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Abstract—Building a time series forecasting model
by independent component analysis mechanism
presents in the paper. Different from using the time
series directly with the traditional ARIMA forecast-
ing model, the underlying factors extracted from time
series is the forecasting base in our model. Within
component ambiguity, correlation approximation and
mean difference problems, independent component
analysis mechanism has intrinsic limitations for time
series forecasting. Solutions for those limitations were
purposed in this paper. Under the linear time com-
plexity, the component ambiguity and mean differ-
ence problem was solved by our proposed evaluation
to improve the forecasting reward. The empirical
data show that our model exactly reveals the flexi-
bility and accuracy in time series forecasting domain.

Keywords: Independent component analysis(ICA), Au-

toregressive(AR), ambiguity, correlation.

1 Introduction

Forecasting has been a necessary technique for
economists, scientists and government leaderships nowa-
days. Combing the independent component analysis
(ICA) [1] and autoregressive (AR) [2] concepts, we pro-
pose an automatic time series forecasting model to im-
prove the prediction accuracy.

Gross national product(GNP), consumer price in-
dex(CPI) and people satisfaction of government imple-
mentations ... et al. affect the volatility of financial time
series. Making them as underlying factors, we hope to
retrieve them from financial time series by independent
component analysis mechanism. Independent component
analysis (ICA) is a mature technique [1] in signal pro-
cessing domain for finding underlying factors in mixed
signals. We adapt this concept into forecasting the time
series data [2], and use it to separate the underlying fac-
tors of time series. Assume some factors affect lots time
series simultaneously, so those time series change when
these factors move. We separate those factors from ob-
served time series, forecasting their behaviors, and re-

trieve predicted results.

Simple, inexpensive and effective, for the simplicity na-
ture, autoregressive (AR) model is a famous and popular
model for predicting time series [2] [4]. In our model, we
merge it into the ICA forecasting mechanism and call it
ICA-AR forecasting phase.

Independent component analysis (ICA) is a branch of
factor analysis. Making the factors as independent as
possible [1], ICA owns a different process for component
processing with conventional factor analysis concepts. In-
dependent component analysis technique, in practical, is
ineffectiveness applied on building financial forecasting
model. Back A.D. and Weigend A. S.[5] use thresh-
old and convoluting mixing techniques to modeling the
stock prices. But the convolution time period and thresh-
old value of their research are undecidable. Mălăroiu et
al.[3] adopted ICA, smoothing and autoregressive(AR)
techniques to form a financial forecasting model. They
claimed the long-term trend of forecasted series is similar
with the original series. However, the forecasted series
loss the extreme values of the original ones. Mok et al.[6]
used linear regression or artificial neural network(ANN)
to solve the component ambiguity problem. Those tech-
niques, especially in ANN, cost lots amount of time com-
plexity. Below we describe basic ICA process and its
limitations for building financial forecasting model.

2 Forecasting Model Architecture

Generally speaking, ICA preprocessing and ICA-AR fore-
casting are two major phases in our model. Figure 1
illustrates the framework of our model.

2.1 ICA Preprocessing Phase

Different from the general ICA procedure [1], ICA is just
a preprocessing step in our forecasting model. For retriev-
ing affecting time series factors, we adopt ICA technique.
Before using ICA technique, we assume three topics for
ICA feasibility [1]. First, We state the number of the time
series is the same as the original mixing signals. Then,
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Figure 1: Our model architecture. The upper is the ICA
preprocessing stage, and the lower is ICA-AR forecasting
stage

the mixing process is a linear matrix and full-rank. Third,
we assume the original signals are non-Gaussian and in-
dependent with each others. Let the observed time series
denote x, linearly mixing procedure A, and underlying
factors s. The linearly mixing procedure describes in the
form:

x = As (1)

The ICA goal is to find another linear transformation
process W to retrieve the underlying factors s.

s = Wx (2)

For retrieving the separating process matrix W, general
ICA process includes three major procedures : Principle
component analysis (PCA), whitening and ICA learning
procedure. Beside the last step, the front two steps are
closed-form formulation procedures, so their operations
cost few computation time [1]. For reducing the compu-
tation cost in the third learning procedure, we choose a
fixed-point ICA learning algorithm : FastICA [1][3]. Be-
low three subsections present details of these three major
procedures.

