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Abstract—Extended Tree Augmented Naı̈ve Classifier
(ETAN) is a recently proposed model which relax the inde-
pendence assumption between input features. However, it is
usually challenging to train a good ETAN, because it needs
more training data. To address this problem, in this paper, we
introduce the Generative Adversarial Network (GAN), which
has the ability to model the probability distribution of original
data and generate synthetic data that close to the realistic
data. Moreover, the generated data can also enhance the
original correlation and independence among features and class.
We name our method as GAN-ETAN, and experiments on
6 real world datasets show the GAN-ETAN can improve the
classification performance of original ETAN in some extent.

Index Terms—Tree Augmented Naı̈ve Classifier, Generative
Adversarial Network, Data synthesis, Classification perfor-
mance.

I. INTRODUCTION

PREDICTING a class based on some features is the
classification problem. Bayesian classification uses the

prior probabilities inferred from original data to calculate and
predict the posterior probabilities of class. The Naı̈ve Bayes
classifier [1] sets the conditional independence assumption
of features: for known class, all features are assumed to
be independent of each other. The Naı̈ve Bayes learns
the joint probability distribution of features and class, and
then calculates the category with the maximum posterior
probability. However, this assumption is usually difficult to
satisfy in real-world tasks and there will be a large error in
the actual prediction. In order to address this problem, an im-
provement method, tree-augmented Naı̈ve Bayes (TAN) [2],
relaxs the independence assumption using a more complex
graph. TAN calculates the conditional mutual information
between two features and constructs a complete graph based
on a maximum weighted spanning tree. Conditional mutual
information portrays the relevance of different features in
the case of known class, TAN preserves the dependencies
between strongly correlated features with the maximum
weighted spanning tree algorithm. However, Extended TAN
(ETAN) [3] uses an absolutely different strategy than TAN.
ETAN allows features without the class as parent, multiple
features with only the class as parent, and features completely
disconnected. This contains almost all the possibilities of
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the graph. But ETAN usually challenging to train, because
the limited dataset cannot satisfy the construction of more
complex networks. Thus we must search for improvements
from data.

In this paper we develop a new framework Extended
Tree Augmented Naı̈ve Classifier with GAN (GAN-ETAN)
that combines ETAN with Generative Adversarial Network
(GAN) [4]. GAN is a neural network architecture of deep
learning, which consists of a generator network and a
discriminator network. The generator generates data from
random noise, and the discriminator is used to discriminate
whether the generated data corresponds to the original data
distribution. Generator and discriminator play against each
other. After iterative training, the final generator generates
synthetic data with the distribution of the original data. The
synthetic data enhances the strong correlation and improve
the independence of features and class. Especially, features
without class, multiple features with only class and features
completely disconnected. GAN-ETAN uses the synthetic
data for structure learning through the Bayesian Dirichlet
likelihood equivalent uniform (BDeu) score [5], [6], [7].
When applied to the same dataset with the benchmarking
suite, GAN-ETAN performs significantly better than ETAN
self.

This paper is divided as follows. Section II introduces the
related work. Section III outlines the basic information on
BN and GAN. Section IV presents our method, GAN-ETAN.
Section V empirical experiments and discussion of results.
Finally, Section VI concludes the paper and suggests possible
future work.

II. RELATED WORK

During the past decade, there are many studies on ex-
tended tree augmented Naı̈ve classifier. These studies focus
on finding the optimal Bayesian structure and constructing
the Bayes optimal classifier. ETAN significantly removes
the constraints between features and class and expands the
possibility of Bayesian structure, but it also increases the
difficulty of finding the optimal structure. ETAN didn’t find
a stable and reliable algorithm.

