 = {b1, b2} with b1 = {x1},
b2 = {x1, x2} yielding ω1 = 2, δ1 = 0 and ρ1 = 1. Next
let H2 = (V2, B2) ∈ H be arbitrary but disjoint to H1.
Then for H := H2 ∪H1 one obtains ρ(H) = 1 + 2ρ2. �

According to [15] a base hypergraph H is simple if δ(H) =
1. Set Hsimp for the class of all simple base hypergraphs.
Recall that due to Theorem 2, (1) all members of Hsimp

are connected. Further there is no upper bound on ρ
in Hsimp. To state it more precisely, set M−1 := {m −
1 : m ∈ M} where M denotes the set of all Mersenne
numbers excluding 0, 1. Further let ρsimp := ρ|Hsimp , then
one obtains:

Theorem 5 (Hsimp, M−1, ρsimp) is a discrete pre-bundle.

Proof. First it is to verify that ρsimp cannot take values
outside M−1 = {2(2k−1 − 1) : k ∈ N \ {1}}. Clearly
ω(H) = 1 + 1 + ρ(H) for any simple base hypergraph. In
general we have ρ(H) = δ(H) = 0 according to Lemma
2 only in case ω(H) = 1. Thus ω(H) = 2 is excluded for
simple base hypergraphs. Hence ρ(H) = 2k −2, for k ≥ 2
is the only possible range of values, meaning that ρsimp

cannot take values outside M−1. It remains to verify
that ρsimp is a surjection. Take H′ ∈ Hsimp as defined in
the proof of Theorem 2 with ρ(H′) = 2 being the smallest
member in M−1, for k = 2. For k ≥ 3 take Hk = (Vk, Bk)
such that Vk := {xi : i ∈ [k]} and Bk := {{xi} : i ∈ [k]}.
Then βk = 0 therefore ωk = 1 and due to Lemma 2 it
follows that ρk = δk = 0. Now for H′

k := (Vk, B′
k) with

B′
k := Bk ∪ {b} and b := Vk �∈ Bk, one has β(H′

k) = 2k −
k = k thus ω(H′

k) = 2k. Moreover for H′
k the condition

in (3) of Theorem 3 is valid. Therefore fb = ρk + 1 = 1
and by (1) of Theorem 3, δ(H′

k) = 2kδk + 1 = 1, hence
ρ(H′

k) = 2k − 2 ∈ M−1. �

Theorem 6 If for every prime number p ≥ 5 such that
p ∈ P \ MP there can be constructed H ∈ H with ρ(H) =
p − 1 then (H, N0, ρ) is a discrete pre-bundle.

Proof. To verify the surjectivity of ρ by induction on
i ∈ N0, note that for H0 ∈ H with mutually disjoint

hyperedges, one has F(KH0) = Fcomp(KH0). Hence ρ0 =
0 by Lemma 2. For i = 1 we refer to H1 in the proof
of Lemma 3 with ρ1 = 1. For i = 2, consider H′ as
defined in the proof of Theorem 2 having ρ′ = 2. For
the induction step, let i + 1 ≥ 3 be fixed and assume
that the claim is verified for all integers ≤ i. If i + 1
is odd then there is a unique integer i > k ≥ 1 with
(i + 1) = 2k + 1. By the induction hypothesis there is a
Hk such that ρk = k. On behalf of Lemma 3, (2) then
there also is a H ∈ H with ρ(H) = 2k + 1 = i + 1. If
i + 1 is even then i + 2 is odd. If i + 2 ∈ MP there is a
(simple) H with ρ(H) = i + 1 according to Theorem 5.
If i + 1 ∈ P is a non-Mersenne prime we are done by the
assumption. Else let qi ≤ (i+2)/3, i ∈ [r], for appropriate
r ∈ N, be all the (not necessarily distinct) prime factors
of i + 2. Note that qi ≤ i, i ∈ [r] as i ≥ 2. Hence by
the induction hypothesis there are instances Hi such that
ρ(Hi) = qi − 1, i ∈ [r]. And we can assume that all these
instances are chosen mutually disjoint. According to [16],
Lemma 1 (iii) for their union H one has

ρ(H) = −1 + Πr
i=1(1 + ρ(Hi))

= −1 + Πr
i=1qi

= −1 + (i + 2)

and the assertion follows.�

5 Clause Bundles and Sections

Let H = (V,B) be a base hypergraph and identify V with
the mapping V : KH → B which assigns to a clause its
set of variables, then one obtains:

Proposition 4 (KH, B, V ) is a (finite) discrete pre-
bundle on which the flipping group GV acts fibre-stable.

Proof. The first assertion is clear and for any b ∈ B,
V −1(b) = Wb = (KH)b. Let c ∈ Wb and g ∈ GV then
cg = cg∩V (c) ∈ Wb hence GV acts fibre-stable. �

Observe that the base B has a discrete structure. Note
that any fibre-transversal F ∈ F(KH) is a total section
of (KH, B, V ). Again identifying KH =: KH0 with K0,
V =: V0 with π0 and then defining KHν , Vν correspond-
ing to Kν , πν for every integer ν > 0, on basis of Lemma
1, and Proposition 1 one obtains due to the previous re-
sult:

Corollary 3 (KHν , B, Vν) is a discrete pre-bundle, on
which GV acts fibre-stable, for every ν ∈ N0.