2.1.1 Principle Component Analysis (PCA)

The covariance matrix presents the relationships among
of the multivariate data [1]. PCA is the first step to find
the principle components from the covariance matrix of
the observed time series.

Covx =
∑

(x−mx)(x−mx)T,mx =
1
n

n∑

i=1

xi (3)

The covariance matrix is semi-definite, so its eigenval-
ues exist and are larger than zero [1]. By the eigenvalue
decomposition (EVD) in the linear algebra, we gain the
eigenvalue and eigenvector matrix from the covariance
matrix of the observed time series x.

Covx = EDET (4)

Each row vector under the E is eigenvector and orthogo-
nal with other row vector, so E denotes eigenvector ma-
trix. D is diagonal eigenvalue matrix, and each value on
the diagonal line is an eigenvalue of the covariance matrix
of the observed time series x. We name the procedure as
principle component analysis (PCA) because we can get
the principle components from the covariance matrix of
the observed time series x after the observed time series
x performs the linear transformation of the EDET .

2.1.2 Whitening

PCA procedure reveals the principle components the the
covariance matrix of the observed time series x, however,
magnitudes with each components differ from with each
others. For the independent requirement [1], we reuse the
PCA result and perform another linear transformation
process. Reusing the eigenvector matrix E and eigen-
value matrix D, we perform the whitening process V to
equalize every components magnitude.

V = D−1/2ET (5)

Then making linearly transformation of the time series,
we retrieve the uncorrelated (PCA process) and equal
variance (whitening process) time series components z.

z = V x (6)

2.1.3 ICA Learning Procedure

The ICA objective is making each component as indepen-
dent as with each others possible. We propose a linear
transformation to achieve the goal.

y = ŝ = Wz (7)

To find the independent components, we set the compo-
nent y as the estimated value of the whitened compo-
nents z. We hope to find a linear transformation from
the whitened components z to independent components.
Different from above procedures, translating components
to independent ones require learning process instead of
closed form procedure [1]. The ICA algorithm combines
two goals : unsupervised learning and optimization prob-
lem. For the inexactly target output value, unsupervised
learning algorithm fits the learning mechanism for the
independent requirement(8). For achieving the indepen-
dent output component under the constrains that each
norm of W column vector satisfies one(9). In the view of
two dimension, the length of each W locates on unit cir-
cle boundary. We adopt the FastICA learning algorithm
[1].
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wt+1←E{zg(wt
T z)} − E{g′(wt

T z)}wt (8)

‖w‖ =
√

w2
n1 + w2

n1 + · · ·+ w2
nn = 1 (9)

E{} means expectation value in the statistics. In the ini-
tial condition, we fill the matrix W in orthogonal unit
vectors for the orthogonal requirement [1]. For modify-
ing the separating matrix W, performing a quantitative
value, a contrast function was used here. In the unsuper-
vised learning equation(8), two contrast function g() and
g’() observed. The contrast function g() and it deriva-
tion g’() are dependent on the Gaussian features of each
component. General propose, super-Gaussian and sub-
Gaussian are major three types for identifying the data
Gaussian feature. Each Gaussian feature requires two
contrast function g() and it derivation g’(). Below lists all
contrast functions in those the three Gaussian features.

Table 1. Contrast functions list for Gaussian fea-
tures

g() g’()
General purpose 1

a1
∗ log(cosh(a1 ∗ z)) tanh(a1 ∗ z)

Super Gaussian − exp(− 1
2z2) z ∗ exp(− 1

2z2)
Sub Gaussian 1

4z4 z3

The value a1 is limited between 1 and 2 [1].