Consequently, Aaron Meehan and Cassio P. de Campos
(2015) [8] claimed that averaged extended tree augmented
Naı̈ve Bayes (AETAN) which combined the Averaging One-
dependent Estimator (AODE) [9] and the Extended Tree
Augmented Naı̈ve Bayes (ETAN) into a single classifier. It
adds the possibility of a super attribute on top of the existing
ETAN algorithm and then infers all the graphs in an average
model. This averaging usually has the effect of increasing
the accuracy of classification while reducing the impact that
any single graph has on the overall result, therefore, AETAN
also needs a larger computational time. Bojan Mihaljevic
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et al. (2018) [10] extended and further proved that there
exists minimal class-focused DAGs (C-DAGs, presented by
Acid et al. 2005 [11]) (MC-DAGs) that are equivalent to the
complete DAGs, and design an adaptive e greedy equivalence
search (GES) to access all equivalence classes containing
MC-DAGs, so as to obtain the best Bayesian classification.
This method reduces the search space of DAGs. Gao Xiao-
guang et al. (2019) [12] proposed a derivative approach of
Bayesian estimation called constrained Bayesian estimation
(CBE) in which the expert judgments are introduced with
Dirichlet priors. CBE constructs a posteriori distribution
based on a Dirichlet prior and then takes the expectation
of the posterior distribution as the parameter estimate. CBE
has a considerable modeling effect on sparse training data.

Furthermore, Shouta Sugahara et al. (2020) [13] used
the sub-bagging method to reduce the posterior standard
error of Bayesian network structure learning and improve
the classification accuracy. This method has a highly ac-
curate classification effect under small data samples. And
because of the asymptotic consistency of sub-bagging, it is
still effective for large data. Faced with the same posterior
accuracy problem, Shouta Sugahara and Maomi Ueno (2021)
[14] further proposed an exact learning augmented Naı̈ve
Bayes classifier (ANB), it restricts class variables to have
no superclass. When a class variable has many parents, the
estimation of the conditional probability parameters of the
class variable becomes unstable because the number of parent
variable configurations becomes large. Thus, ABN solved
this problem by directly changing the relationship between a
class variable and parents. This method also can effectively
reduce the posterior standard error of Bayesian network
structure learning. In the latest research, Shouta Sugahara et
al. (2022) [15] found that when the data itself has an extended
Bayesian network structure, recursive autonomy identifica-
tion (RAI) with Bayes factor can efficiently learn Bayesian
networks. This method decomposes the whole structure into
local structures and tests the conditional independence with
Bayes factor. All of above methods optimize the algorithm
from the perspective of reducing the posterior error.

III. PRELIMINARIES

A. Bayesian networks
Consider a joint distribution P (X1, X2, . . . , Xn) contain-

ing n variables that, using the chain rule, can be written as

P (X1, X2, · · · , Xn)

= P (X1)P (X2 | X1) · · ·P (Xn | X1, X2, · · · , Xn−1)

=
n∏

i=1

P (Xi | X1, X2, · · · , Xi−1)

(1)
For any Xi, if there exists pi (Xi) ⊆ {X1, · · · , Xi−1}

such that, given pi(Xi), Xi is conditionally independent of
the other variables in {X1, X2, . . . , Xi−1}

P (Xi | X1, X2, . . . , Xi−1) = P (Xi | π (Xi)) (2)

So there is

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | π (Xi)) (3)

This gives a decomposition of the joint distribution, where
P (Xi | π (Xi)) is the marginal distribution P (Xi) when
π (Xi) = ∅. The distribution of variable Xi is directly depen-
dent on the value of π (Xi). Pearl (1988) [16] proposed to
construct a directed graph to represent these dependency and
independence relations in the following way. (1) Represent
each variable as a node. (2) For each node Xi, a directed
edge is drawn from each node in π (Xi) to Xi.

Bayesian networks can be understood on both qualitative
and quantitative levels. At the qualitative level, it describes
the dependency and independence relationships between
variables using a directed acyclic graph. At the quantitative
level, it portrays the dependence of variables on their parent
nodes using conditional probability distributions.

B. BN structure learning

In the Bayesian model selection framework, the model
structure G and model parameters θG are treated as random
variables. The possible values of the variable G include all
directed acyclic graphs with X1, X2, · · · , Xn as a node.
Given G, the possible values of the variable θG are all the
values of the parameters corresponding to G. The structure
prior, expressed as PG , is the prior knowledge about the
structure G. The parameter prior P (θG | G), is the prior
knowledge about the parameters G. The observations are ex-
pressed as D = (D1, D2, . . . , Dm). The posterior probability
distribution is P (G, θG | D).

