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Abstract—From the viewpoint of developing machine learn-
ing as a safe and secure AI method, research in this field has fo-
cused on machine learning on a single server using encrypted or
noise-added data, or distributed processing on multiple servers
using decomposition data or distributed dataset. However, few
learning methods have been proposed that achieve both data
confidentiality and usability at a high level. The authors pro-
posed a machine learning method based on secure distributed
processing with decomposition data and parameters. However,
although this distributed processing method is superior in
terms of security, it is computationally expensive. To solve this
problem, the authors proposed a learning method that updates
only one element of each decomposed parameter. In this paper,
we propose an improvement method in communication cost for
the NG and k-means methods and show its effectiveness. The
proposed method means that the computational complexity of
the NG and k-means methods with distributed processing can
be almost the same as that of the conventional NG and k-means
methods with a single server.

Index Terms—Secure Distributed Processing, Decomposition
Data and Parameters, Neural Gas, k-means, Computational
Complexity, Communication costs.

I. INTRODUCTION

THE realization of a super-smart society requires AI-
based big data analysis to highly integrate cyberspace

and physical space (the real world) [1]. AI-based big data
analysis will bring valid information to the real world faster.
On the other hand, to build a safe and secure smart society,
it is necessary to develop AI methods to protect the privacy
of Big Data in cyberspace [2]. In this field, from the
viewpoint of developing machine learning as a secure and
safe AI method for users, research is being conducted in
two directions: machine learning on a single server using
encrypted or noise-added data, and distributed processing
on multiple servers using decomposition data or distributed
dataset, and research combining these two methods [3], [4],
[5]. However, few learning methods have been proposed that
balance data confidentiality and usability at a high level.
In the previous paper, the authors proposed a method that
decomposes the data and parameters and performs learning
in secure distributed processing [6]. However, this method
using distributed processing, while superior in terms of
security, is computationally expensive. Hence, to solve this
problem, we proposed a learning method that reduces the
computational complexity by updating only one element of
each decomposed parameter [7].
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In this paper, we propose an improvement method in
communication cost for the NG and k-means methods and
show its effectiveness. The proposed method means that the
computational complexity of the NG and k-means methods
with distributed processing can be almost the same as that
of the conventional NG and k-means methods with a single
server. The main contents of this paper are as follows.
Chapter II describes the concept of secure distributed pro-
cessing, the NG method, and the k-means method. Chapter
III describes the decomposition data and parameters used
in this paper, as well as the learning methods for secure
distributed processing that reduce the computational com-
plexity of the NG and k-means methods, and explains the
differences in computational complexity. In Chapter IV, we
perform numerical simulations of clustering and compare the
results of the proposed and conventional methods. Chapter
V summarizes and prospects for the research.

II. PRELIMINARIES

A. The concept of Secure Distributed Processing

We show the concept of a method to realize machine
learning by secure distributed processing while maintaining
data confidentiality using decomposition data and parameters
[6]. In this method, we use a system consisting of a central
server (denoted as Server 0) and Q servers, as shown in Fig.1.
Let x be a scalar data and f(x) be the objective function.
First, data x and f(x) are randomly divided into Q elements
as x =

∑Q
q=1 x

(q), f(x) =
∑Q

q=1 fq(x
(q)) and each element

is stored on a server. The q-th server computes the function
gq(x

(q)) defined by the parameters and sends the difference
∆fq(x

(q)) = fq(x
(q)) − gq(x

(q)) to Server 0. Server 0
integrates them and computes ∆f(x) =

∑Q
q=1 ∆fq(x

(q)).
If |∆f(x)| is sufficiently small, the calculation process
terminates. Otherwise, the error ∆f(x) is sent to each server,
and the function gq(x

(q)) is updated. Further, the same
calculation process is repeated.

The problem is how to update the function gq(x
(q)) for

each server to realize f(x)≃
∑Q

q=1 gq(x
(q)).

B. Steepest Descent Method

Machine learning aims to estimate the input-output rela-
tionship for a given learning data by estimating the param-
eters for a model. In this section, we explain the steepest
descent method (SDM) [8].

