

Abstract—Formal verification using a model checking

approach is a process for proving undesirable properties in

designed models. The model checking procedure for the

sequence diagram is cumbersome because the transformation of

the sequence diagram into a formal model requires meticulous

mapping rules and methods that must yield corresponding

behaviors. This paper proposes the transformation of the

sequence diagram into a time automate named UPPAAL. The

obtained time automata model can be used to verify deadlock,

undesirable properties, and the correctness of message ordering.

The transformation rules and framework were experimented

with case studies. The results show that the proposed

transformation rules can be applied and map the sequence

diagram into a UPPAL structure correctly.

Index Terms—Formal verification, UML sequence diagram,

Time automata, Software engineering

I. INTRODUCTION

ORMAL verification is the proving process that helps the

system analyst localize undesirable properties in a

software model. It directly correlates with the quality of the

obtained software. Sequence diagram (SD) is a typical tool

used in the software design process. The SD may contain

mistakes or undesirable properties [1]: deadlock, livelock,

and so on. Especially, the SD contains incorrect message

ordering in which a receiver does not get a required message

on time or it receives an incorrect message sequence that may

affect a system's processing. An interaction between objects

in the SD represents the messages between objects based on

the method, parameter, and time. The system designers can

verify the SD to find errors and check whether it conforms to

system requirements or not by using model checking

approaches [2]. It can also measure the efficiency and

effectiveness of the SD as well.

 An error finding of the SD starts with transforming the SD

elements into the formal model written in a specific formal

language [3]. Next, the formal model will be imported into

the verification tool to find errors. The formal model

abstraction may be quite a difficult process for the designers

if they are inexperienced in the formal language. Therefore,

this paper proposes the transformation rules and method for

mapping the sequence diagram into the formal model

described in a network time automaton. The SD elements

Manuscript received Feb 28, 2023; revised Mar 28, 2023.

S. Duangmalai is a postgraduate student of Computer Science

Department, College of computing, Khon Kaen University, Muang Khon
Kaen, 40002, Thailand. (e-mail: sumate.d@kkumail.com).

C. Dechsupa is an assistant professor at department of computer science,

College of computing, Khon Kaen University, Khon kaen,40002, Thailand

(to provide phone: (+66) 043-009700, 50525; e-mail: chanode@kku.ac.th).

must be transformed into a formal model by using the

framework in which the transformation rules have to produce

the target formal model behaviors that conform to the

behaviors of the origin SD. The framework advocates

transparent mapping, in which the modelers can transform the

SD automatically without grammatical and lexical UPPAAL

background and the target models can be verified by using the

UPPAAL environment [4]. The typical properties of a model,

such as the message ordering, deadlock, livelock, and the

specific system requirements can also be verified by

expressing the properties in computation tree logic (CTL) [5]

provided by the UPPAAL environment. The framework will

help the software designers improve the model beforehand. It

reduces mistakes in software models, decreases development

costs, and shortens development time.

 The organization of this paper is as follows; Section II

describes the background of the SD and UPPAAL. Section

III discusses the related works, and Section IV details the

research methodology and experiments. Sections V and VI

are implementation, validation, and conclusion respectively.

II. BACKGROUND

A. UML Sequence Diagram [6]

A sequence diagram or SD is one of the Unified Modeling

Language (UML) diagrams, representing the message

interactions between objects. The objects in the SD show

lifelines, and activated bars are used to represent activities

occurring from classes or objects. Whereas the message

symbol that links between objects shows the message

interactions. The message interpretation typically starts from

the object on the top left-hand side and moves to the object

on the right-hand side depending on the direction. The core

elements and an example of SD are shown in Fig. 1. The

model comprises the objects Customer and Order where the

parameter v1 passes a value from the object customer to the

object order by using the method Request. The message

Return occurs after receiving and processing the object

Order. However, the message Request and Return relies on

the evaluation of the condition in the loop fragment if the

variable v1 is true only. As the mentioned diagram indicates,

the messages ordering of the object Customer must be

Request → Return; or t and t+n, where t is a local clock as the

message Request is sent and t+n is the message Return is

received by the object Customer.