The score function is used to evaluate how well the
structure fits the data sample, the better the fit, the higher
the score. Cooper and Herskovits (1992) [17] first proposed a
Bayesian score function for BN structure learning, called CH
score or K2 score function. Later, Heckerman et al. (1995)
[18] gave the equation a more reliable theoretical basis by
proposing the BD score function. When the structural prior
information obeyed the uniform distribution, the correspond-
ing scoring function is the Bayesian Dirichlet equivalence
uniform (BDeu). The BDeu score is represented as

P (D | G)

=
∏n

i=0

∏qπi

j=1

Γ
(

α
qπi

)
Γ
(

α
qπi

+Nπi=j

) ∏rXi

k=1

Γ
(

α
rXiqπi

+NXi=k,πi=j

)
Γ
(

α
rXiqπi

)
(4)

where α is a hyperparameter.

C. Generative adversarial network

Generative adversarial network (GAN) is a new architec-
ture in the field of deep learning. It includes two neural
networks. One is the generative network, which is used to
generate data; The other is the discriminative network, which
is used to judge whether the generated data is true or false.
They are transmitted through the same intermediate vector
space. The structure of GAN is shown in Figure 1.

GAN calculation structure inputs the random Gaussian
noise and the original data into the generator and the dis-
criminator respectively, and the two networks are trained
alternately. The specific process is as follows: First, input
the real tag data into the discrimination network and train
the discrimination network; Then, the random noise vector
with the same dimension as the feature space is input into
the generation network to generate a new vector.
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Fig. 1. the GAN Calculation Structure

The vector space dimension is the same as the real data,
which is input into the trained discrimination network, and
the network is trained using the discrimination results; Then
the generated data are mixed with real data and input into
the discriminant network to train the discriminant network;
Finally, the generation network and the discrimination net-
work compete and promote each other to form a generation
confrontation network that can fit the real data distribution.
The objective function of GAN is:

min
G

max
D

V (D,G) =

Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]
(5)

Generative adversarial networks are widely used in the
field of computer vision, including image translation [19],
[20], sequential data generation [[21], [22], [23], anomaly
detection [24], etc. However, the method in this paper uses
GAN to generate discrete table data, and combines it with
ETAN. This is a novel idea.

IV. PROPOSED METHOD

In this section, we aim to explain our method from
two dimensions: mathematical logic and structure. In terms
of mathematical logic, we first analyze the mathematical
method of ETAN, and then compare the mathematical
support of our model, GAN-ETAN. In terms of structure
modeling, we will give the model architecture and algorithm
of GAN-ETAN.

A. Extended Tree Augmented Naı̈ve Classifier

A Bayesian network can be defined as a triple (G,X ,P),
where G represents a directed acyclic graph (DAG) consisting
of nodes (variables X ) and edges (EG). And X is a set of
variables Xi that are features in the data, P is a collection
of conditional mass functions p(Xi | Πi), where pii denotes
the parents of Xi in the graph. The primary goal of training
a Bayesian classifier is to derive a DAG of the Bayesian
structure from the data. Structure learning algorithms are
mainly classified as constraint-based learning, scoring func-
tion based learning and hybrid learning algorithms. ETAN
takes scoring function based method, supposes the function
as sD. Therefore, the objective function is

G∗ = argmaxG∈G sD(G) (6)

Since the structure being scored is additive, the complete
DAG can be obtained by summing up the parts

sD(G) =
n∑

i=0

sD (Xi,Πi) (7)

If x0 is taken as the root node representing the classifica-
tion, then the likelihood equivalence of the scoring function
can be expressed as follows.

sD (Xi, {X0, Xj}) + sD (Xj , {X0})
= sD (Xj , {X0, Xi}) + sD (Xi, {X0})

(8)

According to the above likelihood equivalence, it is given
that the weights of the connecting edges of two representing
attribute nodes are equal with different direction. The edge
weight is denoted as w.

w (Xi, Xj) = − (sD (Xi, {X0, Xj})− sD (Xi, {X0})))
= w (Xj , Xi)

(9)
If x1 be the only node without a feature as parent

max
G∈GTAN

sD(G)

= max
Π′

i:∀i>1

(
n∑

i=2

sD
(
Xi,

{
X0, XΠ′

i

})
+ sD (X1, {X0})

)

= sD (X1, {X0})− min
Π′

i:∀i>1

(
−

n∑
i=2

sD
(
Xi,

{
X0, XΠ′

i

}))

=
n∑

i=1

sD (Xi, {X0})− min
Π′

i:∀i>1

n∑
i=2

w
(
Xi, XΠ′

i

)
(10)

Thus, if w (Xi, Xj) ≥ 0, that is, sD (Xi, {X0, Xj}) ≤
sD (Xi, {X0}), remove those edges (xi, xj) and run the
minimum spanning tree algorithm over this reduced graph.
In the setting of etan, we have |Πi| ≤ 1, or |Πi| = 2 and
Πi ⊇ {X0}.