SDM is a method designed to find the parameter θ that
minimizes the objective function J(θ).
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Fig. 1. An example of a secure distributed system

For the parameters, we repeatedly apply the following
equation to get close to the target values using the gradient
method.

θ(t+ 1) = θ(t)− η∇J(θ), (1)

where η is the learning coefficient, which is a real number
that determines the step size of the update steps. In addition,
∇J(θ) is the amount of update for the parameter θ.

The parameter θ can be used to obtain a local solution of
the function J(θ) by repeating Eq.(1).

If SDM is used for machine learning, three types of
learning methods have been reported in the relevant literature
[6]: online learning, mini-batch learning, and batch learning,
depending on how the objective function J(θ) in Eq.(1) is
given. We explain it below.

For any natural number i, let Zi = {1, 2, · · ·, i} and Z∗
i =

{0, 1, · · ·, i}. Let D be the set of learning data, and |D| =
L. In addition, the set D is partitioned into D =

∪N
l=1Bl

(Bi∩Bj = ø) and N subsets B1, · · ·, BN , and |Bl| = bl
(l∈ZN ), where L =

∑N
l=1 bl. The learning method using

SDM is as follows [6]. Let Tmax be the maximum number
of learning time. First, we set t = 1.
[Step 1]

Select a natural number l∈ZN randomly and determine a
subset Bl of the learning data to be used in updating the
parameters.
[Step 2]

Repeat learning steps of using Eq.(1) for the set Bl.
[Step 3]

If t = Tmax, algorithm terminates. Otherwise, t←t + 1
and go to Step 1.

This method is called online learning in the case of N =
L, batch learning in the case of N = 1, and mini-batch
learning in other cases.

Machine learning methods based on SDM include the
Back Propagation (BP) method, k-means method, fuzzy
modeling, and so on [8], [9].

C. NG and k-means methods

In this section, we describe the NG method, which is
one of unsupervised learning methods based on SDM [9].
NG includes k-means method as the special case. Vector
quantization, which is realized by NG, approximates a large
amount of data with a small amount of data. We describe the
case where dataset X = {xl|l∈ZL}⊆Rn is encoded using
a finite set of reference vectors W = {wi|i∈Zr}, where n
and R are a natural number and the set of real numbers,

Input : The set of learning data � �� ∈ �� � ∈ ��

Output : The set of reference vectors 	 
� ∈ �
� � ∈ ��

Ini�alize the set 	. Set  ← .

Select a subset � ⊆ �� randomly. Calculate the distance

between the data �� for each � ∈ � and the reference

vector 
� � ∈ �� and the neighborhood rank �� �
� .

Update
� ∈ 	 based on Eqs.(3) and (4).

 ≥ ����

Algorithm terminates.

 ←  + 1

Yes

No

Fig. 2. The flowchart of NG method. This method is called online learning
in the case of |U | = 1, batch learning in the case of |U | = L, and mini-
batch learning in other cases.

respectively. Let ei(x)∈Z∗
r−1 be the neighborhood rank of

the i-th reference vector wi for data x. That is, wi is the
(ei(x) + 1)-th nearest reference vector to the data x. Here,
the distance between wi and x is defined by the Euclidean
distance ||xl − wi||. The degree to which the dataset X
is approximated by the set W is defined by the following
function.

E =
1

|X|
∑
xl∈X

r∑
i=1

exp(ei(x
l)/λ)∑r

i′=1 exp(−ei′(xl)/λ)
||xl −wi||2 (2)

where λ is a real value.
Then, each reference vector wi∈W is updated based on

SDM as shown below [9].
A subset U⊆X of natural numbers is selected randomly.

The update amount ∆wi is calculated as follows.

∆wi = ε
∑
l∈U

exp(−ei(xl)/λ)(xl −wi) (3)

where ε∈[0, 1].
By using the update amount ∆wi, each reference vector

wi is updated as follows.

wi←wi +∆wi (4)

Eqs.(3) and (4) imply that the closer wi is to x, the closer
wi is to x based on its closeness. NG method is shown in
Fig. 2 [9], where ε and Tmax denote the learning coefficient
and the maximum number of learning steps, respectively.