2.2 ICA-Autoregressive (ICA-AR) Fore-
casting Procedure

After the ICA procedures, we get the separating matrix
W. Major different from the general ICA approach, we
reuse the separating matrix W and mixing matrix A in
our forecasting model, instead of the separated compo-
nents. And we insert the separating matrix W and mix-
ing matrix A into the forecasting procedure, so we call the
phase : ICA-AR forecasting phase. Separating series to
factors, factors forecasting and retrieving predicted time
series are major three procedures in the ICA-AR fore-
casting phase.

2.2.1 Separating time series to factors

For forecasting the time series, we consider the underlying
factors of the time series. First step in our forecasting
process is to get the factor components from the time
series. We reuse the separating matrix W from the ICA
preprocessing phase [3].

f(t) = Wx(t) (10)

The f(t) denotes underlying factors of the observed time
series x(t).

2.2.2 AR forecasting

This is the forecasting mechanism in our model. Focus
on the underlying factors instead of time series, we hope
to forecast factor time series f(t).

fp(t + 1) = q[f(t), f(t− 1), . . . f(t− k)]x(t) (11)

Using k-order autoregressive (AR) model, we get the pre-
dicted factor components fp(t).

2.2.3 Forecasted time series

The factor components fp(t+1) is forecasted factor com-
ponents series instead of the predicted time series, but
transferring the factor components to time series is our
final goal. Inversing the separating matrix W in the ICA
preprocessing phase, we gain the mixing matrix A in ICA
mixing procedure. Our model performs a linear trans-
formation by mixing the forecasted factor components
fp(t + 1) to the forecasted time series Tp(t + 1).

A = W−1 (12)

Tp(t + 1) = Afp(t + 1) (13)

3 Limitations Solutions And Experiment

In practical, however, ICA approach has some limitations
in forecasting time series. The most two significant draw-
backs are component ambiguity , time series correlation
approximation and mean difference problems. Below we
describe those three major problems and propose our so-
lutions for them.

3.1 Component Ambiguity Problem

Intrinsically ICA process generates independent compo-
nents from the input time series, but it doesn’t promise
the extracted components ordering is the same as the
original ones. The ICA component amplitude means any
sign or a scalar multiplier in one of source si can be re-
moved by dividing the corresponding column ai of matrix
A by some constant ci. Equation(1) presents the basic
ICA mixing model, but it can be presented in another
form.

x =
∑

i

(
1
ci

ai)(sici) (14)
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The ICA component order ambiguity is the order of orig-
inal source s is undecidable. Suppose some permutation
matrix P exists, formula(1) can be written in this form.

x = AP−1Ps (15)

In formula(15), the elements of Ps are original source s
within another order. The matrix AP−1 forms another
mixing matrix. Below the figure illustrates the situation
about the component ambiguity.

Figure 2: The component ambiguity effect.

Figure 2 is the toy data demonstration. Four artificial
time series feed to ICA separation procedure. The ICA
component amplitude and permutation ambiguity both
present in the demonstration. Series in row three on left
side graph, permutation ambiguity makes it appears in
the row one on the right side graph after the ICA pro-
cedure. The magnitude ambiguity reverses those series
values in opposed sign.

Those two ambiguity problems are harmful for ICA fore-
casting mechanism. Below we propose our solution to
solve those two problems for them. ICA component am-
biguity problem(14)(15) affects the sign and order of fore-
casted time series Tp(t + 1). To solve the amplitude
and sign ambiguity, the researchers use two procedures
to overcome the component ambiguity problem : the ab-
solute value of the forecasted time series Tp(t + 1) and
linear matching .