The following relations among subsets of DAGs hold.

sD (G∗ETAN ) ≥ sD (G∗TAN )

sD (G∗ETAN ) ≥ sD (G∗Naı̈ve )
(11)

B. Extended Tree Augmented Naı̈ve Classifier with GAN

Our goal is to train the GAN to generate new data X̂ (X̂
has the same features as X but different sampling amounts)
with a distribution P̂ similar to that of the ETAN labeled
dataset X . The new data X̂ and the original data X were
then combined to reconstruct the training dataset for training
the ETAN classifier. Our approach provides high quality data
from the data side to train superior classification networks.

In this method, JS divergence is used to measure the
distance between the generated data and the original data.
Before introducing the Jensen–Shannon (JS) divergence we
first understand the Kullback–Leibler (KL) divergence. KL
divergence describes the distance between the probability
distribution P̂ obtained by evaluation training and the target
distribution P (X) , which can be expressed as

DKL(P̂∥P ) = −
∑
x∈X

P̂ (x) log
1

P̂ (x)
+
∑
x∈X

P̂ (x) log
1

P (x)

=
∑
x∈X

P̂ (x) log
P̂ (x)

P (x)

(12)
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Fig. 2. the GAN-ETAN Structure Model

Since the relative position of P̂ (x) and P (x) in the
logarithm term in the KL divergence determines that the
KL divergence is actually asymmetric, i.e KL(P̂∥P ) ̸=
KL(P∥P̂ ). Since the KL divergence is not symmetrical, we
can still start from the perspective of the reference frame, so
we can just average the distances calculated in all reference
frames. This is the idea of JS divergence, specifically defined
as

DJS(P̂∥P ) =
1

2
DKL

(
P̂∥ P̂ + P

2

)
+
1

2
DKL

(
P∥ P̂ + P

2

)
(13)

Next we begin the derivation of the optimization of
the GAN with the goal of minimizing the JS divergence
between the distribution of the generated new data P̂ and
the distribution of the real data P . As we introduced in the
preliminaries, the optimization of GAN is first to train the
discriminator D with a fixed generator G, and the goal is to
obtain the optimal discriminator D∗. Then, with the optimal
discriminator D∗, the objective function of the generator is
updated for training, and the goal is to obtain the optimal
generator G∗. (1) When the generator G is fixed, the optimal
discriminator D∗ is

D∗
G(x) =

P (x)

P (x) + P̂ (x)
(14)

(2) In the case of the optimal discriminator D∗, the
objective function of the generator G becomes:

C(G) = V (G,D∗
G)

= Ex∼P (x) [logD
∗
G(x)] + Ex∼P̂ (x) [log (1−D∗

G(x))]

= Ex∼P (x)

[
log

P (x)

P (x) + P̂ (x)

]

+ Ex∼P̂ (x)

[
log

P̂ (x)

P (x) + P̂ (x)

]

= Ex∼P (x)

log P (x)

1
2

(
P (x) + P̂ (x)

)


+ Ex∼P̂ (x)

log P̂ (x)

1
2

(
P (x) + P̂ (x)

)
− log 4

= 2DJS(P̂∥P )− log 4
(15)

After the above optimization of the GAN, we obtain new
data X̂ with distribution P̂ similar to the original data X with

distribution P . In the following we demonstrate that mixing
and sampling the new data X̂ with the original data X as a
new dataset X̃ has a boosting effect on the construction of
the ETAN classifier.

X̃ = γX̂ +X (16)

Where γ is a hyperparameter. We make analysis in exper-
iment.

