
 

  

Abstract— Evaporation has a significant impact on the 

management of water resources, irrigation system designs, and 

hydrological modelling due to its complex and nonlinear nature. 

This is because evaporation is a result of the interactions of various 

climatic factors. In Australia, research suggests that evaporation 

causes about 40% of the water in open water lakes to be lost each 

year. Given the potential consequences of climate change, this 

water loss could become a major issue. This paper presents 

efficiency of Transformer Neural Network (TNN) approach in 

predicting monthly pan evaporation (Ep) through a case study in 

Perth, the capital of Western Australia. Daily meteorological data 

from a weather station in Perth was deployed for testing and 

training the model by utilising weather parameters, including 

maximum temperature, minimum temperature, solar radiation, 

relative humidity, and wind speed for the period 2009–2022. The 

Pearson correlation coefficient was used to determine the optimal 

ML model input parameters. Several models have been developed 

by combining different input combinations and other model 

parameters. To evaluate the ML model's performance, it was 

compared to Stephens and Stewart, a widely used empirical 

technique. The model's performance was subsequently assessed 

using standard statistical measures. The results of the performance 

evaluation criteria suggest that the Transformer model proposed in 

this study can effectively predict the monthly evaporation rate, 

benefiting from its self-attention mechanism. The proposed model 

performed admirably (R2=0.986, RMSE=0.031, MAE=0.025, and 

NSE=0.987). Additionally, it was demonstrated that the 

transformer model was more accurate than the empirical method 

for the same input sets, leading to a notable improvement in the 

estimation of monthly evaporation rates. 

 
Index Terms—Evaporation, Stephens and Stewart Model, 

Self-Attention, Transformer Model 

I. INTRODUCTION 

vaporation is an essential part of the hydrological cycle, 

transforming liquid water from the earth's surface into 

atmospheric water vapour. Higher rates of evaporation 

are a key marker of global warming [1]. Consequently, 

keeping track of evaporation patterns is essential for manage 
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and regulate resources of water [2]. Evaporation results in 

considerable loss of water, which affects lake and reservoir 

water levels and the water budget. Thus, evaporation losses 

must be projected prior putting water resource policies into 

practise and planning watering systems. Evaporation rates 

are influenced by the vapour pressure differentials and heat 

availability; these decisive elements are influenced by 

meteorological elements like humidity, solar radiation, wind 

speed, air pressure, and air temperature [3]. Other criteria 

including location, kind of climate, seasonal effect, and time 

of day are also strongly correlated with, such aspects. As a 

result, evaporation is a complicated phenomenon with 

highly nonlinear properties. 

Evaporation is projected using direct as well as indirect 

techniques, such as the evaporation pan, Penman approach, 

water balance, energy balance and mass transfer [4]. Kisi [5] 

demonstrated that the most popular technique employed is 

the evaporation pan method due to its affordability and 

simplicity. This method also provides a precise assessment 

of the changes in evaporation [6]. The present work aims to 

project evaporation pan (Ep) with a precision comparable to 

real evaporation. Approaches based on weather data linked 

to the energy budget, water budget, and experimental 

evaporation equation have been employed for Ep estimation 

[7]. The linear modelling method does not adequately 

capture the subtle stochastic aspects of the evaporative 

process, which could result in very significant inaccuracies 

[8]. Moreover, because empirical models perform 

differently under diverse circumstances, the parameters of 

those models must be adjusted to suit different agroclimatic 

zones before they can be used. 

Recently, using ML techniques and different optimization 

methods, a variety of studies have been undertaken to 

predict evaporation pan, taking into account the difficulties 

of practical and theoretical measurement methodologies 

stated above [9]. Kişi [10] devised evolutionary neural 

networks to forecast monthly Ep. The results suggested that 

the developed approaches offered excellent accuracy 

compared to empirical methods. Deo et al. [11] assessed 

monthly evaporation and associated water loss; they 

employed three machine learning approaches: Multivariate 

Adaptive Regression Spline (MARS), Extreme Learning 

Machine (ELM), and Relevance Vector Machine (RVM). 