B. UPPAAL [4]

UPPAAL was invented by Uppsala University for creating

and verifying real systems that are modeled as timed

automata networks. It provides verification environments that

S. Duangmalai, and C. Dechsupa

Transforming of the Sequence Diagram into

Time-Automata Network

F

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023

come along with description language, simulation, and

verification tools. The formal system can be modeled as a

timed automata network with clock and data variables. The

core elements of UPPAAL are detailed in Fig. 2.

An initial state is portrayed in a double-line cycle while a

single-line cycle shows the ordinary system state called

Location. The location name of UPPAAL model must be

unique, and it will be determined in part of the CTL to trace

the system working at verification stage. A state transition

uses a directed edge to connect between the locations. For

each state transition may or may not rely on a transition

condition with time and data constraint. For instance, the

guard condition v1==true in Fig.2 is that the state transition

occurs if the variable v1 is true, and value of the variable c1

is updated by the expression c1: =c1+1. The modelers can

also describe the state transition in terms of the

communication channel and synchronization as well.

Fig. 1. Core elements and the SD represent the interactions between

two objects (Customer and Order). The model also contains the loop

fragment in which the synchronous messages proceeded depend on

when the Boolean condition v1 is true.

Fig. 2. An example of UPPAAL construct representing the cycle

flow.

III. RELATED WORK

Andrade et al. [7] provided an approach to model and

analyze real-time and embedded systems. The authors used a

time Petri net with energy constraints or ETPN as a

verification tool. Time and energy constraints of the real-time

system models are analyzed during the early design stages by

transforming the SD into an ETPN construct. The target

constructs convey the corresponding behaviors covering with

both time and energy constraints. They are used for

evaluation of the best path, the worst path, and the energy of

the models. However, model transformation is still a manual

process.

Chen et al. [8] provided a method based on events to

increase the accuracy of SD. The authors used propositional

projection temporal logic or PPTL as an automaton to

describe the formal model of SD, and desired properties of

the model are verified. They also provided an efficient

mechanism for checking the SD by implementing a model

based on event-deterministic finite automata (ETDFA). The

SD properties written in PPTL and implemented with a model

checker are used to validate the properties.

Cunha et.al [9] provided a method for transforming the SD

to Petri nets and verified the deadlock, reachability, safety,

and liveness properties. This technique is a model checking

technique that the Petri net model can be designed and

verified by using a tool named “FOREVER”. A Symbolic

Model Verifier: SMV is a tool for modeling the SD in Petri

nets, and it is used for tracing the model properties that are

expressed in the computation tree logic.

V.Lima et.al [10] proposed the verification and validation

techniques using the SPIN model checker [11]. It is used to

trace the execution states of UML sequence diagrams. The

authors provided PROMELA structures in which the source

message and destination message in the sequence diagram are

expressed in LTL. These techniques are applied in our work

by mapping the source message and destination message into

the UPPAAL process template.

IV. METHODOLOGY

An overview of the SD verification is shown in Fig. 3. The

transformation process consists of 4 steps: 1) extract the SD

elements from an XML file of SD that is designed and

exported from Draw.io [12]. 2) All the SD elements derived

from the first step are mapped into UPPAAL constructs by

using the transformation rules, and 3) the modelers can export

the UPPAAL construct and refine the time constraint, and 4)

verify the derived UPPAAL construct by using the UPPAAL

verification tool.

Fig. 3. The SD verification process.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023

We defined the formal definitions of the relevant models

to show the relationships of their elements as follows.

Definition 1 sequence diagram: an ordinary sequence

diagram is a thirteen- tuple, SD = (O, L, A, N, FG, M, Z, FQ,

F, P, FA, FM, FT) where

O is a set of objects, where O.name is the object name.

L is a set of liveliness.

A is a set of activated bars; where A.id is the identifier

number, and A.seq indicates the sequence of an activated bar

on the liveline L.

N is a set of combined fragments.

FG is a function identifying a fragment type; FG: N ⟶

(Alt, Loop, Opt, Par, …)

M is a set of messages.

Z is a set of methods; where Z.name is the method name

and Z.par is the list of parameters.
FQ is a function that determines the message ordering of

the message m ∈ M on the liveline L; FQ: (L, M) ⟶ ℕ.

F is a set of messages that attach on the message, where

F.LabelName is the message name or the method name, and

F.Type = {Label, Method}.

P is a set of parameters.