As a special case of NG, k-means is obtained when λ→0.

III. NG AND K-MEANS METHODS FOR SECURE
DISTRIBUTED PROCESSING

In this chapter, we propose the NG and k-means methods
for secure distributed processing.
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A. Data representation for secure distributed processing

The learning data xl = (xl
1, · · ·, xl

j , · · ·, xl
n) and reference

vector wi = (wi1, · · ·, wij , · · ·, win) are decomposed into Q
elements (pieces) and each element is stored on a server as
follows.

xl
j =

Q∑
q=1

x
l(q)
j (5)

wij =

Q∑
q=1

w
(q)
ij (6)

where xl(q) = (x
l(q)
1 , · · ·, xl(q)

n ) and w
(q)
i = (w

(q)
i1 , · · ·, w(q)

in )
are the q-th element of xl and wi and stored in the q-th
server.

We can obtain the distance between the data xl and the
reference vector wi by using the elements x

l(q)
j and w

(q)
ij

for (l∈ZL, j∈Zn, i∈Zr, q∈ZQ). The distance ||xl −wi||2
between the data xl and the reference vector wi is defined
by the following formula using decomposition data and
parameters.

||xl −wi||2 =

n∑
j=1

(

Q∑
q=1

(x
l(q)
j − w

(q)
ij ))2 (7)

Eq.(7) shows that the distance is calculated in the dis-
tributed form.

B. The conventional NG method for secure distributed pro-
cessing

Based on the distance ||xl − wi||2 of Eq.(7), we obtain
the neighborhood rank ei(x

l) of each reference vector wi

for the data xl. In this case, the evaluation function E for
NG is obtained as Eq.(8) as follows.

E =
1

|X|
∑
xl∈X

r∑
i=1

exp(−ei(xl)/λ)∑r
i′=1 exp(−(ei′(xl))/λ)

n∑
j=1

(

Q∑
q=1

(x
l(q)
j − w

(q)
ij ))2 (8)

Then, we can obtain the update amount ∆wi =

(∆wi1, · · ·,∆win) for the element w(q)
i from Eq.(8) in each

server as follows.

∆wij = ε1
∑
xl∈X

exp(−(ei(xl))/λ)

Q∑
q=1

(x
l(q)
j − w

(q)
ij ) (9)

where ε1 is the learning coefficient.
The authors proposed NG method for the secure dis-

tributed processing using Eq.(9) as shown in TABLE I [6].
As a special case, k-means method is defined as λ→0.

C. The conventional NG and k-means methods reducing
computational complexity for secure distributed processing

In this section, we show the NG method reducing compu-
tational complexity [7].

Let w(q)
ij (t) and ∆wij(t) be the divided reference vector

w
(q)
ij and the update amount ∆wij at the step t. The update

formula for the reference vector wij shown in the Eq.(4)
becomes the following equation.

Q∑
q=1

w
(q)
ij (t+ 1) =

Q∑
q=1

w
(q)
ij (t) + ∆wij(t) (10)

We can rewrite the Eq.(10) using a natural number q0∈ZQ

as follows.
Q∑

q ̸=q0

w
(q)
ij (t+ 1) + w

(q0)
ij (t+ 1) =

Q∑
q ̸=q0

w
(q)
ij (t) + (w

(q0)
ij (t) + ∆wij(t+ 1)) (11)

From the Eq.(11), we can obtain the update formula of
w

(q)
ij (t+ 1) as follows.

w
(q)
ij (t+ 1) =

{
w

(q0)
ij (t) + ∆wij(t) (q = q0)

w
(q)
ij (t) (q ̸=q0)

(12)

where the number q0 is selected arbitrary.
TABLE II shows NG algorithm based on Eq.(12) [7].

The difference between TABLEs I and II is that the former
method updates all elements of each parameter, while the
latter updates only one element of it.

D. The proposed NG and k-means methods reducing com-
munication consts for secure distributed processing

In the method of TABLE II, each server needs to send
and receive some results. For example, as Steps 2 and 3 of
TABLE II show, for the calculation of Dl

ij , each server needs
to send |U |×|r|×|n| results to Server 0. Therefore, the larger
the cardinality of set U , the larger the amount of data sent
from each server to Server 0.