RVM was found to be the most successful out of the three 

approaches when using meteorological variables as 

predictor variables. 

With the aid of data collected from a meteorological station 

located in Perth, Australia, this research makes an important 

contribution by assessing the effectiveness of the self-

attention transformer scheme in projecting monthly 

Utilising Machine Learning for Pan Evaporation 

Prediction - A Case Study in Western Australia 

Mustafa Abed*, Monzur Alam Imteaz, Ali Najah Ahmed 

E 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023 
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023

mailto:mustafaabed@swin.edu.au
mailto:mimteaz@swin.edu.au
mailto:mahfoodh@uniten.edu.my


 

evaporation (Ep). Under different input combination 

conditions, the estimation precision of the models is 

investigated. The suggested TNN model is compared to 

Stephens & Stewart, a popular empirical approach [12]. 

Furthermore, to determine the success of the suggested 

model in the field of evaporation estimation, its performance 

is examined and evaluated using a variety of standard 

performance metrics. 

II. STUDY AREA AND DATA 

Like most semi-arid regions, Australia depends on stored 

water reservoirs to meet food production and drinking water 

needs. Unfortunately, evaporation rates in these countries 

could be extremely high. Australia loses about 40% of its 

overall stored water annually owing to high evaporation 

rates [13]. Therefore, devising a precise prediction approach 

to estimate the water deficit is strategic for creating 

hydrological and water resource planning approaches in this 

drought-affected country. The present study used data from 

a weather station in Perth, Western Australia (longitude 

115.9742173, latitude -31.9410266, elevation 20 m), to 

develop a transformer based neural network for evaporation 

prediction. 

Data pertaining to the 01 January 2009 to 31 October 2022 

timeframe was acquired from the Bureau of Meteorology 

(BoM). Figure 1 illustrates the location of the case study. 

Several parameters like relative humidity (RH), solar 

radiation (Rs), mean, minimum, maximum air temperatures 

(Ta, Tmin, Tmax), wind speed (Sw), and evaporation pan (Ep) 

were recorded for the selected station. The weather 

parameters recorded each month concerning quantified 

weather information gathered from the selected station are 

specified in Table 1. The table displays Cv, Cx, Xmean, 

Xmin, Xmax, Sx, and CC-Ep which are the coefficient of 

variation, skewness, mean, minimum, maximum, standard 

deviation, and the Pearson correlation coefficient 

respectively for the studied meteorological parameters. 

III. METHODOLOGY 

A. Input Combination 

Choosing the appropriate predictors is critical to devising 

a robust predictive model [14]; this study assessed different 

sets of inputs concerning meteorological variables to 

successfully develop the suggested TNN input–output 

model and enhance its predictive characteristics. There are 

several conscious decisions behind selecting these sets. 

First, to enable comparison, the TNN model's inputs were 

selected according to the essential weather factors in the 

suggested conventional framework (Stephens & Stewart). 

Additionally, predictors were selected after examining the 

Pearson Correlation Coefficient (PCC) [15]. The PCC 

technique is a statistical indicator that indicates the 

mathematical association, or correlation, between two 

constant variables. 

 

Table 1 illustrates that RH, Sw, Rs, Tmax, and Tmin had all 

been significantly associated with Ep, implying that they 

might be essential for estimating evaporation 

parameter. Specifically, Tmax and RH were most profoundly 

associated with Ep. Hence, Tmax and RH will be considered 

in all datasets to improve the accuracy of Ep forecasts. This  

study assessed the impact of the parameter Ep on 

evaporation prediction. Data points were selected based on 

how they correlated with the predicted output. As shown in 

Figure 2, the autocorrelation evaluation of the monthly time 

series of Ep rate demonstrated that correlation decreased 

significantly after the second lagging. Which indicates that 

the prior record of the second Ep magnitude had a notable 

effect on the predicted Ep magnitude for any period. Thus, 

to improve the accuracy of the TNN model predictions, two 

previous pan evaporation records were used as model input. 

 

 
Fig. 2.  Perth stations' partial autocorrelation (Monthly) 

 

Correspondingly, the present work considered five distinct 

input combinations for building the TNN model (Table 2). 

