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Abstract—The class of maximal non-diagonal CNF-base hy-
pergraphs is introduced and investigated. It resides below
the hierarchy of diagonal base hypergraphs, and is extreme
in the respect that its members are only one edge away
from diagonality. Here we prove a general existence criterion
for maximal non-diagonality, provide connections to minimal
diagonality, and discuss the relationship to maximal satisfiable
CNF formulas.
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I. INTRODUCTION

THE genuine and one of the most important NP-complete
problems is the propositional satisfiability problem

(SAT) for conjunctive normal form (CNF) formulas [6].
More precisely, SAT is the natural NP-complete problem
and thus lies at the heart of computational complexity theory.
Moreover, numerous computational problems can be encoded
as equivalent instances of CNF-SAT via reduction [7]. From a
theoretical point of view on the one hand subclasses are to be
detected for which SAT can be decided efficiently. There are
known several of them such as quadratic formulas, (extended
and q-)Horn formulas, matching formulas, nested, co-nested
formulas, and exact linear formulas etc. [2], [4], [5], [8],
[9], [10], [11], [17], [18]. On the other hand it might be
purposeful to reveal the structural aspects of CNF-SAT from
diverse perspectives in order to attack the complexity issues
among others. In [15] a hierarchy of diagonal (CNF-)base
hypergraphs has been considered, such that Ĥi is the class
of all instances with exactly i members in the orbit space
of the diagonal fibre-transversals with respect to the action
of the complementation group on clauses. In the present
paper the class of maximal non-diagonal base hypergraphs
is introduced and studied to some extent. Such instances
are extreme among all the members below the first level
of the mentioned hierarchy: By definition they are only
one hyperedge away from diagonality. The connection to
minimal diagonal base hypergraphs is considered which are
diagonal but none of its subhypergraphs has this property.
Further, it is shown that not every maximal non-diagonal base
hypergraph is derived from a minimal diagonal one, as might
be expected. Also a general equivalent criterion is proven for
maximal non-diagonality based on the concept of a minimal
transversal meeting all minimal diagonal subhypergraphs
of a given diagonal base hypergraph. The relationship to
the concept of maximal satisfiable formulas as defined in
[13] is exhibited. In that context new parameters for base
hypergraphs are discussed. Considering this paper as a first
proposal towards the research on maximal non-diagonality
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we finally refer in a concluding section to several directions
for future work on this topic.

II. NOTATION AND PRELIMINARIES

A Boolean or propositional variable, for short variable, x
taking values from {0, 1} can appear as a positive literal
which is x or as a negative literal which is the negated
variable x also called the complemented variable. Setting
a literal to 1 means to set the corresponding variable ac-
cordingly. A clause c is a finite non-empty disjunction of
literals over mutually distinct variables and it is represented
as a set c = {l1, . . . , lk}, or simply, as a literal sequence:
c = l1 · · · lk. A conjunctive normal form formula, for short
formula, C is a finite conjunction of different clauses and
is considered as a set of these clauses C = {c1, . . . , cm}.
Let CNF be the collection of all formulas. For a formula
C (clause c), by V (C) (V (c)) denote the set of variables
occurring in C (c). Given C ∈ CNF, SAT means to decide
whether there is a truth assignment t : V (C) → {0, 1} such
that there is no c ∈ C all literals of which are set to 0. Such
a t is a model of C; let M(C) be the space of all models of
C. Let SAT ⊆ CNF denote the collection of all clause sets
for which there is a model, and UNSAT := CNF \ SAT.
Given a set V of propositional variables, an assignment t
can be regarded as the clause {xt(x) : x ∈ V } of length |V |,
where x0 := x̄, x1 := x. Similarly, for b ⊆ V , we identify
the restriction t|b =: t(b) with the clause {xt(x) : x ∈ b}.
The collection of all clauses of length |V | is denoted as
WV which therefore also can be regarded as the set of all
mappings V → {0, 1}. For a clause c we denote by cγ the
clause in which all its literals are complemented. In case
of an assignment t ∈ WV , we have the correspondence of
tγ to the assignment 1 − t : V → {0, 1} complementing
all truth values. Similarly, let Cγ = {cγ : c ∈ C} denote
the complemented clause set version of C. As introduced
in [12] a clause set C determines its base hypergraph
H(C) = (V (C), B(C)) where B(C) = {V (c) : c ∈ C}.
Let Cb = {c ∈ C : V (c) = b} denote the fibre of C over b,
thus C =