In this section, we propose the NG method reducing
communication costs of TABLE II as follows.

In TABLE II, Server q (q∈ZQ) sends the calculation result
D

l(q)
ij (l∈ZL, i∈Zr, j∈Zn, q∈ZQ) to Server 0 as follows.

D
l(q)
ij = x

l(q)
ij − w

(q)
ij (13)

In Server 0, each of Dl(q)
ij (l∈ZL, i∈Zr, j∈Zn) as shown

Eq.(14) needs to calculate the distance between the data xl

and the reference vector wi.

Dl
ij =

Q∑
q=1

D
l(q)
ij

=

Q∑
q=1

(x
l(q)
ij − w

(q)
ij ) (14)

Let Dl(q)
ij (t) be the value D

l(q)
ij at the step t. Assume that

Server q0(∈ZQ) is selected at the step t+ 1. From Eq.(12),
as
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TABLE I
SECURE DISTRIBUTED PROCESSING OF NG WITH DECOMPOSITION DATA [6].

Server 0 Server q

Initialize Determine the values λ. Set t = 1 Store {xl(q)
j |l∈ZL, j ∈ Zn}.

and the εint and εfin. Initialize {w(q)
ij |i∈Zr, j ∈ Zn}.

Step 1 Select a subset U⊆ZL randomly and
send to each server.

Step 2 Calculate D
l(q)
ij = x

(q)
j − w

(q)
ij (l∈U,

i∈Zr, j∈Zn) and send to Server 0.
Step 3 Calculate ||xl −wi||2 and ∆wij

based on Eqs.(7) and (9).
Send ∆w

(q)
ij to each server.

Step 4 Update {w(q)
ij |i∈Zr, j∈Zn} as follows.

w
(q)
ij ←w

(q)
ij +∆wij

Step 5 If t = Tmax, the algorithm
terminates. Otherwise, set
t←t+ 1 and go to Step 1.

TABLE II
ALGORITHM OF THE PROPOSED NG METHOD.

Server 0 Server q

Initialize Determine the values εint and εfin. Set t = 1. Store {xl(q)
j |l∈ZL, j ∈ Zn}. Initialize {w(q)

ij |i∈Zr, j ∈ Zn}.
Step 1 Select the set of natural numbers U⊆ZL randomly and

send to each server.
Step 2 Calculate D

l(q)
ij = (x

l(q)
j − w

(q)
ij ) (l∈U, i∈Zr, j∈Zn)

and send to Server 0.
Step 3 Calculate Dl

ij =
∑Q

q=1
D

l(q)
ij and ||xl −wi|| = |Dl

ij |.
Based on ||xl −wi||2 and Eq.(9), calculate exp(−ei(x(l))/λ)
and ∆wij .
Select a number q0∈ZQ and send ∆wij to Server q0.

Step 4 If q = q0, update {w(q)
ij |i∈Zr, j∈Zn} as follows.

w
(q)
ij ←w

(q)
ij +∆wij

Step 5 If t = Tmax, the algorithm terminates. Otherwise, Set
t←t+ 1 and go to Step 1.

w
(q0)
ij (t+1) = w

(q0)
ij (t)+∆wij(t) and w

(q)
ij (t+1) = w

(q)
ij (t)

for q ̸=q0. Therefore, we can obtain the following relation.

Dl
ij(t+ 1) =

Q∑
q=1

(x
l(q)
ij − w

(q)
ij (t+ 1))

=

Q∑
q=1,q ̸=q0

(x
l(q)
ij − w

(q)
ij (t))

+(x
l(q)
ij − w

(q)
ij (t+ 1))

=

Q∑
q=1,q ̸=q0

(x
l(q)
ij − w

(q)
ij (t))

+(x
l(q)
ij − (w

(q)
ij (t) + ∆wij(t))

=

Q∑
q=1,q ̸=q0

(x
l(q)
ij − w

(q)
ij (t))

+(x
l(q)
ij − w

(q)
ij (t))−∆wij(t)

=

Q∑
q=1

(x
l(q)
ij − w

(q)
ij (t))−∆wij(t)

= Dl
ij(t)−∆wij(t) (15)

That is, the value Dl
ij at the step t+1 can be updated by

using the update amount ∆wij at the step t for the reference
vector as follows.