Climate dataset was partitioned into two parts: 80% was 

used to train (calibrate) the model, while 20% was used to 

test (validate). Hence, the dataset was split into two sections 

based on the initial years, with the first section being used 

for training and the second section used for validation. This 

research attempts to conduct a comprehensive assessment to 

test AI capabilities and employ empirical framework to 

estimate Ep magnitudes at a monthly timescale at Perth, 

Western Australia. 

 
TABLE II 

THE INPUT COMBINATIONS FOR THE TNN MODEL 

Model Scenario of inputs 

T.N.N-1 Ta, Rs 

T.N.N-2 RH, Tmax, Tmin 

T.N.N-3 Tmax, Tmin, Rs, RH 

T.N.N-4 Tmax, Tmin, Rs, Sw, RH 

T.N.N-5 Tmax, Tmin, Rs, Sw, RH, Ep  

 

 

 

 

 

 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023 
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023



 

TABLE I 
DATA DESCRIPTIVE ANALYSIS

Station Dataset Unit Xmin Xmax Xmean Sx Cv Cx Cc-Ep 

 

 

 

Perth 

Tmax °C  17.4 35.7 25.5 5.37 21.04 0.17 0.95 

Tmin °C  5.8 20.4 12.5 3.85 30.62 0.24 0.9 

RH % 39.9 73.9 60.7 8.26 13.6 -0.22 -0.93 

Sw m/s 3.15 6.72 4.8 0.79 16.2 0.04 0.91 

Rs MJ m-2 8.4 34.81 19.4 7.24 37.2 0.23 0.92 

Ep mm 1.75 12.98 5.7 3.07 53.4 0.34 1 

  

 

Fig. 1.  Location of the case study 

 
TABLE III 

EVALUATION PERFORMANCE OF THE T.N.N AND SS MODELS FOR PREDICTING MONTHLY EP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Scatter plot and time series of the TNN-5 model

Station  Model R2 RMSE MAE NSE 

Perth SS 0.705 0.536 0.430 0.706 

 T.N.N-1 0.859 0.100 0.081 0.860 

 T.N.N-2 0.949 0.058 0.047 0.953 

 T.N.N-3 0.956 0.056 0.048 0.957 

 T.N.N-4 0.979 0.039 0.030 0.980 

 T.N.N-5 0.986 0.031 0.025 0.987 
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B.Empirical Model 

This study used Stephens & Stewart to contrast the 

practical method since it is an extensively employed 

approach [16], considering the count of meteorological 

inputs and data availability. 

 

Stephens and Stewart (SS) 

As specified in equation 1, Stephens and Stewart [17] 

recommended more precise outcomes were obtained when 

measured radiation Qs was used, assuming that data were 

available. Further, it permits temperature correlations too: 

 

 

 

Where Qs, Ep, and Ta represent solar radiation, (Cal cm-2 

day-1), evaporation (mm), and mean air temperature (F) 

respectively. 

C.Self-attention Transformer model for Ep prediction 

To overcome the limitations of recurrent and 

convolutional sequential techniques, the framework of 

Transformer employs a self-attention component [18]. The 

transformer architecture utilizes self-attention to determine 

which data is essential to the encoding of the current token 

by selectively preserving only the most relevant information 

from the previous token. Otherwise stated, tweaking is 

conducted for the attention approach for calculating the 

equivalent of latent space pertaining to the decoder and 

encoder. 

An exhaustive search process is employed in this work with 

regards to the designing the system as well as 

hyperparameter training to construct best architectural for 

the put forward TNN model. Thus, to determine the optimal 

architecture, several differently configured models were 

evaluated. The optimal hyperparameters pertaining to the 

put forward TNN model have been devised by employing 

four identical transformer encoders. Each of the encoder 

includes 4 heads of size 64, whose output is processed by 

employing a 1-D Global Average Pooling layer that includes 

16 output filters along with a Kernel size of 1. Global 

average pooling is advantageous because it works in tandem 

with the convolutional architecture, connecting feature maps 

and classifications.  

