
 

  
Abstract— Network biology employs two methods: top-down 

or bottom-up approach to explore the topological 
characteristics of biological networks. Genes do not function 
independently of one another. Instead, gene expression is 
controlled by the cooperative efford of individual gene working 
together. The bottom-up approach involves examining the 
network's local properties, this means that the network can be 
broken down into smaller modules known as network sub-
graphs/motifs.. Tumor metastasis represents the leading cause 
of patient mortality and constitutes a matter of significant 
concern for patients with cancer. Based on our current 
understanding, the existing approaches for predicting gene 
regulatory modules related to tumor metastasis do not utilize 
information from biological pathway databases. In the present 
investigation, we used the sub-graphs approach to evaluate the 
impacts of gene-gene regulatory modules on renal clear cell 
carcinoma in the kidney (KIRC). Our results suggested that 
the combined impacts of cancer-causing genes, such as tumor 
suppressor genes, oncogene genes, and DNA repair genes, 
considerably raise the probability of developing tumor 
metastasis. 

In summary, we have developed a novel method for 
constructing gene-gene regulatory modules using a directed 
sub-graph approach. By utilizing this approach, it is possible to 
not only reduce false positives but also identify highly relevant 
regulation modules for tumor metastasis research. 
 

Index Terms—gene-gene interaction, metastasis, network 
sub-graphs, regulatory modules, renal clear cell carcinoma 

I. INTRODUCTION 

PISTASIS refers to the gene-gene interaction, which 
describes the complicated regulatory relationship 
between gene expression through gene product 

(protein)1. In genetics, the term gene regulatory module 
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describes a group of genes, in which the expression or 
function of one gene is regulated by the influence or activity 
of  other genes and vice versa, respectively.  

These regulatory relationships are extracted within a 
complex genetic pathway, which is known as directed sub-
graph. Decomposing the complex biomolecular network into 
subgraphs serves two purposes: examining the fundamental 
characteristics of a gene in numerous diseases and traits, as 
well as devising novel treatments and therapies. Firstly, it 
analyzes the gene within its interaction network, making it 
especially useful in studying polygenic diseases such as 
cancers or chronic diseases where multiple genes contribute 
to the disease. Secondly, the sub-graph approach breaks 
down complex networks into smaller, more manageable 
pieces, which reduces computational resources and 
simplifies analysis. 

According to Globocan (https://gco.iarc.fr/) in 2020, there 
were 431,288 cases were diagnosed with kidney cancer, 
ranked sixth in the top 36 prevalent cancers. Kidney cancer 
is also responsible for 179,368 dealths in a 2021 report 2. 
Kidney renal clear cell carcinoma (KIRC) is a primary 
histological subtype of renal cell carcinoma (RCC), which is 
the most common type of malignant tumor in kidneys 3. 
Although early KIRC detection can significantly enhance 
the prognosis 4, a large portion of KIRC patients are 
diagnosed at a late stage because of their subjectivity and 
unclear symptoms, leading to poor prognosis. In addition, 
conventional treatments such as chemotherapy and radiation 
therapy do not yield good results in treating KIRC, As a 
result, only 10-20% of the patients can survive over 5 years 
5,6. Recently, many genes have been proven to be related to 
KIRC in both suppression and activation aspects namely 
NR1B2, VHL 78. Meanwhile, the other genes that were also 
reported to have a considerable abnormal expression in 
KIRC were AGXT, PTGER3, SLC12A3, and ALOX5 with 
unexplained function9. By focusing exclusively on 
individual genes, the aforementioned study may overlooking 
the cooperative effects of the gene-gene regulatory relations.  

To elaborate the genetic basis of complex traits and 
diseases, we need to take a more comprehensive approach 
that considers the interactions among all relevant genes. 
This may require the use of new computational tools and 
experimental techniques that are capable of analyzing large-
scale datasets and identifying patterns of gene expression 
and gene-gene regulation. 
In this paper, we aimed to investigate the gene-gene 
regulation pattern of patients with KIRC metastasis. To 
achieve this goal, we utilized a directed sub-graph gene 
interaction method. The findings of this study could provide 
insights into the underlying mechanisms of KIRC metastasis 
and identify putative targets for future therapeutic 
interventions. Overall, this study contributes to the growth 
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of knowledge in the field of cancer biology and highlights 
the importance of understanding the complex gene-gene 
interactions involved in the development of tumor 
metastasis. 

II. METHODS 

A. Workflow of the research 
Workflow of the research is depicted in Figure 1. 

 

 
Fig 1. Workflow of the research. 