⋃
b∈B(C) Cb. Also a given hypergraph H = (V,B)

yields a CNF-base hypergraph when regarding its vertices
as Boolean variables such that for each x ∈ V there is
a (hyper)edge b ∈ B containing x. Thus every t ∈ WV

yields a clause set over B, namely t(B) := {t(b) : b ∈ B}.
Let H be the collection of all (CNF-)base hypergraphs,
and let Hc be the subclass of all connected instances. A
base hypergraph is linear if distinct hyperedges pairwise
intersect in at most one vertex; if 1 is the size of all these
intersections it even is exact linear. A base hypergraph is
loopless if none of its hyperedges consists of a unique vertex.
A hypergraph is Sperner if no hyperedge is a proper subset
of another one [3]. A formula without unit clauses is (exact)
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linear if its base hypergraph is (exact) linear [17]. As usual
KH :=

⋃
b∈B Wb is the set of all clauses over H. A H-

based formula is C ⊆ KH such that Cb := C ∩ Wb 6= ∅,
for each b ∈ B. Given a H-based formula C ⊆ KH with
the additional property that C̄b := Wb \ Cb 6= ∅ holds,
for each b ∈ B, then its H-based complement formula is
C̄ :=

⋃
b∈B C̄b = KH \ C with fibres C̄b. In that case

it is H(C̄) = H(C). A fibre-transversal of KH is a H-
based formula F ⊂ KH such that |F ∩ Wb| = 1, for each
b ∈ B. Hence F is a formula containing exactly one clause
of each fibre Wb of KH; let that clause be refered to as F (b).
An important type of fibre-transversals F are the compatible
ones, i.e.,

⋃
b∈B F (b) ∈ WV , collected in Fcomp(H) ⊆ SAT.

A fibre-transversal F is diagonal if F ∩ F ′ 6= ∅, for all
F ′ ∈ Fcomp(H). Let Fdiag(H) be the set of all diagonal
fibre-transversals of KH. Observe that exactly the members
of Fdiag(H) provide unsatisfiable fibre-transversals at all.
A base hypergraph H is diagonal if Fdiag(H) 6= ∅, and it
is minimal diagonal if no subhypergraph of H is diagonal.
Let Hdiag be the class of all diagonal base hypergraphs, and
Hmdiag denote the subcollection of all its minimal diagonal
instances. The number of orbits in Fdiag(H) with respect to
the action of the group of variable complementation induced
on the space of all CNF formulas is denoted as δ(H) [14];
for short the term orbit is used in the sequel. Clearly, it
is δ = 0 for all non-diagonal instances, and specifically,
a base hypergraph with δ = 1 is called simple. We use
[n] = {1, . . . , n}, where n is a positive integer. As usual,
‘iff’ means ’if and only if’. Next we collect several useful
properties of minimal unsatisfiable formulas. To that end the
following result proven in [12] is needed, which characterizes
the satisfiability of a formula C in terms of the compatible
fibre-transversals in its based complement formula C̄. A
compatible fibre-transversal of a H-based formula C ⊂ KH
simply is a compatible fibre-transversal KH that is contained
in C.

Theorem 1: [12] For H = (V,B), let C ⊂ KH be a
H-based formula such that C̄ is H-based, too. Then C
is satisfiable if and only if C̄ admits a compatible fibre-
transversal F . Moreover, the union of all clauses in F γ is a
model of C.
Recall that C ∈ UNSAT is minimal unsatisfiable if C \ {c}
is satisfiable, for every c ∈ C [1]. We denote the class of
exactly those instances by I ⊂ UNSAT.

Lemma 1: Let C ∈ I with H(C) =: (V,B) = H(C̄)
then:

(a) For every t ∈ WV it is t(B) ∩ C 6= ∅.
(b) There is a t ∈ WV , s.t. |t(B) ∩ C| = 1.
(c) For every b ∈ B there is a t ∈ WV , s.t. t(B) ∩ C =

{t(b)}.
(d) In general there are t ∈ WV s.t. |t(B) ∩ C| > 1, and

also c ∈ C with |M(C \ {c})| > 1.
(e) Let t ∈ WV . Then |t(B) ∩ C| = 1, and specifically

there is b ∈ B s.t. t(B) ∩ C = {t(b)} iff tγ ∈M(C ′)
where C ′ := C \ {t(b)}.

PROOF. As any t ∈ WV can be identified with a compatible
fibre-transversal, (a) is a direct consequence of Thm. 1. Let
C ′ := C \ {c}, for any fixed c ∈ C. According to the
previous result there is a compatible fibre-transversal F ′γ

of C̄ ′ such that
⋃

b∈B F ′(b) ∈ M(C ′) and F ′γ(V (c)) =
c ∈ C̄ ′ because C ∈ UNSAT. Since F ′γ cannot con-

