
Solving financial differential equations using
differentiation matrices

Robert Piché ∗ Juho Kanniainen †

Abstract—This paper illustrates the use of the dif-
ferentiation matrix technique for solving differential
equations in finance. The technique provides a com-
pact and unified formulation for a variety of discreti-
sation and time-stepping algorithms for solving prob-
lems in one and two dimensions. Using differentiation
matrix models, we compare time-stepping algorithms
for option pricing computations and present numer-
ical results that show the advantage of the L-stable
Alexander method over the Crank-Nicolson method.
We also compare the efficiency of the spectral colloca-
tion and finite difference methods, and give numerical
results that show spectral methods to be competitive
for problems with smooth terminal conditions.

Keywords: finite difference method, spectral colloca-

tion, Runge-Kutta method, numerical option pricing,

optimal shutdown problem

1 Introduction

Matrix notation is widely used in applied mathemat-
ics because of its conciseness and flexibility. The ad-
vent of matrix-based scientific computing programming
languages such as Matlab and Fortran 90 allows algo-
rithms to be directly coded using matrix notation, mak-
ing software development faster and less prone to errors.
The resulting code also gains in efficiency because of the
mostly transparent use of highly optimised linear algebra
libraries.

In the theory of spectral (or pseudospectral) methods for
numerical solution of partial differential equations, ma-
trix notation is systematically exploited through the use
of differentiation matrices [6]. A differentiation matrix
is a matrix D(d) such that the values at distinct nodes x
of the dth derivative of a univariate scalar function f are
approximated by

f (d)(x) ≈ D(d)f(x). (1)

Partial derivatives of multivariate functions on rectan-
gular domains are approximated using Kronecker tensor
products of differentiation matrices. Differential equa-
tions and boundary conditions are discretised by replac-

∗Institute of Mathematics, Tampere University of Technology,
Tampere, Finland, robert.piche@tut.fi

†Institute of Industrial Management, Tampere University of
Technology, Tampere, Finland, juho.kanniainen@tut.fi

ing derivative operators with differentiation matrices,
yielding a numerical model that has the same symbolic
form as the original boundary value problem.

The matrix notation is also useful in the further numerical
treatment of the discretised model. In particular, it is
straightforward to derive the model’s jacobian matrix,
which is needed by Newton methods and by implicit time-
integration schemes.

The differentiation matrix formalism can also be used to
with finite difference methods [5]. Differentiation ma-
trix models for finite difference methods and for spectral
methods have the same symbolic form: the details of the
discretisation, of the data structures and of the linear al-
gebra computations are hidden in the matrix notation.
This makes it easier to compare different discretisation
schemes for a given problem using the same high-level
code.

Generally, spectral methods are better than finite dif-
ference methods for problems that have a smooth solu-
tion, because the exponential convergence rate of spectral
methods allows the problem to be solved with a much
smaller number of nodes. Many option pricing problems
have a nonsmooth terminal condition (payoff function),
and so are better solved by finite difference methods.
However, even though spectral methods could be com-
petitive alternatives for problems with smooth terminal
conditions (e.g. interest rate models) and for equilibrium
problems with no terminal conditions (e.g. perpetual op-
tions, optimal shutdown), they seem to be only rarely
used in financial computations.

In this paper we present four case studies of familiar fi-
nancial differential equations and their solution using dif-
ferentiation matrices.

• The Black-Scholes equation is taken as the first
case in section 2 because of its familiarity and the
availability of closed-form reference solutions. The
differentiation matrix model is derived and is used
to compare the stability and performance of the
Crank-Nicolson time stepping scheme to the L-stable
Runge-Kutta scheme of Alexander [1].

• In the pricing of an American option with implicit
time stepping, applying the linear complementarity

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

constraint at each time step is generally a compli-
cated procedure. For ordinary put options, however,
where the early exercise region is a halfspace, the
structure of the LU decomposition of the time step-
ping matrix can be exploited to give a fast direct
solution [4]. In section 3 we show how this technique
is applied to a differentiation matrix model.

• To illustrate the solution of problems in two dimen-
sions, in section 4 we solve Heston’s model [3] for
pricing derivative securities with stochastic volatil-
ity. We compare the efficiency of the spectral collo-
cation and finite difference methods for this problem.