FA is a mapping function used to indicate the liveline host

or the object of an activated bar; FA: A ⟶ L

or FA: A ⟶ O.

FM is a mapping function used for determining a message

type; FM: M ⟶ (SynMSG, Asing, ReturnMSG)

FT is a mapping function for identifying a message type;

FT: M⟶F.

Definition 2 Combined fragment: A sub-process in a

combined fragment is a sub-process of parent process, which

the SD is hierarchical structure, FM = (SSD, FR) where
SSD is a set of ordinary sequence diagrams.

FR is a mapping function used to indicate the combined

fragment in the SD. In short, FM is a special SD in which the

message mi ∈ M such that FR(mi) = oi where oi ∈ SSD

Definition 3 UPPAAL construct: an UPPAAL construct is an

eight- tuple, UPP = (S, T, L, I, V, C, G, Pc) where

S is a set of states or locations.

T is a set of transitions or edges.

L is a set of labels.

I is an initial state; I ⊆ S.

V is a set of variables.

C is a set of channels.

G is a set of guards, g ∈ G is a conditional expression which

the used variables refer to the variable v ∈ V.

Pc is a set of processes.

The SD transformation rules.

We proposed the core transformation rules as follows:

Rule 1: For each event occurring with an object of the SD is

mapped to be the part of process name. The process comes

from the event of sending or receiving a message. The naming

convention of process is:

“ObjectName_Direction_MessageLabel_MessageOrder”,

where Direction is a source or destination of message that is

determined as S and D respectively. The MessageLabel may

be a label name or method name while MessageOrder is

message number. The process named “UserSInsertCard_1”

in Fig. 4 (b) represents the event that derived from the event

marked “x” in Fig. 4 (a).

Rule 2: For each synchronous message and asynchronous

message m where m ∈ M on an activated bar and FM:

m→{SynMSG, AsynMSG, ReturnMSG }. A set of locations

S1 and S2 are created to represent a source and destination

message. It can be said that each message in SD is mapped

into two sets of locations (set of source and destination

UPPAAL process). The source process contains four

locations: prepare, sending, commit and sent, whereas the

destination process consists of prepare, receiving, commit

and received. Fig. 4 (c) shows an example of synchronous

message transformation.

In case of an initial process of SD, the first message on the

left top m is a message in the SD and FQ(m) =1, the location

(a)

(b)

(c)

Fig. 4. Transformation rules of the message, (a) the SD, (b) UPPAAL initial message, (c) UPPAAL ordinary message.

Fig. 5. Transformation rules of the alternative and optional

combined fragment.

Fig. 6. Transformation rules of the loop combined fragment.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023

si ∈ S is created to be an initial location with the label name

start, which is prefixed at of the process pc ∈ Pc.

Rule 3: For each variable in SD, including the parameters of

method and variables of a guard condition. It is mapped into

a variable v ∈ V directly.

Rule 4: Guard condition on each message or on a combined

fragment is mapped in a guard condition g ∈ G.

Rule 5: As the transformation rule no. 2, the communication

between objects or UPPAL processes needs a channel for data

synchronization. The channel name is generated from the

label or Method name, and _MessageOrder. Fig. 2 shows the

channel name “Request_1” derived from the SD message

Request(v1) in Fig. 1.

Rule 6: Alternative and optional combined fragment in SD

FG: N ⟶ {Alt, Opt} closes to the If-else pattern that contains

two boundaries (If-boundary and else-boundary). The SD

elements in each boundary are transformed by using rule no.

1 to 5. Next, the processes that come from both boundaries

are connected by an UPPAAL control flow. In short, a

combined fragment is mapped into the UPPALL process pc

∈ Pc, and it is an intermediary synchronizing data between

processes by using a channel. The UPPAAL construct of an

alternative and optional control flow is shown in Fig. 5, where

the location named condition conveys the flow direction

relied on the guard conditions is_valid and !is_valid on its

outgoing edges, and the process of the If-boundary and Else-

boundary are called by using the channels.

Rul 7: For each loop combined fragment of the SD is

transformed into an UPPAAL control process. Fig. 6

represents the UPPAAL loop-control process where the

location named condition conveys the process flows based on

a guard condition “v1==true”, and the edge “chanLoopF1”

acts as a control loop firing a token back to the location

condition again. If the guard condition of the loop is evaluated

to be true, the control loop process will proceed with the sub-

process under the loop boundary via the channel

chan_CustomerSRequest_1.