tain another clause of C it follows (b). Let b ∈ B and
c ∈ Cb be arbitrary, as above it follows t′γ(b) = c, for
any t′ ∈ M(C ′), with C ′ := C \ {c}, which is the
unique clause having this property, so (c). Next consider
C = {xy1, xy2, x̄y3, x̄y4, ȳ1ȳ2, ȳ3ȳ4} whose membership to
I can be verified easily. Over B := B(C) define t0(B) :=
{xy1, xy2, xȳ3, xȳ4, y1y2, ȳ3ȳ4} then |t0(B) ∩C| = 3. Now
let c = ȳ3ȳ4 and t1(B) := {xy1, xȳ2, xy3, xy4, y1ȳ2, y3y4},
t2(B) := {xȳ1, xy2, xy3, xy4, ȳ1y2, y3y4} then, regarded as
truth assignments, obviously ti ∈M(C \{c}), i = 1, 2, thus
we obtain (d). Finally (e) directly follows from (b), (c) and
Thm. 1, finishing the argumentation. 2

III. MAXIMAL NON-DIAGONALITY DERIVED FROM
MINIMAL DIAGONALITY

What is the structure of the class of all non-diagonal
base hypergraphs? Those members clearly reside below the
hierachy of diagonal base hypergraphs. In Proposition 4 [16],
a criterion is stated under which conditions a non-diagonal
base hypergraph H having δ(H) = 0 becomes a diagonal
instance H′ with δ(H′) = i, for i > 0 arbitrary, by adding
exactly one hyperedge to H. On this basis and to gain more
insight into this class the following notion for some of its
most extreme members is introduced:

Definition 1: A non-diagonal CNF-base hypergraph H =
(V,B) is called maximal non-diagonal if there is a diagonal
base hypergraph H′ = (V,B′), with B ⊆ B′, such that for
every b ∈ B′ \ B it is δ(H ∪ {b}) > 0. Let Hmaxnd denote
the class of all maximal non-diagonal base hypergraphs.
The non-trivial existence of a maximal non-diagonal base
hypergraph can be established on the basis of any minimal
diagonal instance.

Lemma 2: Let H = (V,B) ∈ Hmdiag then Hb := H \
{b} ∈ Hmaxnd, for every b ∈ B.2
Thm. 6 in [15] provides the equivalence that a diagonal base
hypergraph H is minimal diagonal iff Fdiag(H) ⊆ I. More-
over, for the subclass of simple, connected base hypergraphs
collected in Hc

1 one has according to Cor. 3 in [15] that
Hc

1 ⊆ Hmdiag. So, one obtains:
Corollary 1: Let H = (V,B) ∈ Hc

1 then H \ {b} ∈
Hmaxnd, for every b ∈ B. 2

Besides H1 there are higher levels according to the hierarchy
of diagnal base hypergraphs as introduced in [15]. On
this basis Hmaxnd formally decomposes into the following
subclasses.

Definition 2: Let i ≥ 1 be an integer then H = (V,B)
with δ(H) = 0 is called a maximal i-non-diagonal base
hypergraph if there is H′ = (V,B′) with B ⊆ B′, δ(H′) = i,
and for every b ∈ B′ \ B it is δ(H ∪ {b}) ∈ [i]. Let
Hi

maxnd denote the class of all maximal i-non-diagonal base
hypergraphs. Specifically, we set Ĥi

maxnd ⊆ Hi
maxnd for all

maximal i-non-diagonal members H = (V,B) such that for
all b ∈ B′ \B it is δ(H ∪ {b}) = i.
Note that H′ in the previous definition belongs to the class
Ĥi. So far it is unknown whether these classes are non-trivial
for an arbitrary integer i > 0. However, as shown in [15]
there are arbitrary large i such that Ĥi 6= ∅. Similarly, the
non-trivial existence of the classes Ĥi

maxnd defined above
needs to be established. According to Prop. 4 [16] a maximal
non-diagonal base hypergraph H = (V,B) ⊂ H′ where
δ(H′) = i must have the property that for each b ∈ B′ \ B
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there are exactly i distinct orbits in F(H) and for each
orbit there is a member F containing c(F ) ∈ Wb with
t(b) = c(F ), for all t ∈ M(F ). Then δ(H ∪ {b}) = i is
ensured, hence H ∈ Ĥi

maxnd.
Let Hi ∈ Hmdiag, i ∈ [2], with H1 ∩ H2 = ∅ then

obviously H1 ∪ H2 6∈ Hmdiag. On this basis one is able
to derive a maximal non-diagonal base hypergraph which is
no subhypergraph of a minimal diagonal instance.

Proposition 1: For any fixed integer r > 1, let Hi =
(Vi, Bi) ∈ Hmdiag, i ∈ [r], be mutually disjoint, i.e.,
Vi ∩ Vj = ∅, i 6= j, and H′ = (V,B′) :=

⋃
i∈[r]Hi. Setting

B :=
⋃

i∈[r] Bi \ {bi}, for any selection bi ∈ Bi, i ∈ [r], it
is H := (V,B) ∈ Hmaxnd. 2

Observe that the instances above are disconnected by con-
struction. The next result also provides members belonging
to the connected class.