B. Identify n-node sub-graph modules 
In our prior research, we developed an algorithm that we 

termed PatternFinder10,11. Its purpose is to identify 3-node 
directed sub-graphs in molecular biology networks that were 
taken from the KEGG database 
(https://www.genome.jp/kegg/pathway.html). It is 
noteworthy that the subgraphs approach does not make use 
of the random network models and possesses the capability 
of assigning node identities, which represent the strengths of 
our approach. 

For the purpose of this investigation, we collected all of 
the three-node sub-graphs that are part of the KIRC network 
[Renal cell carcinoma, hsa-05211], which is concerned with 
renal cell carcinoma. 

C. Identify significant gene-gene regulatory modules 
We attempted to annotate each gene that was a part of 

these isolated 3-node network sub-graphs so that we could 
acquire a comprehensive knowledge of each gene that was a 
part of the network. In order to accomplish this goal, we 
made use of the Tumor Metastasis Mechanism-associated 
Gene Database (TMMGdb)12, which is a trustworthy and 
extensive in-house database that offers precise annotations 
for genes involved in cancer metastasis. We were able to 
acquire a more in-depth knowledge of the functions that 
each gene plays in cancer metastasis by extracting specific 
information on each gene from this database. This 
information included the gene's function, biological 
pathways, and expression patterns. 

In our study, we aimed to analyze a wide range of genes 
that may be relevant to the biological processes under 
investigation. To ensure that we captured as many genes as 
possible, we implemented a filter to select differentially 
expressed genes (DEGs).  

Subsequently, we constructed a R script that 
automatically computes the compounded p-value of each 
node and ranks the nodes in ascending order depending on 
their compounded p-value, which allowed us to determine 
which 3-node network sub-graphs are significant. The 
compounded p-value is the product of the adjusted p-values 
of the genes contained within the n-node sub-graph module. 
Finally, we conducted a literature search on the most 
significant 3-node network sub-graph modules to dissect 
their roles in tumor metastasis. 

III. RESULTS 
We obtained a total of 58 3-node sub-graph modules, 

which can be categorized into 4 distinct types of modules 
are single input module (SIM), cascade (CAS), multiple 
input module (MIM), and feed forward loop (FFL). SIM, 
CAS, MIM, FFL and the corresponding number of 
subgraphs for each modular type is shown in Table 1. 

 
TABLE I 

. THE NUMBER OF 3-NODE SUB-GRAPHS EMBEDDED IN THE KIRC NETWORK. 

Sub-graph ID Number of sub-graphs 

SIM 18 
CAS 33 
MIM 6 
FFL 1 

  

Each network pattern was depicted in Figure 2, providing 
a clear representation of the structure and connections of the 
genes.            

 
Fig 2. The three sub-graph patterns obtained from the KIRC network, (a) 
single input module (SIM), (b) cascade (CAS) and (c) multiple input 
module (MIM), (d) feed forward loop (FFL). 
  

After performing the cumulative p-value calculation, we 
selected the most significant module of each pattern (Table 
2).  

TABLE 2 
THE MOST SIGNIFICANT NETWORK OF EACH PATTERN 

Sub-graph Gene 1 Gene 2 Gene 3 Compounded 
P-value 

SIM TGFA EPAS1 PDGFB 4.61×10 -12 

CAS AKT3 PIK3CA GAB1 2.93×10 -13 
MIM CREBBP EPAS1 ARNT 4.55×10 -11 

FFL GAB1  MET GRB2 6.48×10 -8 
     

A. Interaction between TGFA, EPAS1 and PDGFB 
The simultaneous effect of the three genes TGFA, EPAS1 

(also known as HIF-2a), and PDGFB plays important roles 
in multiple biological processes. Transforming Growth 
Factor Alpha (TGFA) is a gene that is involved in the 
growth and division of cells, meanwhile, a TF called EPAS1 
(Endothelial PAS domain protein 1) controls the production 
of genes associated with biological responses to low oxygen 
levels (hypoxia)13. it plays a major part in the development 
of blood vessels as well as how cells react to variations in 
oxygen levels14. In breast cancer, the presence of an intra-
tumoral Platelet-Derived Growth Factor Beta (PDGFB) 
gene that is mainly expressed in endothelial cells is linked to 
the processes of angiogenesis and lymphangiogenesis15. 
Three genes interact in different ways, TGFA and PDGFB, 
stimulate blood vessel development. In hypoxia, EPAS1 
induces PDGFB expression, which is necessary for blood 
vessel growth. In certain cases, EPAS1/HIF-2a positively 
regulates TGFA expression 16. 