Rul 8: If the SD message is in a loop combined fragment, it

is mapped using rule no.2, and a reset-edge is added between

the last location and the location named prepare to produce a

token back for the next round. An example of the UPPAAL

construct that is obtained from the message in the combined

fragment is shown in Fig. 6.

Rul 9: Parallel combined fragment in the SD is transformed

into an urgent location. Its input must come from the same

channel, next it proceeds all processes by calling the channels

of each UPPAAL construct simultaneously. An example of

the parallel combined fragment is shown in Fig. 7 (a), and the

derived UPPAAL construct of the parallel combined

fragment is represented in Fig. 7 (b).

Rule 10: Multiple combined fragments with sub-combined

fragment. It indicates that the SD contains fragment occupies

a combined fragment hierarchically. All elements of them are

transformed into UPPAAL constructs by using all above

rules. The channels are created to concatenate the processes

within each the fragment boundary and the process outside of

the fragment boundary.

Rule 11: Due to the SD without clock determination, a clock

of each UPPAAL location is determined as 1 by default. This

rule covers the typical location only, while the commit and

urgent location does not cover because their clocks are 0

intuitively.

The overview of transformation rules is that the set of SD

elements are transformed and grouped to be sub-processes

based on the objects in the SD. For each sub-process can also

be partitioned as a sub-process once again if the SD contains

a combined fragment. The messages and methods between

objects are mapped into communication channels and

parameters. Although the time constraint cannot be

determined in the SD, the transformation generates the local

time counters, and their values will be increased by 1. The

modelers can adjust the time constraints on each message

event in the UPPAAL construct before verification

arbitrarily.

(a)

(b)

Fig. 7. Transformation rules of the parallel combined fragment.

(a)

(b)

(c)
Fig. 8. An example of transformation of the hierarchical combined fragments.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023

Fig. 9. The ATM sequence diagram applied with the proposed transformation rules.

Fig. 10. The excerpt obtained UPPAAL constructs of the ATM sequence diagram in Fig 9.

Fig. 11. A screenshot of the UPPAAL constructs verified in the UPPAAL tool by using verification mode.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023

V. IMPLEMENTATION AND VALIDATION

We validated the transformation rules by using a case study

to show that the obtained UPPAAL constructs can be verified

in UPPAAL verification framework. The SD model of the

ATM system shown in Fig. 9 is transformed into the

UPPAAL constructs. The SD model comprises three objects

(User, ATM and Bank_server), twelve messages and three

combined fragments. After applying the proposed

transformation rules, we obtained the UPPAAL constructs

shown in Fig. 10. The UPPAAL environment is used to

create, modify the UPPAAL constructs the model layout. It

also is used to refine the clock constraint, including the CTL

expression for the properties exploring the specific desirable

behaviors of the model such as deadlock, liveness, and

soundness properties.

As the UPPAAL constructs shown in Fig. 10, we verified

the ATM system in a simulation mode and verification mode

of the UPPAAL environment tools. For instance, we

simulated the model to trace back and forward steps of a

message sending and receiving. Moreover, all variables of the

model can be monitored for their values during simulation.

Whereas the verification mode is performed based on our

CTL expression. For example, we found the unreachable part

in the model. The message “success” cannot be reached

because the guard condition of the fragment cannot be

evaluated to be true. The CTL for checking this event is “E<>

_UserDSuccess_8.received”, which means that “success”

does not satisfied this property. Due to the space limitation,

we show excerpt CTL used for verifying the UPPAAL

constructs of the ATM system in Table I.

VI. CONCLUSION

After designing the sequence diagram, the designers verify

their models to check if the model properties meet the desired

properties or not. The diagram may contain complex

messages and many combined fragments that are difficult to

verify in an ordinary testing technique. We proposed the

transformation rules for mapping the sequence diagram or SD

into a time-automata network of UPPAAL constructs. The

transformation rules cover the SD objects, messages,

fragments, variables, including the guard conditions. The

derived UPPAAL constructs can be verified in UPPAAL

environment in the simulation mode and verification mode.