Theorem 2: For any fixed integer r > 1, and mutually dis-
joint Hi = (Vi, Bi) ∈ Hmdiag, i ∈ [r], let H0 = (V0, B0) :=⋃

i∈[r]Hi, choose b0 ⊂ V0 such that ∀i ∈ [r] : |b0 ∩ Vi| = 1
and let y 6∈ V0. Then H′ = (V,B′) := H0 ∪ {b} ∈ Hc

is diagonal, where b := b0 ∪ {y}. Further for any selection
bi ∈ Bi, for all i ∈ [r], and B := {b} ∪

⋃
i∈[r] Bi \ {bi} it

is H := (V,B) ∈ Hmaxnd. Moreover if bi ∩ b0 = ∅, for all
i ∈ [r], then H ∈ Hc.
PROOF. Since δ(Hi) > 0, i ∈ [r], according to La. 1 (ii)
in [15] it follows that δ(H0) > 0. Clearly b0 6∈ Bi, i ∈ [r].
Moreover each Hi is minimal diagonal, thus also connected.
Adding the new edge b = b0 ∪ {y} enlarged by the new
variable y to the union H0 of Hi, i ∈ [r], provides the
connected base hypergraph H′ = H0 ∪ {b0 ∪ {y}}. Clearly
H0 ⊂ H′ and because of the monotony of the mapping δ, as
stated in Prop. 6 (1) in [16], one has δ(H′) > 0. Since |Bi| >
1, the selection of the bi specifically can be performed such
that bi∩b0 = ∅, for all i ∈ [r], maintaining the connectedness
of H. Since the new variable y ensures that any clause over
b can be satisfied independently and because of the fact that
the instances Hi, i ∈ [r], all are minimal diagonal, the rest
of the theorem follows directly from Prop. 1. 2

Observe that the new variable y added to b0 above, in
general, cannot be omitted. Consider e.g. Hi := (Vi, Bi)
with Vi := {ui, vi}, Bi := {ui, vi, uivi}, i ∈ [2], b0 := v1u2,
and the selection b1 := u1 ∈ B1, b2 := v2 ∈ B2 where the
hyperedges for simplicity are denoted as sequences of there
(variable-)vertices. Clearly, Hi, i ∈ [2], both are simple and
minimal diagonal base hypergraphs. Then H := (V, B̃) 6∈
Hmaxnd, it even remains a diagonal base hypergraph in case
of B̃ := {b0} ∪

⋃
i∈[r] Bi \ {bi} instead of B := {b} ∪⋃

i∈[r] Bi \ {bi} where b := b0 ∪ {y} as required in Thm. 2.
Indeed, B̃ specifically contains the edges v1u2, u2, and v1

yielding a simple, hence diagonal subhypergraph.
Theorem 3: There are Sperner, and even linear, maximal

non-diagonal base hypergraphs. There also exist exact linear
and maximal non-diagonal base hypergraphs.
PROOF. Consider the formula C ∈ I used in the proof
of Lemma 1. H(C) obviously is loopless, linear, hence
Sperner. Moreover it is connected and simple as shown in
the proof of Thm. 8 [15], hence it is minimal diagonal.
Therefore by Lemma 2, H(C) \ {b} ∈ Hmaxnd is a linear
base hypergraph, for every b ∈ B(C), implying the first
claim. Regarding the second statement, let V = {u, x, y} and
B = {x, xy, yu, ux}. We claim that H = (V,B) ∈ Hc

1 where

the connectedness is obvious. Observe that H\ {x} is exact
linear, hence it is non-diagonal [17]. Thus a minimal fibre-
transversal of H can occur only via the literal over x and
indeed obviously, e.g. {x, x̄y, ȳu, ūx̄} ∈ Fdiag(H) which
easily can be verified to belong to I. Now, any unsatisfiable
formula in a distinct orbit can occur only if a bifurcation [15]
is performed at the clause only containing the literal over
x. But since the x-clause is forced to have a unique value
in a model there can exist only one orbit of unsatisfiable
fibre-transversals. Thus H ∈ Hc

1 implying that H ∈ Hmdiag.
Therefore by Lemma 2 it is H \ {x} ∈ Hmaxnd. 2

IV. THE GENERAL CASE

In this section maximal non-diagonal base hypergraphs
are constructed which do not necessarily rely on minimal
diagonal ones. For generalizing the previous discussion the
following concept is crucial.