Dl
ij←Dl

ij −∆wij (16)

where

∆wij = ε
∑
l∈U

exp(−(ei(xl))/λ)

Q∑
q=1

D
l(q)
ij (17)

As a result, the Step 2 of TABLE II is omitted without
the calculation of Dl

ij at the first step. That is, the update of
Dl

ij can be computed in Server 0 using ∆wij .
TABLE III shows the improved algorithm by using

Eq.(16). In Steps 1 and 2, D
l(q)
ij (l∈ZL, i∈Zr, j∈Zn) is

calculated and stored in Server 0. In Step 3, the update
amount ∆wij is calculated in Server 0. In Step 4, the value
D

l(q)
ij is updated in Server 0.
In the methods shown in TABLEs I and II, Dl(q)

ij = x
(q)
j −

w
(q)
ij in each server is needed to calculate the value Dl

ij . On
the other hand, in the proposed method shown in TABLE III,
the value D

l(q)
ij can be updated in Server 0 without using the

calculation result in other servers. As a result, the proposed
method can reduce communication costs compared to the
conventional methods.

TABLE IV shows the numbers of parameters and commu-
nication costs between Server 0 and other servers, respec-
tively. On TABLE IV, |W | and Tmax mean the number of
reference vectors and the maximum numbers of learning,
respectively. TR(q) and TS(q) for q∈ZQ mean the total
amount of numbers of transmissions and receptions among
Server 0 and q servers, respectively. Further, # Parameters
means the number of parameters.
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TABLE III
ALGORITHM OF THE PROPOSED NG METHOD.

Server 0 Server q

Initialize Determine the values εint and εfin. Set t = 1. Store {xl(q)
j |l∈ZL, j ∈ Zn}. Initialize {w(q)

ij |i∈Zr, j ∈ Zn}.
Step 1 Calculate D

l(q)
ij = (x

l(q)
j − w

(q)
ij ) (l∈ZL, i∈Zr, j∈Zn)

and send to Server 0.
Step 2 Calculate Dl

ij =
∑Q

q=1
D

l(q)
ij

Step 3 Select the set of natural numbers U⊆ZL randomly.
Based on Dl

ij (l∈U ) and Eq.(9), calculate ∆wij .
Select a number q0∈ZQ and send ∆wij to server q0.

Step 4 Update {Dl
ij |l∈ZL, i∈Zr, j∈Zn} as follows. If q = q0, update {w(q)

ij |i∈Zr, j∈Zn} as follows.

Dl
ij←Dl

ij −∆wij w
(q)
ij ←w

(q)
ij +∆wij

Step 5 If t = Tmax, the algorithm terminates. Otherwise, Set
t←t+ 1 and go to Step 3.

TABLE IV
COMPARISON OF THE NUMBER OF PARAMETERS AND THE

COMMUNICATION COSTS FOR CONVENTIONAL AND PROPOSED NG
METHODS.

# Parameters Communication cost
A |W |×|U | 0
B |W |×|U |×Q |W |×|U |(TR(Q) + TS(Q))Tmax

C |W |×|U | |W |×|U |(TR(1) + TS(1))Tmax

D |W |×|U | |W |×|U |TS(1)Tmax

TABLE V
THE DATASET FOR NUMERICAL SIMULATIONS

Iris Wine Sonar BCW Spam
#data : L 150 178 208 683 4601
#input : n 4 13 60 9 57
#class : R 3 3 2 2 2

From the result of TABLE IV, the computational com-
plexity of Method A is considered to be almost the same as
the computational complexity of Method D.

Methods A, B, C and D mean ones defined in Fig.2,
TABLEs I, II and III, respectively. As a result, Method
D is superior in both the number of parameters and the
communication costs to the conventional methods B and C.