Cancer formation and progression are also linked to the 
interplay of TGFA, EPAS1, and PDGFB. These three genes 
have been demonstrated to be over-expressed in several 
forms of cancer, including brain, breast and lung cancer, and 
their interaction has been connected to numerous aspects of 
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cancer biology 17,18,19. TGFA and PDGFB, for example, may 
boost cancer cell growth and survival 20, while EPAS1 can 
encourage the development of new blood vessels that give 
nutrients to tumors. Moreover, EPAS1 has been linked to 
breast cancer resistance to chemotherapy and radiation 
treatment21. There is additional evidence that the interplay 
between TGFA, EPAS1, and PDGFB might affect cancer 
cells' metastatic potential22. 

Overall, the connection between TGFA, EPAS1, and 
PDGFB in cancer demonstrates the significance of these 
genes in cancer biology and implies that targeting their 
interaction may be a feasible cancer therapy strategy. 

 

B. Interaction between AKT3, PIK3CA, and GAB1 
Intrahepatic cholangiocarcinoma involves the PI3K/AKT 

signal transduction pathway (STP), which composes  of 
three genes: AKT3, PIK3CA, and GAB1 23. The PI3K/AKT 
STP is essential in many cellular activities, such as cell 
growth, survival, and metabolism in gynecological cancer 24. 
The catalytic subunit of PI3K is encoded by PIK3CA. PI3K 
phosphorylates PIP2 to create PIP3. The protein kinase 
AKT3 (Protein kinase B gamma), is then activated at the 
plasma membrane by being phosphorylated at Thr308 and 
Ser473 after being recruited there by PIP3. After then, 
activated AKT3 phosphorylates a number of targets farther 
downstream, including GAB125.GAB1 is an adaptor protein 
that functions as a docking protein for a number of signaling 
proteins, including AKT3 26. After being phosphorylated by 
AKT3, GAB1 has the ability to activate the ERK/MAPK, 
which ultimately lead to cell survival and proliferation 27. 

In cancer, the normal connection between AKT3, 
PIK3CA, and GAB1 is often disrupted and lead to an 
increase in cell proliferation, survival, and invasion. The 
PIK3CA gene is regularly discovered mutated or amplified 
in a few cancers, including ovarian, colon and breast cancers 
28. Upon activation of GAB1, downstream STPs; such the 
ERK/MAPK and PI3K/AKT pathways may be activated, 
which can subsequently enhance the survival and 
proliferation of cancer cells 29. Also, it has been shown that 
GAB1 is responsible for cancer cell metastasis and invasion 
because it activates signaling pathways that are responsible 
for cell motility and invasion 30. In addition, resistance to 
many cancer treatments is associates with abnormal 
regulation of the AKT3/GAB1 pathway 31. Increased 
expression of AKT3 and GAB1, for instance, are related to 
drug resistance; such as use of trastuzumab in HER2-
positive breast cancer 32, 33. 

  

C. Interaction between CREBBP, EPAS1, and ARNT 
It is well established that the genes CREBBP, EPAS1, and 

ARNT communicate with one another as part of a 
sophisticated  
HIF-1 signaling pathway 34,35. CREBBP, or CREB-binding 
protein, is a transcriptional coactivator that plays an 
important part in gene expression modifiaction. A TF that 
governs the response to hypoxia, EPAS. ARNT is a TF that 
regulates gene expression by forming heterodimers with 
EPAS1 and other proteins36. According to a number of 
studies, CREBBP is capable of interacting with both EPAS1 
and ARNT in order to control the transcriptional activity of 
those two genes. For instance, CREBBP has the potential to 
acetylate EPAS1, which boosts both its stability and its 

transcriptional activity 35. This, in turn, leads to activation of 
downstream target genes that are associated with cell 
proliferation, angiogenesis, and metastasis. 

In addition, EPAS1 and ARNT are able to form 
heterodimers, which allows them to control gene expression 
in response to hypoxia. Up-regulated genes involved in 
erythropoiesis, angiogenesis, and glucose metabolism occurs 
as a result of the EPAS1-ARNT complex binding to hypoxia 
response elements in the target genes’ promoter regions 37. 
Moreover, CREBBP is able to interact with this complex to 
both control the transcriptional activity of the complex as a 
whole and boost the expression of genes that lie 
downstream. 

It has been suggested that the advancement of cancer may 
be influenced by the way CREBBP, EPAS1, and ARNT 
communicate with one another 38, 39. Abnormal expression 
of CREBBP, EPAS1, and ARNT in pan-cancer type 
specifically promoted metastasis and invasion 39. 