Definition 3: Let H = (V,B) ∈ Hdiag. Any subhyper-
graph H̃ ⊆ H with H̃ ∈ Hmdiag is called a diagonal germ.
Let G(H) be the collection of all diagonal germs of H. Any
G ⊂ B is called a transversal of diagonal germs (TDG) of
H if G ∩B(H̃) 6= ∅ for every H̃ ∈ G(H). A TDG G of H
is minimal if it does not contain a proper TDG of H.
As a concrete example for the previous terminology, consider
the non-minimal diagonal base hypergraph H = (V,B) ∈
Hdiag with V = {u, v, x, y}, B = {x, y, xy, xu, uv, u, v}.
Then one has G(H) = {Hl = (Vl, Bl) : l ∈ [6]}, where

B1 := {x, y, xy}, B2 := {u, v, uv},
B3 := {x, u, xu}, B4 := {x, xu, uv, v},
B5 := {y, xy, xu, u}, B6 := {y, xy, xu, uv, v}

which all belong to Hmdiag as can be verified easily. The
collection of all minimal TDG of H is provided by {Gi :
i ∈ [20]}, where

G1 = {x, y, u}, G2 = {x, y, v},
G3 = {u, v, x}, G4 = {u, v, y},
G5 = {x, v, xy}, G6 = {u, x, xu},
G7 = {x, y, uv}, G8 = {x, u, xy},
G9 = {u, v, xy}, G10 = {u, x, uv},
G11 = {u, y, uv}, G12 = {u, y, xu},
G13 = {v, x, xu}, G14 = {v, y, xu},
G15 = {x, uv, xu}, G16 = {u, uv, xy},
G17 = {x, xy, uv}, G18 = {y, uv, xu},
G19 = {u, xy, xu}, G20 = {v, xy, xu}

The following facts provide the connections to (minimal)
diagonality.

Proposition 2: Let H ∈ H then:
(a) H ∈ Hdiag iff G(H) 6= ∅,
(b) H ∈ Hmdiag iff G(H) = {H}.

PROOF. Let H ∈ Hdiag then it contains a minimal diagonal
subhypergraph hence G(H) 6= ∅. Reversely, let H̃ ∈ G(H)
then H̃ ⊆ H is diagonal so H is diagonal, so (a) is true. By
definition {H} ⊆ G(H). Let H̃ ∈ G(H) then H̃ ⊆ H and
H̃ ∈ Hmdiag hence H̃ = H ∈ Hmdiag, so (b) is true. 2

If H = (V,B) is a diagonal base hypergraph, and G is
one of its minimal TDG, we set H \ G := (V,B \ G) in
accordance with the next fact.
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Lemma 3: Let H = (V,B) ∈ Hdiag. If a minimal TDG
of H is removed from B then the resulting hypergraph has
the same vertex set V .
PROOF. Let H′ = (V ′, B′) be the resulting base hypergraph
and assume there is x ∈ V \ V ′. Then there is a b̃ ∈ G
containing x, and there is H̃ = (Ṽ , B̃) ∈ G(H) containing b̃.
Hence H̃\{b̃} ⊆ H′ is not diagonal and its vertex set does not
contain x. So, extending any fibre-transversal in F(H̃ \ {b̃})
over b̃ by an arbitrary clause yields a fibre-transversal in
F(H̃) whose additional clause can be satisfied independently
of the other clauses via the literal over x. Therefore F(H̃)
does not contain any diagonal fibre-transversal yielding a
contradiction. 2

Towards a characterization of maximal non-diagonality the
next result relying on the previous one turns out to be useful.

Lemma 4: Let H′ = (V,B′) ∈ Hdiag and H = (V,B) ∈
Hmaxnd where B ⊆ B′ then B′ \ B is a minimal TDG of
H′.
PROOF. Assume that G := B′ \ B is no TDG of H′. Then
there is a minimal diagonal H̃ = (Ṽ , B̃) ⊆ H′ such that
B̃ ∩ G = ∅. Thus H̃ ∈ G(H′ \ G) 6= ∅. However since
H′ \G = H relying on La. 3, by Prop. 2 (a) it follows that
H ∈ Hdiag, yielding a contradiction, hence G is a TDG of
H′. Next assume there is a proper sub-TDG G̃ ⊂ G of H′.
Thus there is b ∈ G \ G̃ and we claim that H∪ {b} remains
non-diagonal yielding a contradiction to H ∈ Hmaxnd. To
verify the claim assume by Prop. 2 (a) that Hg = (Vg, Bg) ∈
G(H ∪ {b}). As by definition and La. 3 H = H′ \ G, it
follows H ∪ {b} = H′ \ (G \ {b}) ⊆ H′ \ G̃. Hence it
is Hg ∈ G(H′ \ G̃) providing a contradiction because by
definition G̃ ∩Bg 6= ∅. 2