In this chapter, we proposed a method to reduce commu-
nication costs for the NG method in TABLE II (as well as
the k-means method). This method is also applicable to the
NG method in TABLE I. Furthermore, it seems to be equally
applicable to the BP method for secure distributed processing
in Ref.[7].

IV. NUMERICAL SIMULATIONS

In this chapter, we perform numerical simulations on
clustering of five datasets, Iris, Wine, Sonar, BCW and
Spam as benchmark problems [10], to compare the proposed
method with the conventional methods. TABLE V shows the
details of data used in the simulations, where #data, #input
and #class mean the numbers of data, inputs and classes,
respectively.

A. Results for NG methods

In this section, we compare the proposed NG method with
the conventional ones.

In the proposed method, each of data and reference vectors
is divided into five elements, i.e., Q=5. The maximum
numbers of learning times are 15000 for Iris, 18000 for

Wine, 21000 for Sonar, 70000 for BCW and 50000 for
Spam, respectively. TABLE VI shows the results of the
evaluation function (denoted as MSE)(×10−2) as Eq.(2) and
global purity (denoted as GP) for each dataset as Eq.(18),
respectively.

GP =
1

L

∑
i∈Zr

max
j∈Zr

(nij)×100(%) (18)

where nij is the number of data belonging to the i-th cluster
and the j-th actual class.

In general, the higher the accuracy and the smaller the
number of parameters, the more desirable. Here, each value
in TABLE VI is the average of 20 trials. Methods A1, A2 and
A3 mean the conventional NG methods as shown in Fig.2
for |U | = 1, |U | = L and |U | = L/3, respectively. That
is, A1, A2 and A3 are the cases of online, batch and mini-
batch learning, respectively. Likewise, methods B1, B2 and
B3 mean the NG methods as shown in TABLE I for |U | = 1,
|U | = L and |U | = L/3, respectively. Methods C1, C2 and
C3 mean the NG methods as shown in TABLE II for |U | = 1,
|U | = L and |U | = L/3, respectively. Methods D1, D2 and
D3 mean the proposed NG methods as shown in TABLE III
for |U | = 1, |U | = L and |U | = L/3, respectively.

The results in TABLEs IV and VI show that the proposed
method reduces the computation costs of the NG method
while maintaining accuracy compared to the conventional
methods.

B. Results for k-means methods

In this section, we perform numerical simulations of
clustering for the k-means methods. The evaluation values
and clustering accuracies shown in Eq.(2) with λ→0 are
compared for the conventional methods. In the proposed
method, each of data and reference vectors is divided into
five elements, i.e., Q=5. The maximum numbers of learning
in numerical simulations are the same as the case of NG.
TABLE VII shows the result for the k-means methods as
Eq.(2) (×10−2) and global purity as Eq.(18), respectively.

Each value in TABLE VII is the average of 20 trials.
Methods A1, A2 and A3 are defined as the conventional
NG methods with λ→0 in Fig.2 for |U | = 1, |U | = L and
|U | = L/3, respectively. Likewise, methods B1, B2 and B3
mean the NG methods with λ→0 in TABLE I for |U | = 1,
|U | = L and |U | = L/3, respectively. Methods C1, C2
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TABLE VI
SIMULATION RESULTS FOR THE CONVENTIONAL AND PROPOSED NG