Using mixed data X̃ to construct ETAN to calculate
the BDEu scores of the Bayesian network would be better
than the scores obtained using only the original data X .
This demonstrats that our method can construct a better
Bayesian network than ETAN, and naturally superior to TAN
classifiers and plain Bayesian classifiers.

sD
(
G∗GAN−ETAN

)
≥ sD (G∗ETAN )

sD
(
G∗GAN−ETAN

)
≥ sD (G∗TAN )

sD
(
G∗GAN−ETAN

)
≥ sD (G∗Naı̈ve )

(17)

Then we construct the optimal Bayesian network as

G∗ = argmaxG∈GGAETAN
sD(G) (18)

Algorithm 1: Training generative adversarial nets
with stochastic gradient descent.

Input: X , random Gaussian noise z
Output: X̂
for number of training iterations do

for k steps do
Sample minibatch of m noise samples{

z(1), . . . , z(m)
}

Sample minibatch of m examples{
x(1), . . . , x(m)

}
from X

Update the discriminator by ascending its
stochastic gradient:
∇θd

1
m

∑m
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)
)))]

end
Sample minibatch of m noise samples{

z(1), . . . , z(m)
}

Update the generator by decending its stochastic
gradient:
∇θg

1
m

∑m
i=1 log

(
1−D

(
G
(
z(i)
)))

end
X̂ = G∗(z) X̃ = γX̂ +X
return X̃
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C. GAN-ETAN’s structure and algorithm

This section mainly introduces the Extended Tree Aug-
mented Naı̈ve Classifier with GAN. Firsly, fig2 gives a
schematic of the structure of GAN-ETAN. It has two main
components, one of which is the use of generative adversarial
networks (GAN) to generate new data that can be fitted to
the original data distribution. The other part is to use the
augmented data for ETAN to find the optimal directed acyclic
graph (DAG) and then perform downstream tasks such as
classification.

GAN-ETAN structure model goes from left to right, in
turn. Firstly, the original real data were used to iteratively
train the generative adversarial network until new data fitting
the distribution of the original data were generated. Then, the
original data and the new data were mixed according to prob-
ability sampling to obtain the enhanced mixture data. Finally,
the augmented mixture data is used for ETAN to obtain the
optimal DAG, and the DAG is used for downstream tasks
such as classification.

Next we give the algorithm of GAN-ETAN. Algorithm
1 is to alternately train the discriminator and generator in
the generative adversarial network. After training, mixing the
new data generated by probability sampling with the original
data to obtain the augmented data.

Algorithm 2 describes the process of ETAN to construct
the optimal directed acyclic graph using the BDeu scoring
function. Take the augmented mixed data obtained above as
input. Algorithm 2 is improved to use Hill-Climb Search
algorithm to compute the directed maximum spanning tree.

Algorithm 2: Searching for optimal DAG with
ETAN.

Input: X̃
Output: optimal DAG: G∗
SD(Gdata) = BDeuSocre(data)
S∗ ← −∞
for xi ∈ X̃\ {x0} do

classAsParent [xi]← SD (xi, {x0}) >
SD (xi, ∅)
in ← Hill-Climb Search(xi)
G ← buildGraph (X̃, xi, in, classAsParent )
if sD(G) > s∗ then
G∗ ← G
s∗ ← sD(G)

end
return G∗

V. EXPERIMENTS

We conduct experiments for different algorithms on both
citation and datasets to verify the effectiveness of the pro-
posed method. Experimental results show that our proposed
method has improved effect.

A. Datasets

In order to have a comprehensive evaluation, we adopt
two samll networks (< 20 nodes, ASIA, SURVEY), three
medium networks (20 − 50 nodes, ALARM, BARLEY and
INSURANCE) and one large network (50 − 100 nodes,

HAILFINDER). These datasets have been commonly used
to evaluate methods on Bayes structure learning tasks. The
statistics of all experimental datasets are shown in Table
I. These datasets are all taken from Bayesian Network
Repository: https://www.bnlearn.com/bnrepository/.

TABLE I
DETAILS OF SIX EXPERIMENTAL NETWORKS.