Basic helix-loop-helix (bHLH)-PAS transcription factors 
are a family of transcription factors (TFs) play an essential 
role in the regulation of cellular responses to hypoxia, 
metabolic processes, and cell differentiation. EPAS1 and 
ARNT are both members of this family of TFs. Uncontrolled 
activity along these pathways are associated with an 
increased risk of colorectal tumor formation 40. and both 
colorectal and lung cancer 41.  Even in the absence of 
hypoxic conditions, mutations in EPAS1 or ARNT may lead 
to the constitutive activation of hypoxia STPs in some forms 
of cancer 42. It has been shown that CREBBP interacts with 
EPAS1 and ARNT and increases the transcriptional activity 
of both of these proteins 43. This interaction results in the 
activation of target genes that promote angiogenesis, cell 
proliferation and resistance to chemotherapy 44. 

 

D. Interaction between GAB1, MET, and GRB2 
GAB1, MET, and GRB2 are genes participate in the 

transmission of signals within cellular pathways. In order to 
transduce signals further down the signaling pathway, GAB1 
interacts with a variety RTKs, including MET 45. Moreover, 
GRB2 is an adapter protein that binds to active RTKs and 
assists in the recruitment of proteins involved in 
downstream signaling 46. The interaction between GAB1, 
MET, and GRB2 is complex and dynamic. HGF (hepatocyte 
growth factor) is the ligand that activates MET, and MET 
recruits and phosphorylates GAB1 when it is activated 47. 
Then, the phosphorylated form of GAB1 acts as a docking 
site for GRB2 48, which subsequently recruits molecules 
involved in downstream STPs; such as the Ras-MAPK 
pathway and the PI3K-Akt pathway49. This causes biological 
responses such as growth, survival, and migration of the 
cells that are affected. In addition, GAB1 is capable of 
having a direct connection with GRB2, separate and apart 
from the interaction it has with MET. Because of this 
connection, downstream signaling pathways, in particular 
the Ras-MAPK pathway, may be further improved.  

It is well established that the relationship between GAB1, 
MET, and GRB2 plays a significant part in the initiation, 
development, and cancer formation. In many forms of 
cancer, the MET receptor and its downstream signaling 
pathways are overactivated; such as, head and neck cancer 
50, which causes uncontrolled cell proliferation, survival, and 
migration. The adaptor proteins GAB1 and GRB2 are critical 
components that mediate the signaling pathways that are a 
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consequence of the activation of MET 51,52. A high level of 
GAB1 expression may be seen in certain cancer types; 
including breast, gastric, lung, ovarian and pancreatic 
cancers 53. It has been shown that overexpression of GAB1 
boosts MET signaling, which in turn promotes the 
proliferation, invasion, and metastasis. Moreover, GRB2 is 
over-expressed in cancer, and its interaction with GAB1 and 
other RTKs has the potential to promote the proliferation and 
survival of cancer cells 54. In addition to this, some cancer 
cells may acquire resistance to MET inhibitors by activating 
alternate STPs downstream of GAB1 and GRB2 55. Hence, 
targeting the GAB1-MET-GRB2 pathway as a potential 
cancer treatment is becoming an increasingly appealing 
option. Several inhibitors of the cancer-causing genes MET, 
GAB1, and GRB2 are now being researched and tested in 
clinical settings as putative treatments for a wide range of 
cancers 56–58. Nevertheless, more studies are required in 
order to investigate the intricate connections and STPs that 
are associated with carcinogenesis and come up successful 
targeted therapeutics. 

IV. CONCLUSIONS 
In this article, we conducted a study that used a sub-graph 

approach to investigate the patterns of gene regulation that 
are present in patients who have KIRC metastases. Cancers 
like KIRC, which are caused by the combination of several 
genes, are notoriously difficult to research because of the 
complexity of their underlying mechanism. The sub-graph 
approach, which is an effective approach for simplifying the 
analysis. It does this by partitioning complex networks into 
smaller, more manageable components. 

We have identified four modules that had a substantial 
influence on cancer using the sub-graph technique. These 
modules are TGFA-EPAS1-PDGFB, AKT3-PIK3CA-GAB1, 
CREBBP-EPAS1-ARNT and GAB1-MET-GRB2. Our results 
show that these modules play an important role in the 
formation and progression of KIRC and that they may serve 
as prospective targets for the development of innovative 
therapeutics. This work shows the relevance of addressing 
gene-gene interactions rather than individual gene in 
metastasis.  

On the basis of our results, we will extend the analysis 
from 3-node sub-graphs to 4-node and 5-node sub-graph 
modules, and validate the findings by literature search. This 
would expand upon our current findings. In conclusion, the 
findings of this research add to the ever-expanding body of 
information on tumor metastasis and provide insightful new 
perspectives on the underlying molecular processes of 
KIRC. 
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