Theorem 4: Let H′ = (V,B′) ∈ Hdiag. Then H =
(V,B) ⊆ H′ is maximal non-diagonal iff B′\B is a minimal
TDG of H′.
PROOF. The necessity directly is implied by Lemma 4. For
the sufficiency let G := B′ \ B be a minimal TDG of H′

and H := H′ \G. According to La. 3 it is V (H) = V . First
assume that H ∈ Hdiag, and let Hg ∈ G(H). Since H′ \
G ⊆ H′ it follows that Hg ∈ G(H′) yielding a contradiction
because by definition G∩B(Hg) 6= ∅, so H is non-diagonal.
Next, assume that there is any b ∈ G such that H ∪ {b}
remains non-diagonal, i.e., G(H∪{b}) = ∅. Let Hg ∈ G(H′)
be arbitrary. Then it is B(Hg) ∩ (G \ {b}) 6= ∅, otherwise
Hg ⊆ H ∪ {b}, so Hg ∈ G(H ∪ {b}) which is impossible.
Therefore it follows that G \ {b} is a TDG of H′ which
obviously is a sub-TDG of G providing a contradiction to
its minimality and settling that H ∈ Hmaxnd. 2

As a direct consequence one obtains.
Corollary 2: For every diagonal base hypergraph there is

a maximal non-diagonal subhypergraph. More precisely, let
H′ = (V,B′) ∈ Hdiag then for every minimal TDG G of H′

it is H(G) := H′ \G ∈ Hmaxnd. 2

V. A CONNECTION TO MAXIMAL SATISFIABLE
FORMULAS

Recall that for C ′ ∈ UNSAT a subformula C ∈ SAT is
C ′-maximal satisfiable if by definition C∪{c} ∈ UNSAT for
every c ∈ C ′ \C [13]. As a non-trivial example consider the
total clause set KH ∈ UNSAT over any (even non-diagonal)
base hypergraph H = (V,B). However, for every t ∈ WV

with KH\t(B), a KH-maximal formula is provided [13]. As

H(KH \ t(B)) = H there can arise maximal non-diagonal
base hypergraphs from a C ′-maximal satisfiable formula C
only in case H(C ′) 6= H(C). As another example, let I ∈ I.
For any c ∈ I it is I \ {c} an I-maximal satisfiable formula
[13]. So for H ∈ Hmdiag, every F ∈ Fdiag(H) provides
an F -maximal satisfiable formula F \ {c}, for any c ∈ F .
Whether there are deeper connections between both concepts
shall be the topic next. A useful concept here for the instances
in UNSAT is the parameter µ(C) := min{|t(B(C)) ∩ C| :
t ∈ WV (C)} > 0, together with W

µ(C)
V (C) := {t ∈ WV (C) :

|t(B() ∩ C| = µ(C)} [13]. Obviously µ(C) = 0 means
that there is a compatible fibre-transversal in the complement
formula which by Thm. 1 implies C ∈ SAT contradicting
the assumption. A first result here is:

Theorem 5: Let C ′ ∈ UNSAT with |C ′
b| = 1 for all

b ∈ B(C ′). If there is t ∈ W
µ(C′)
V (C′) such that H :=

H(C ′ \ t(B(C ′))) is non-diagonal then H ⊂ H(C ′) already
is maximal non-diagonal.
PROOF. The fibre-condition on C ′ ensures that it is a fibre-
transversal of its base hypergraph, hence H′ := H(C ′) =:
(V ′, B′) ∈ Hdiag. According to the proof of Thm. 7 in [13] it
is C := C ′\t(B′) a C ′-maximal satisfiable formula. Assume
there is x ∈ V ′\V (C) then there also is c ∈ C ′\C containing
a literal over x which can be satisfied independent of C.
Thus C ∪ {c} ∈ SAT providing a contradiction. Hence it
is V (C) = V ′ = V (H). By assumption H =: (V ′, B) is
diagonal. Let b ∈ B′ \B be arbitrary then there is c ∈ C ′

b ∩
Wb which is not in C. But as C is C ′-maximal satisfiable,
C ∪ {c} ∈ UNSAT which according to the condition on C ′

is a fibre-transversal of H ∪ {b}. Thus δ(H ∪ {b}) > 0, for
every b ∈ B′ \B. 2

Restricting µ to diagonal fibre-transversals induces the
following parameters on diagonal base hypergraphs.