We validated the transformation rules by using a case study

of the ATM system. The obtained ATM UPPAAL constructs

are explored with the liveness, and specific properties

expressed in CTL. From the experiment, we observe that the

transformation rules advocate the sequence diagram

verification with time constraints correctly. However, the

limitation of verification is that the sequence diagram is

without time properties, whereas the UPPAAL time-

automata needs the time constraints. Thus, after applying the

transformation rules the models require an adjustment to the

time-constraints.

We will extend the transformation rules handling the other

fragments such as critical region, negative, break, weak

sequencing, strict sequencing, ignore/consider, assertion, and

will develop a SD designer plugin to generate the UPPAAL

model automatically.

REFERENCES

[1] Li, X., Liu, Z., & Jifeng, H. “A formal semantics of UML sequence

diagram,” In: 2004 Australian Software Engineering Conference.

Proceedings. IEEE, 2004. p. 168-177.
[2] Clarke, E. M. “Model checking,” In: Foundations of Software

Technology and Theoretical Computer Science: 17th Conference

Kharagpur, India, December 18–20, 1997 Proceedings 17. Springer
Berlin Heidelberg, 1997. p. 54-56.

[3] Salomaa, A. “Formal languages,”. Academic Press Professional, Inc.,
1987.

[4] Behrmann, G., David, A., & Larsen, K. G. “A tutorial on uppaal,”

Formal Methods for the Design of Real-Time Systems: International
School on Formal Methods for the Design of Computer,

Communication, and Software Systems, Bertinora, Italy, September

13-18, 2004, Revised Lectures, 2004, 200-236.
[5] Hafer, T., & Thomas, W. “Computation Tree Logic CTL* and Path

Quantifiers in the Monadic Theory of the Binary Tree,” In: ICALP.

1987. p. 269-279.
[6] Object Management Group, “OMG Unified Modeling Language TM

(OMG UML) version 2.5,” 2015.

[7] Andrade, E., Paulo M., Gustavo C., Bruno N., and Carlos A. “Mapping
UML sequence diagram to time petri net for requirement validation of

embedded real-time systems with energy constraints.” In Proceedings

of the 2009 ACM symposium on Applied Computing, 2009, p. 377-
381.

[8] Chen, Z., and Duan Z.. “Specification and verification of UML2. 0

sequence diagrams using event deterministic finite automata.” In
SSIRI-C 2011, 2011, p. 41-46.

[9] Cunha, E., Marcelo C., Herbert R., and Barreto. “Formal verification

of UML sequence diagrams in the embedded systems context.” In
SBESC 2011, 2011, p. 39-45.

[10] Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L. and

Pourzandi,. “Formal verification and validation of UML 2.0 sequence
diagrams using source and destination of messages”,. Electronic notes

in theoretical computer science, 2009, p.143-160.

[11] Holzmann, G.J., 1997. The model checker SPIN. IEEE Transactions on
software engineering, 23(5), p.279-295.

[12] Draw.IO, “About Draw.IO,” Accessed: Feb. 14, 2023. [Online].

Available: http://about.draw.io.

TABLE I
THE EXCERPT RESULTS OF UPPAAL ATM MODEL VERIFICATION IN VERIFICATION MODE OF UPPAAL ENVIRONMENT

No Requirements CTL Results

1 The user object cannot send the messages insertCard and withdraw
to the ATM object simultaneously.

E<> !_UserSInsertCard_1.senting &&
!_UserSWithdraw_9.senting

Satisfied

2 The ATM object will not be enable to receive the message insertCard

if the object user has not sent it yet.

E<> !_ATMDInsertCard_1.received &&

!_UserSInsertCard_1.senting

Satisfied

3 The user object cannot send the message insertCard and EnterPIN at

the same time.

!E<> _UserSInsertCard_1.senting &&

_UserSEnterPIN_3.senting

Satisfied

4 Is it possible that when the optional fragment is evaluated to be true,
the user then sends the message enterPIN to the ATM object?

Opt_f3.in_opt --> _UserSEnterPIN_3.sent Unsatisfied

5 The alternative fragment proceeds either UserFailed nor

UserDSuccess.
!E<> _UserDFailed_6.received &&

_UserDSuccess_8.received

Satisfied

Proceedings of the International MultiConference of Engineers and Computer Scientists 2023
IMECS 2023, July 5 - 7 July, 2023, Hong Kong

ISBN: 978-988-14049-4-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2023