• In section 5 we present the solution of a nonlin-
ear boundary value problem with free bound-
ary, namely the optimal maintenance and shutdown
problem studied in [2]. The differentiation matrix
formulation gives a unified model for comparison of
spectral and finite difference discretisations.

The numerical methods presented in this paper are stan-
dard ones from the numerical finance literature, so we
do not go into details about their theory (convergence,
stability, etc.). Source codes for all the computations are
available at
http://alpha.cc.tut.fi/~piche/finance/2007A/

2 Black-Scholes model

The Black-Scholes equation for the value Y (S, t) of a Eu-
ropean put option on an asset of value S with volatility√

v and interest rate r is

∂Y

∂t
+ 1

2vS2 ∂2Y

∂S2
+ rS

∂Y

∂S
− rY = 0. (2)

The terminal condition is Y (S, T) = max(S−E, 0), where
E is the exercise price. The boundary values are

Y (0, t) = 0, Y (S, t) ≈ S − Ee−r(T−t) for large S.

The change of variables y(x, t) = 1
E Y (EeLx, 2τ/v) trans-

forms (2) into

∂

∂τ
y = −L−2 ∂2

∂x2
y − (k − 1)L−1 ∂

∂x
y + ky (3)

on x ∈ [−1, 1], with k = 2r/v. The terminal condition
is y(x, vT/2) = max(eLx − 1, 0) and the boundary condi-
tions are y(−1, τ) = 0 and y(1, τ) = eL − e−k(Tv/2−τ).

Denoting y(τ) = y(x, τ) for the values at the nodes and
i = 2 : N − 1 for the indices of the inner nodes, and ap-
plying the differential matrix approximation formula (1),
the discretisation of (3) is

ẏi = −L−2D(2)
i,: y − (k − 1)L−1Di,:y + kyi. (4)

Notice how the differential matrix notation allows the dis-
cretisation (4) to be written in essentially the same form
as the differential equation (3). Formulas for differentia-
tion matrices are given in appendix A.

Writing equation (4) together with the boundary condi-
tions y1(τ) = 0 and −yN (τ) + eL − e−k(Tv/2−τ) = 0
gives the linear constant-coefficient differential algebraic
equation

Mẏ = Ay + (eL − e−k(Tv/2−τ))I:,N ,

where

A =

⎡
⎣ −L−2D(2)

i,: − (k − 1)L−1Di,: + kIi,:
I1,:

−IN,:

⎤
⎦ ,

M =

⎡
⎣ Ii,:

0
0

⎤
⎦ .

This DAE can readily be solved by one of the time step-
ping formulas presented in Appendix B, or by a general-
purpose solvers such as Matlab’s ode15s. For example,
the problem can be completely formulated and solved us-
ing finite differences and fully implicit (backward Euler)
time stepping in just a few lines of Matlab code:

E=100; v=(0.3)^2; r=0.1; T=1;

L=log(3); nt=100; N=200;

[x,D,D2]=get_diffmatrix(’fd’,N);

I=speye(N); i=2:N-1; k=2*r/v;

A=[-L^(-2)*D2(i,:)-(k-1)/L*D(i,:)+k*I(i,:)

I(1,:)

-I(N,:)];

M=I(i,:); M(N-1,N-1)=0; M(N,N)=0;

y=max(exp(L*x)-1,0);

h=-T*v/2/nt; tau=T*v/2:h:0;

[l,u]=lu(M-h*A); % LU decomposition

for it=2:length(tau) % timestepping

b=(exp(L)-exp(-k*(T*v/2-tau(it))))*I(:,N);

z=u\(l\(A*y+b));

y=y+h*z;

end

Notice how the matrices of the DAE are directly trans-
lated into Matlab commands. A spectral collocation so-
lution can be obtained simply by replacing ’fd’ in line 2
by ’sc’.