METHODS

Iris Wine Sonar BCW Spam
A1 GP(%) 4.1 6.2 45.1 3.6 24.9

MSE 0.6 4.8 69.1 14.7 8.7
A2 GP(%) 4.0 6.7 45.2 3.5 27.0

MSE 0.6 4.7 67.5 14.3 8.5
A3 GP(%) 4.0 7.3 45.0 3.5 24.2

MSE 0.6 4.7 67.6 14.3 8.5
B1 GP(%) 4.1 7.2 45.0 3.6 25.4

MSE 0.6 4.8 69.2 14.6 8.7
B2 GP(%) 4.0 6.8 45.2 3.5 28.0

MSE 0.6 4.7 67.9 14.3 8.5
B3 GP(%) 4.0 7.1 45.4 3.5 25.1

MSE 0.6 4.7 68.2 14.3 8.5
C1 GP(%) 4.0 7.0 45.3 3.7 27.3

MSE 0.6 4.8 69.3 14.6 8.7
C2 GP(%) 4.0 6.6 45.4 3.5 26.0

MSE 0.6 4.7 67.9 14.3 8.5
C3 GP(%) 4.0 7.3 44.9 3.5 25.1

MSE 0.6 4.7 67.6 14.3 8.5
D1 GP(%) 4.0 7.1 45.2 3.4 21.6

MSE 0.6 4.8 68.5 14.5 8.6
D2 GP(%) 4.0 6.7 45.1 3.5 23.2

MSE 0.6 4.7 67.5 14.3 8.5
D3 GP(%) 4.0 7.2 45.0 3.5 24.1

MSE 0.6 4.7 67.6 14.3 8.5

TABLE VII
SIMULATION RESULTS FOR THE CONVENTIONAL AND PROPOSED

K-MEANS METHODS

Iris Wine Sonar BCW Spam
A1 GP(%) 4.3 8.5 45.0 4.0 26.9

MSE 2.0 14.2 135.5 28.5 17.1
A2 GP(%) 6.9 8.3 45.4 3.9 26.8

MSE 2.1 14.2 135.0 28.3 16.9
A3 GP(%) 6.9 7.0 44.9 3.9 22.9

MSE 2.1 14.0 134.9 28.3 17.0
B1 GP(%) 6.9 8.4 44.5 3.9 28.9

MSE 2.1 14.2 135.5 28.3 17.1
B2 GP(%) 8.4 6.5 45.8 3.9 26.8

MSE 2.2 14.0 135.0 28.3 16.9
B3 GP(%) 5.6 6.2 44.7 3.9 28.7

MSE 2.0 14.0 134.9 28.3 16.9
C1 GP(%) 4.4 6.7 44.7 3.9 25.7

MSE 2.0 14.0 135.6 28.4 17.0
C2 GP(%) 7.6 6.5 45.5 3.9 27.8

MSE 2.1 14.0 134.9 28.3 16.9
C3 GP(%) 5.5 6.8 44.7 3.9 27.8

MSE 2.0 14.0 134.9 28.3 16.9
D1 GP(%) 4.4 6.6 44.8 3.9 27.9

MSE 2.0 14.0 135.6 28.4 17.1
D2 GP(%) 6.9 6.5 45.2 3.9 31.0

MSE 2.1 14.0 134.9 28.3 18.1
D3 GP(%) 5.5 6.8 44.7 3.9 29.7

MSE 2.0 14.0 134.9 28.3 17.0

and C3 mean the NG methods with λ→0 in TABLE II for
|U | = 1, |U | = L and |U | = L/3, respectively. Methods
D1, D2 and D3 mean the proposed NG methods with λ→0
in TABLE III for |U | = 1, |U | = L and |U | = L/3,
respectively. The results of TABLE VI for the NG method
hold true for the k-means method as well.

The results in TABLE IV for the k-means method and
VII show that the proposed method reduces the communi-
cation costs of k-means method while maintaining accuracy
compared to the conventional methods.

V. CONCLUSION

In this paper, the authors proposed a method to reduce
communication costs for the NG and k-means methods,
which are secure distributed processing methods, and demon-
strated their effectiveness. Conventionally, the authors have
distributed each element of the decomposition data and
parameters to servers and updated each of them to realize
a secure and usable learning method. In this case, increasing
the number of elements (number of servers) to be distributed
increases the security of the learning method, but increases
the computational complexity of the learning method. To
improve this problem, we proposed a learning method that
updates only one element of each decomposed parameter. In
this paper, we improve the learning method by introducing
a method to reduce the communication costs to this method.
With this method, the computational complexity of the NG
and k-means methods with distributed processing can be
almost the same as that of the conventional NG and k-means
methods with a single server. This method can also be applied
to the conventional NG method. Furthermore, it seems to be
equally applicable to the BP method for secret distributed
processing.

In the future, we plan to study similar learning methods
for BP and other learning methods.
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