Given KH = (V,B), any total section s of (KH1, B, V1)
yields a collection im(s) = {Cb : b ∈ B} of fibre-formulas
over B. For this setting by adapting Theorem 1 here we
directly have GV (im(s)) =

⋂
b∈B GV (s(b)), s(b) = Cb,

b ∈ B. Using the fibre-decomposition [13] one has C =
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⋃
b∈B(C) Cb. As these Cb are mutually disjoint objects in

the total space KH1, one can identify C with the section
s ∈ S(B,KH1) such that s(b) = Cb, b ∈ B.

6 Conclusions and Open Problems

From Theorem 6 and Theorem 5 in Section 4 one directly
concludes via accordingly adapting the settings prior to
Lemma 1:

Corollary 4 (1) If for every prime number p ≥ 5 such
that p ∈ P\MP there can be constructed a base hypergraph
H with ρ(H) = p − 1 then (Hν , N0, ρν) is a discrete pre-
bundle, for every integer ν ≥ 0. (2) (Hsimpν , M−1, ρsimpν)
is a discrete pre-bundle, for every integer ν ≥ 0.

There remain several directions for future work. Theorem
6, respectively Corollary 4 (1), admit a strong assump-
tion which should be established explicitely. Analogously
to Theorem 3 it remains to provide similar results for the
higher components in the hierarchy of diagonal base hy-
pergraphs [16]. In all these cases one also should investi-
gate whether the subclass of loopless, connected or even
linear base hypergraphs already admit pre-bundles over
N0. Further it remains open whether also δ induces a
pre-bundle with integer base, i.e., whether for every non-
negative integer i there is a diagonal base hypergraph
with δ = i. Finally the properties of the fluctuation pa-
rameter should be investigated in more detail.

References

[1] Aspvall, B., Plass, M.R., Tarjan, R.E., “A linear-
time algorithm for testing the truth of certain quan-
tified Boolean formulas,” Information Process. Lett.
pp. 121-123, 8/1979.

[2] Berge, C., Hypergraphs, North-Holland, Amsterdam,
1989.

[3] Boros, E., Crama, Y., Hammer, P.L., “Polynomial-
time inference of all valid implications for Horn and
related formulae,” Annals of Math. Artif. Intellig. pp.
21-32, 1/1990.

[4] Boros, E., Crama, Y., Hammer, P.L., Sun, X.,
“Recognition of q-Horn formulae in linear time,” Dis-
crete Appl. Math. pp. 1-13, 55/1994

[5] Cook, S.A., “The Complexity of Theorem Proving
Procedures,” 3rd ACM Symposium on Theory of
Computing pp. 151-158, 1971.

[6] Franco, J., VanGelder, A., “A perspective on certain
polynomial-time solvable classes of satisfiability,” Dis-
crete Appl. Math. pp. 177-214, 125/2003.

[7] Husemoller, D., Fibre Bundles, Springer, New York,
1975.

[8] Karp, R.M., “Reducibility Among Combinatorial
Problems,” in: Proc. Sympos. IBM Thomas J. Wat-
son Res. Center, Yorktown Heights, N.Y., Plenum,
New York, pp. 85-103, 1972.

[9] Knuth, D.E., “Nested satisfiability,” Acta Informatica
pp. 1-6, 28/1990.

[10] Kratochvil, J., Krivanek, M., “Satisfiability of co-
nested formulas,” Acta Informatica pp. 397-403,
30/1993.

[11] Lewis, H.R., “Renaming a Set of Clauses as a Horn
Set,” J. ACM pp. 134-135, 25/1978.

[12] Minoux, M., “LTUR: A Simplified Linear-Time Unit
Resolution Algorithm for Horn Formulae and Com-
puter Implementation,” Information Process. Lett.
pp. 1-12, 29/1988.

[13] Porschen, S., “A CNF Formula Hierarchy over
the Hypercube,” Proc. AI 2007, LNAI pp. 234-243,
4830/2007.

[14] Porschen, S., “Structural Aspects of Propositional
SAT,” Proc. IMECS 2016, Hong Kong, pp. 126-131,
Hong Kong 2016.

[15] Porschen, S., “Base Hypergraphs and Orbits of CNF
Formulas,” Proc. IMECS 2018, Hong Kong, pp. 106-
111, Hong Kong 2018.

[16] Porschen, S., “A Hierarchy of Diagonal Base Hyper-
graphs,” Proc. IMECS 2019, Hong Kong, pp. 106-111,
Hong Kong 2019.

[17] Porschen, S., Speckenmeyer, E., Zhao, X., “Lin-
ear CNF formulas and satisfiability,” Discrete Appl.
Math. pp. 1046-1068, 157/2009.

[18] Schlipf, J., Annexstein, F.S., Franco, J., Swami-
nathan, R.P., “On finding solutions for extended Horn
formulas,” Information Process. Lett. pp. 133-137,
54/1995.

[19] Spannier, E.H., Algebraic Topology, McGraw-Hill,
New York, 1966.

[20] Tovey, C.A., “A Simplified NP-Complete Satisfiabil-
ity Problem”, Discrete Appl. Math. pp. 85-89, 8/1984.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021