Small Networks Medium Networks Large Network

ASIA SURVEY ALARM BARLEY INSURANCE HAILFINDER

# Nodes 8 6 37 20 27 56

# Arcs 8 6 46 25 52 66

# Parameters 18 21 509 230 1008 2656

B. Experiments Setup
Parameter Settings: We set the amount of data in the six

original datasets to 200 for all. The number of generated new
data is also 200. When using GAN to synthesize new data,
the batch size of training is 10 and the epoch of training
is 200. The number of network layers in GAN is related
to the number of variables in the dataset. ETAN∗ uses the
hill-climbing algorithm.

Evaluation Metrics: We employ structural hamming dis-
tance (SHD) and AUC value to measure the performance of
GAN-ETAN. The SHD value represents the distance between
the true DAG and the learned DAG, which is the total number
of edges that are distinct in the two graphs. The closer SHD
value to 0 the better. The AUC value, which stands for area
under the ROC curve, has been widely used in previous tasks.
The closer AUC value to 1 the better.

Computing Infrastructures: We implement our proposed
framework upon PyTorch and pyAgrum. All the experiments
are trained on a personal computer server with Windows 11,
an NVIDIA GeForce RTX 3070Ti (16GB memory) GPU, an
12th Gen Intel(R) Core(TM) i9-12900H CPU.

C. Overall Performance
We evaluate the performance of the proposed framework

by comparing it with the traditional method. The compari-
son of SHD and AUC scores is demonstrated in Table II.
According to the evaluation results, we make the following
observations further.

TABLE II
DETAILS OF EXPERIMENT RESULTS.

Small Networks Medium Networks Large Network

ASIA SURVEY ALARM BARLEY INSURANCE HAILFINDER

SHD
ETAN∗ 12 5 72 87 48 67

GAN-ETAN 7 5 59 83 43 71

AUC
ETAN∗ 0.3375 0.5835 0.7515 0.5685 0.6405 0.6755

GAN-ETAN 0.625 0.611 0.7415 0.534 0.643 0.6395

From the above results, we can see that our method GAN-
ETAN improves significantly on small networks, slightly
on medium networks, and is difficult to improve on large
networks. The possible reason is that large and medium
networks are more complex, and there is a greater demand
for data volume. The slight improvement on these complex
networks indicates that our method is still considerable and
effective.
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Fig. 3. the Experimental Results of Hyper-parameter

D. Parameters Analysis

In this section, we investigate the effects of the hyper-
parameter γ in our proposed GAN-ETAN framework. Ex-
perimental results of the AUC scores for all six networks
are reported in Figure 3, which suggest that the reasonable
choice of γ is around 0.4-0.5.

VI. CONCLUSION

We propose a novel framework, GAN-ETAN, which com-
bines Extended Tree Augmented Naı̈ve Classifier (ETAN)
with Generative Adversarial Network (GAN). GAN-ETAN
enhances the original correlation and independence among
features and class. GAN-ETAN can build more accurate
direct acyclic graphs. The experimental results show that
GAN-ETAN can improve the classification performance of
original ETAN in some extent.

REFERENCES

[1] P. Domingos and M. Pazzani, “On the optimality of the simple
bayesian classifier under zero-one loss,” Machine learning, vol. 29,
pp. 103–130, 1997.

[2] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network
classifiers,” Machine learning, vol. 29, pp. 131–163, 1997.

[3] C. P. de Campos, M. Cuccu, G. Corani, and M. Zaffalon, “Extended
tree augmented naive classifier,” in Probabilistic Graphical Models: 7th
European Workshop, PGM 2014, Utrecht, The Netherlands, September
17-19, 2014. Proceedings 7. Springer, 2014, pp. 176–189.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Journal of Japan Society for Fuzzy Theory and Intelligent Informatics,
2014.

[5] W. Buntine, “Theory refinement on bayesian networks,” Elsevier
eBooks, 1991.

[6] G. F. Cooper and E. H. Herskovits, “A bayesian method for the
induction of probabilistic networks from data,” Machine Learning,
1992.

[7] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning bayesian
networks: the combination of knowledge and statistical data,” Machine
Learning, 1994.

[8] A. Meehan and C. P. de Campos, “Averaged extended tree augmented
naive classifier,” Entropy, 2015.

[9] G. I. Webb, J. R. Boughton, and Z. Wang, “Not so naive bayes:
aggregating one-dependence estimators,” Machine Learning, 2005.
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