Definition 4: Let H = (V,B) be a diagonal base hy-
pergraph. Let λ(H) := min{|t(B) ∩ F | : t ∈ WV , F ∈
Fdiag(H)} be the lower intersection index of H. Similarly
the upper intersection index of H is defined by ν(H) :=
max{|t(B) ∩ F | : t ∈ WV , F ∈ Fdiag(H)}. Moreover let
Wτ(H) := {(t, F ) ∈ WV ×Fdiag(H) : |t(B)∩F | = τ(H)},
for τ ∈ {λ, ν}.
Considering both λ, ν as integer-valued mappings on Hdiag

one has.
Lemma 5: There is no upper bound for the values of ν on

Hc
diag, and the lower bound of λ on Hdiag is 1. Moreover,

restricted to Hmdiag, λ equals the constant 1.
PROOF. Regarding the first claim again consider the sim-
ple hypergraph H0 := (V0, B0) with V0 := {u, v},
B0 := {u, v, uv}. For the diagonal fibre-transversal F0 :=
{u, v, ūv̄} and the truth assignment t0(B0) := {u, v, uv} one
has |t0(B0) ∩ F0| = 2 = d|B0|/2e = |B0| − 1 which also
coincides with ν(H0) as can be verified easily. Now let r > 0
be an integer, and let Hi = (Vi, Bi) ∈ H, i ∈ [r], be arbitrary,
mutually disjoint base hypergraphs such that also Vi∩V0 = ∅,
for all i ∈ [r]. Set V :=

⋃
i∈[r] Vi, B :=

⋃
i∈[r] Bi and let

t ∈ WV , hence t(B) yields a compatible fibre-transversal
over B. Then t̃′(B′) := t0(B0) ∪ t(B) provides a truth
assignment t′ ∈ WV ′ where V ′ := V0 ∪ V , B′ := B0 ∪ B,
and F ′ := F0 ∪ t(B) ∈ Fdiag(H′) where H′ := (V ′, B′).
Moreover it is |t′(B′) ∩ F ′| = |B′| − 1. Finally, introduce a
new variable u and select exactly one variable from ui ∈ Vi,
for all i ∈ [r]. Defining a new edge b̃ := {u, u1, . . . ur} and
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setting B̃ := B′∪{b̃} obviously yields a connected diagonal
base hypergraph H̃ = (Ṽ , B̃). Finally, setting t̃(B̃) :=
t′(B′)∪{b̃} and F̃ := F ′∪{b̃} establishes the first claim. The
lower bound statement for λ directly follows from Thm. 1.
Next observe that λ(H) = min{µ(F ) : F ∈ Fdiag(H)}.
Lemma 1 (e) directly implies that µ(C) = 1 for every
C ∈ I. Since Fdiag(H) ⊆ I, for every minimal diagonal
base hypergraph it follows that the restriction λ|Hmdiag = 1.
2

Proposition 3: For any diagonal base hypergraph H =
(V,B) it is H(F \ t(B)) non-diagonal, for every (t, F ) ∈
Wν(H).
PROOF. Let H0 = (V0, B0) := H(F \ t(B)) and suppose
there is F0 ∈ Fdiag(H0). Then by definition there is b ∈
B0 ⊆ B such that F0(b) = t(b) as t(B) \ {t(b) : b ∈ B \
B0} is a compatible fibre-transversal over B0. Clearly t(b) 6=
F (b). Hence extending F0 to F̃0 over B by setting F̃0(b′) :=
F (b′) for all b′ ∈ B\B0 yields a diagonal fibre-transversal in
Fdiag(H) with |t(B)∩ F̃0| > ν(H) which is a contradiction
providing the claim. 2

Theorem 6: For all H ∈ Hdiag one has:
(a) λ(H) = 1,
(b) ν(H) > λ(H), if H 6∈ Hmdiag.
(c) ν(H) = λ(H) implies H ∈ Hmdiag such there is no

pair b, b′ ∈ B with b ∩ b′ = ∅.
PROOF. Consider an arbitrary diagonal base hypergraph
H = (V,B), and let Hg = (Vg, Bg) ∈ G(H) be fixed
due Prop. 2. If H = Hg we are done because of La. 5.
Otherwise set H0 := H\Hg = (V (B\Bg), B\Bg). Choose
an arbitrary (tg, Fg) ∈ Wλ(Hg), and fix an arbitrary F0 ∈
Fcomp(H0). Defining t ∈ WV via t(B) := tg(Bg) ∪ F γ

0 ,
and F ∈ Fdiag(H) via F := Fg ∪ F0, as Fg ∈ UNSAT,
we claim that |t(B) ∩ F | = 1 proving that λ(H) = 1. To
verify the claim, we first have λ(Hg) = 1 according to La.
5. Thus |tg(Bg) ∩ Fg| = 1, and clearly, F γ

0 ∩ F0 = ∅. Since
B(H)∩B(H0) = ∅ it also follows that tg(Bg)∩F0 = ∅ and
F γ

0 ∩Fg = ∅ finishing the verification of (a). For (b) suppose
that H 6∈ Hmdiag then there are Hg = (Vg, Bg) ∈ G(H)
and H0 := H \ Hg = (V (B \ Bg), B \ Bg). Fix any
F0 ∈ Fcomp(H0), define t ∈ WV via t(B) := tg(Bg) ∪ F0,
and F ∈ Fdiag(H) via F := Fg ∪F0. As |F0| ≥ 1 it follows
|t(B) ∩ F | = |tg(Bg) ∩ Fg| + |F0| ≥ 2 according to La. 5,
hence ν(H) > 1 = λ(H).