The model was trained in assorted cycles, each with 200 

epochs and 16 batches. In order to regulate network weights 

pertaining to decrease of MSE loss function, the Adam 

algorithm was employed [19]. To evaluate the effectiveness 

of the predictive model, several indices of performance were 

used, including the mean absolute error (MAE), coefficient 

of determination (R2), root mean square error (RMSE), and 

Nash-Sutcliffe efficiency (NSE). For more information and 

specifics on these performance indices, see [8]. 

IV.RESULTS AND DISCUSSION 

In Table 3, a substantial distinction was observed in the 

accuracy of Ep forecast as determined based on the 

combination of inputs. In fact, the accuracy of a model's 

prediction could be improved through the use of the full 

climatological dataset (Ep, RH, Tmin, Tmax, Rs, and Sw) 

rather than combining inputs with incomplete data. Current 

findings show that the accuracy of prediction models 

increases as the number of input variables increases, which 

corresponds to previous study of [20]. This demonstrated 

that employing advanced capabilities like AI may not 

enhance the ML model's predictive performance, especially 

when a limited number of meteorological inputs exist. To 

attain good agreement in monthly Ep prediction, four input 

combinations were adequate. When five input parameters 

were employed, adequate results were attained; however, 

when Ep was used as an input, there was a slight 

enhancement in the accuracy of the prediction. Figure 3 

shows the scatter plot and time series of the TNN-5 model. 

Table 3 shows the outcomes of the empirical model used 

to forecast monthly Ep. In the initial observation for the 

input combination of Rs and Ta, the lowest prediction 

accuracy in terms of the R2 values (which was 0.705) was 

offered by the radiation-based model (Stewart and Stephens) 

versus the TNN-1 model. The results of Table 3 show that 

the TNN model exhibits significantly higher performance 

than the empirical model. It demonstrated a remarkable 

capability to accurately predict monthly Ep, even when 

using the same input parameters, due to its ability to handle 

non-linear and complex functions. This could be due to the 

TNN self-attention feature that can detect concealed 

characteristics, which suggests that the transformer 

architecture is a more powerful approach for evaporation 

prediction. 

The Ep modelling approach, demonstrated by this 

research, provides a reliable estimate for water losses caused 

by evaporation with R2 value of 0.986, which is essential for 

managing water resources efficiently. Multiplying Ep values 

by the land area of watering resources offers an effective 

scientific-based method to assess the quantity of evaporative 

water loss, a major factor in determining the existing water 

asset volume. This calculation simplifies the task of 

estimating the total amount of existing water available for 

watering and enables the use of a set of intelligent irrigation 

schedules. These also help reduce unessential water loss and 

make the irrigation process more efficient. Thus, this 

research suggests that the application of the TNN model to 

predict Ep comes with considerable economic benefits for 

farmers, especially in areas suffering from drought, water 

scarcity, or other hydrological imbalances. Additionally, it 

offers valuable insight for hydrologists about how to 

incorporate soft computing into their analysis of non-

stationary and non-linear hydrological variables. 

V.CONCLUSION 

The objective of this study was to assess the effectiveness 

of a transformer-based neural network (TNN) predictive 

model for monthly evaporation losses and compare it with 

the radiation-based model (Stephens and Stewart). The DL 

model's effectiveness was evaluated by predicting Ep rates 

utilising data on a monthly scale from Perth station in 

Western Australia. The monthly Ep from 2009–2022 was 

used as time series data for training (calibration) and testing 

(validation) of the designed model. The PCC was used to 

choose the appropriate input parameters (predictors) for the 

TNN model in terms of Ep forecasting. Conventional 

evaluation metrics were used to determine the effectiveness 
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of models. 

The investigation led to the following findings: 

• The developed TNN model demonstrated a 

remarkable level of accuracy when used to forecast 

monthly Ep values at the site selected in this study. 

• The developed TNN model proved to be superior to 

the empirical method. Furthermore, when using the 

same set of inputs as that method, the accuracy of 

TNN's monthly Ep projections was significantly 

improved. 

• To establish a reliable and generalisable Ep 

predictive model, the applicability of the developed 

technique can be evaluated by applying it to 

various regions, which can be a part of future 

study. 
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