Tp
a(t + 1) = |Tp(t + 1)| (16)

Equation(16) removes the sign ambiguity of the fore-
casted time series Tp(t + 1). According to the ICA com-
ponents order ambiguity problem, the order of forecasted
time series Tp

a(t + 1) is undecidable. To matching the
approximated time series Tp

a(t+1), the mean-squared er-
ror(MSE) measurement among all forecasted time series
Tp

a(t + 1) was used. Assume each series length is L, and
the optimum matched series denotes Tp

o(t+1). The opti-
mum mapping equation proposes in equation(17). With
n components, the computation time of the matching pro-
cedure costs O(n).

Tp
o(t + 1) = min{ 1

L

L∑

k=1

(Tp
a(k)− x(k))2} (17)

3.2 Time Series Correlation Approximation
Problem

The basic assumption of ICA approach for forecasting
model is some underlying factors affect lots time series
simultaneously. How can we choose lots time series af-
fected by the same underlying factors? Our purposed
method is the statistical correlation coefficient ρx,y. The
ρx,y describes each two component’s relationship between
time series x and y. As the correlation coefficient approx-
imates positive one, the forecasted time series are more
close to the original time series.

µk =
1
L

L∑

i=1

ki (18)

Cov(X, Y ) =
1
L

L∑

i=1

(xi − µx)(yi − µy) (19)

σk =

√√√√ 1
L

L∑

i=1

(ki − µk)2 (20)

ρX,Y =
Cov(X, Y )

σXσY
(21)

Equation(18) to (21) list how to retrieve the correlation
coefficient between two time series. Below the empirical
information reveals how the correlation coefficient affects
the forecasting result.

Table 2. Statistical correlation coefficients com-
pared with two application domains

Compared series 2nd 3rd 4th 5th 6th
Temperature 0.993 0.995 0.995 0.997 0.996
Stock 0.876 0.676 0.810 0.877 0.836

In table 2, monthly average temperature and stock time
series are compared. Obviously, the correlation coeffi-
cients in the monthly temperature are closer to positive
one than those coefficients in the stock data. Figure(3)
illustrates the forecasting results.

Figure 3: The two kinds forecasted results compare.

Figure(3) presents the forecasting difference between
those two time series. The dark blue lines, in both sides,
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are the base original time series. On the left side area, the
correlation coefficients among those series approximate
positive one, and those forecasted time series TP (t + 1)
are more closer to the original time series as the number
of time series increases. On the right side, with the lower
correlation values, the forecasted time series diverse from
the original time series when the number of time series
increases. Increasing the number of time series whose cor-
relation coefficients are positive correlation can improve
the forecasting accuracy.

3.3 Mean Difference Problem

The predicting behavior of our model can write in this
form.

TP (t + 1) = A ·AR ·Wx(t) (22)

Due to the AR is a linear model and matrix A is the
inverse of matrix W, equation (22) could be written in
another form.

TP (t + 1) = AR · x(t) (23)

AR(1) model expresses in the form: TP (t + 1) = (1 −
ϕ1)µx + ϕ1x(t). Since ϕ1 is bounded between -1 and 1,
the output value of TP (t + 1) begins x(t) to 2µx − x(t).
The inference reveals that the mean of every time series
affects the forecasted results of our model. Below the
figure illustrates the mean difference problem and solved
result.

Figure 4: The mean difference problem and solved result.

In the figure(4), the dark blue line is the original time
series and the pink one is the forecasted result with the
mean difference effect. The diversity significantly exists
between the forecasted series to original ones. After uni-
fying the mean of every time series, we plot the forecasted
series in yellow lines. Comparing with the pink line and
the yellow one, you can easily observe that the yellow
line is more close to the original time series than the pink
one. The autoregressive mechanism causes the mean dif-
ference effect when the model was used in the forecasting
usage.