Regarding (c) let H ∈ Hmdiag then |B| > 1. Assume
there are b0, b

′
0 ∈ B with b0 ∩ b′0 = ∅ and let F ∈ Fdiag(H)

be arbitrary. Define t ∈ WV via t(b0) = F (b0), t(b′0) =
F (b′0) and for all b ∈ B \ {b0, b

′
0} by setting t(b) such that

V (t(b0)∩ t(b)) = b0∩ b and V (t(b′0)∩ t(b)) = b′0∩ b. Hence
it follows |F ∩ t| = 2. 2

VI. CONCLUSION AND OPEN PROBLEMS

The class of maximal non-diagonal base hypergraphs has
been introduced. Whereas some structural properties could
be revealed, numerous questions remain open so far. So,
observe that the hypergraph H in the proof of the second
statement of Thm. 3 contains a loop which also is the
crucial part of this argumentation. Therefore one should try to
construct a loopless diagonal linear base hypergraph yielding
an exact linear, and maximal non-diagonal instance. Here the
Lemma 18 in [17] might be helpful. Next, there arise several

computational problems along with their complexities: First
of all, given any base hypergraph H. What is the complexity
for deciding whether it is diagonal? This problem is closely
related to the problem: Given H and any of its fibre-
transversals F , decide whether F is diagonal. Observe that
testing whether F is compatible can be performed in linear
time in the size of the formula relying on appropriate data
structures. Suppose it could be efficiently decided whether
a non-compatible F is satisfiable. Then also the decision
whether a linear formula is satisfiable was easy, at it appears
to be a fibre-transversal of its (linear) base hypergraph.
On the other hand, the latter problem is well known to
be NP-complete [17]. Thus the decision whether a fibre-
transversal is diagonal in general at least is NP-complete,
too. We conclude that a test of a base hypergraph for
diagonality should not rely on testing fibre-transversals. And
it arises the question whether there is another approach.
Also the complexity for deciding the minimal diagonality
of an instance H is unknown. Here it might be helpful to
clarify whether the criterion Fdiag(H) ⊂ I for minimal
diagonality of H could be relaxed to Fdiag(H)∩I = ∅. The
latter would be equivalent to Hc

1 = Hmdiag. Next suppose it
could be tested fast whether the fibre-transversal of a linear
base hypergraph is minimal unsatisfiable. Then clearly the
same was true for an arbitrary linear formula, implying that
also SAT for linear formulas was decidable easily. So the
question how minimal diagonality or at least simplicity could
be decided efficiently remains open. Due to Cor. 2 every
diagonal base hypergraph admits a maximal non-diagonal
subhypergraph. Thus, given any diagonal H′ and H ⊂ H′,
the decision whether H is maximal non-diagonal could be
performed by testing whether B(H′) \ B(H) is a minimal
TDG of H′. Hence the complexity for deciding whether a
given set of hyperedges forms a minimal TDG has to be
investigated.

Further it is unclear whether the values of ν restricted to
the subspace of minimal diagonal base hypergraphs admits
an upper bound depending on the size of the corresponding
B. Here we conjecture that this upper bound is given by
d|B|/2e. Note that ν(H0) exactly equals this bound, as pro-
vided in the proof of La. 5. Given H = (V,B) ∈ Hdiag, one
might ask whether there is a deeper structural relationship
between those instances Hi := H \ ti(B), for different
pairs (ti, Fi) ∈ Wν(H), i ∈ [2]. Regarding the relationship
between λ, µ, the assumption C ∈ UNSAT in general does
not mean that H(C) ∈ Hdiag. Moreover, µ does not equal 1
on all of UNSAT: As e.g., the total clause set KH even
of a non-diagonal base hypergraph H = (V,B) clearly
fulfills µ(KH) = |B|. Additionally defining a function
σ : UNSAT → N via σ(C) := max{|t ∩ C| : t ∈ WV (C)}
yields the relationship ν(H) = max{σ(F ) : F ∈ Fdiag(H)}
to the upper intersection index of a diagonal base hypergraph.
Observe that also σ(KH) = |B|, so the question whether
there is an instance, for which both mappings, µ, σ become
equal, must be answered positive. However, according to
Thm. 6 it remains open whether there are minimal diagonal
base hypergraphs such that ν(H) = λ(H) = 1.
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