3.4 Stock time series

In our first experiment, stock series is our forecasting
target. Using the Nasdaq Industry Index in the United

State and Taiwan Weighted Stock Index (TAIPEX) in
Taiwan, we verify the performance of our model. For the
vacation on those different areas, the common business
days remain 97 days in those stock markets. The learning
period begins from November 1, 2005 to February 21,
2006. Seventy-seven days are the learning period in both
business period. The forecasted result remains 21 days
from January 24, 2006 to March 3, 2006. Figure 5 is
the original stock data. To simplify the long-term title,
TSICA is our model’s abbreviation in later article.

Figure 5: The original stock indices. Left is Nasdaq In-
dices, and the right is TAIPEX from the Noverber 1, 2005
to March 3, 2006

After PCA and whitening procedures (4)(6), the equal
magnitude whitened component z released. Figure 6
shows the whitened components.

Figure 6: The whitened components z after the linear
transformation z = V x.

After the ICA preprocessing phase (7)(8), our model sep-
arates the underlying factors y of these two stock indices.
Figure 7 illustrates separated components y.

Figure 7: The separated components y after the separat-
ing matrix w retrieved.

In the figure 8, the black points are the original stock time
series, the pink ones are time series forecasted by TSICA
model and the yellow ones are contrast series generated
by AR(1) model.

Table 3. Forecasting mean-squared error(MSE)
between autoregressive(AR(1)) and TSICA

5 days 10 days 15 days 20 days
AR(1) 1044.318 691.874 1346.786 9694.008
TSICA 1083.215 869.842 2319.763 13434.037

In the first view of the mean square error(MSE) com-
pare table 3 above, AR(1) model seems to induce fewer
forecasted error value than TSICA model. Observing the
figure 8, however, the forecasted series is significant dif-
ference between the AR(1) and TSICA model. The fore-
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casted time series of AR(1) smoothly extends the previ-
ous time sample, but the series from the TSICA forms a
falling trend of the time series.

AR(1) model purely uses the autocovariance coefficients
and the last time stamp value to forecast the future se-
ries. In different mechanism, TSICA explores the under-
lying factors of the time series. So the hidden information
reveals the future trend of the time series. TSICA fore-
casted series reflects the inside intent.

Figure 8: The original, independent component analysis
forecasted and autoregressive forecasted time series.

3.5 Weather temperature time series

In the second experiment, the Taiwan central weather
bureau released average monthly temperature data feeds
in our model. The learning period of temperature infor-
mation begins January 1998 to December 2004, totally
97 months. Figure 9 is the original monthly average tem-
perature data of two cities.

Figure 9: The original monthly average temperature of
two cities in Taiwan.

Figure 10 illustrates the forecasted temperature result.
We realize the forecasted time series approximates the
original temperature data, and the mean square error
(MSE) between the original series and the forecasted ones
is 2.133 Celsius degree.

Figure 10: The forecasted result and the original monthly
average temperature of two cities in Taiwan.

4 Conclusion

Component ambiguity, time series correlation approxi-
mation and mean difference problem are major intrinsic
limitations for building a financial time series forecasting
model by independent component analysis mechanism.
In this paper, we purpose mean-squared error(MSE) mea-
surement, statistical correlation coefficient measurement

and mean unification to overcome those drawbacks for
building the financial forecasting model.

In the future, the researchers will quantitate the corre-
lation coefficient as a threshold value to determinate the
approximation degree of two time series. Without a spe-
cific threshold value, the approximation degree of each
two time series has been relative to other ones. In the
forecasting phases, AR model is not the only one choice.
Eltoft [7] had purposed both a multi-layer perception
(MLP) network or a finite impulse response (FIR) filter
as one step predictor. Juan M. Górriz et al. [8] use radial
basis function (RBF) artificial neural network (ANN) to
forecast the financial time series. The accuracy among
those forecasting techniques can be compared in the fu-
ture papers.

References

[1] Aapo Hyvärinen et al., INDEPENDENT COMPO-
NENT ANALYSIS, John Wiley & Sons, 2001.

[2] Maw-Wen Lin, Time Series Analysis and Forecast-
ing, Hwa-Tai Books, 1992
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