The advantage of the L-stable Alexander method over the
Crank-Nicolson method is seen in Figure 1, which shows
the error in the finite difference solution with different
time integrators. The spurious oscillation at the exercise
price near the expiry time damps out amost entirely in
a single time step in the Alexander solution, whereas in
the Crank-Nicolson solution the oscillation amplitude is
larger and damps out slowly over several time steps. The
results for spectral collocation are similar.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

Figure 1: Errors in numerical solutions of European call
pricing problem (v = (0.3)2, r = 0.1) with finite differ-
ence discretisation and different time stepping formulas
(N = 500, L = ln(2), 10 time steps).

0 0.2 0.4 0.6
10

−6

10
−5

10
−4

10
−3

10
−2

cpu time (s)

error/E fully implicit

Crank−Nicolson

Alexander

Figure 2: Error vs. computing time for a European call
pricing problem. The error is the maximum absolute dif-
ference between the numerical solution and the Black-
Scholes formula at t = 0. The finite difference grid has
N = 801 nodes and the number of time steps varies from
5 to 100. The price range parameter is L = ln(4). Com-
puting times are for an Apple PowerBook with 1.5 GHz
G4 processor running Matlab 7.1.

The tradeoff between accuracy and computing time for
different time integrators applied to this problem is shown
in Figure 2. As h → 0 the error for all the time stepping
methods approaches the limiting error of the discretised
ODE. Alexander’s method is seen to provide better ac-
curacy faster than the other time integrators.

3 American put option

The price of an American put option when S is greater
than the early exercise price is governed by the nondi-
mensionalised Black-Scholes equation (3) with boundary
conditions y(−1, τ) = 1 − e−L, y(1, τ) = 0, and terminal
condition y(x, Tv/2) = max(1− eLx, 0). Substituting the
boundary conditions y1 = 1 − e−L and yN = 0 into the
differentiation matrix discretisation (4) yields the ODE

ẏi = Ayi + b, (5)

where

A = −L−2D(2)
i,i − (k − 1)L−1Di,i + kIi,i,

b =
(
−L−2D(2)

i,1 − (k − 1)L−1Di,1 + kIi,1
)

(1 − e−L).

Denoting by ȳ the solution at the previous time step, the
Crank-Nicolson formula for the solution of (5) at the next
time step is

yi = U−1L−1(ȳi + 1
2hAȳi + hb),

where L, U are the LU factors of Ii,i − 1
2hA. Be-

cause these factors are triangular matrices, the operations
are computed using forward and backward substitution
rather than using matrix inverses.

The payoff constraint y ≥ 1 − eLx is applied by simply
adding a thresholding operation into the Crank-Nicolson
stepping formula:

yi = U−1 max
(
L−1(ȳi + 1

2hAȳi + hb),U(1 − eLxi)
)
.

Because U is upper triangular, the thresholding is applied
in a back-substitution loop. It therefore does not affect
solution components with larger indices. The following
Matlab code computes an American put option price to
5 digit accuracy in less than a second:

E=50; v=(0.4)^2; r=0.1; T=5/12;

L=log(2); N=501; nt=500;

TT=T*v/2; h=-TT/nt; t=TT:h:0;

[x,D,D2]=get_diffmatrix(’fd’,N);

k=r/(v/2); I=speye(N); i=2:N-1;

S=E*exp(L*x); yc=1-S(i)/E;

y=max(1-S(i)/E,0); y1=1-S(1)/E;

A=-1/L^2*D2(i,i)-(k-1)/L*D(i,i)+k*I(i,i);

[l,u]=lu(I(i,i)-0.5*h*A); Uyc=u*yc;

b=(-1/L^2*D2(i,1)-(k-1)/L*D(i,1))*y1;

for it=2:length(t)

y=u\max(l\(y+0.5*h*A*y+h*b),Uyc);

end

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

The code can easily be modified to use spectral colloca-
tion (replace ’fd’ in the fourth line by ’sc’) and other
implicit time stepping schemes (Appendix B). Call op-
tions with continuous dividends can be treated similarly.

4 Option with stochastic volatility

For two dimensional problems, the differentiation matrix
approximation of a partial derivative at nodes on a tensor
product grid is where 1 is a vector of ones.

Heston’s PDE [3] for an option value U(S, v, t) with asset
price S, squared volatility v, volatility of volatility σ, spot
price and volatility process correlation ρ, interest rate r,
long term volatility θ, volatility mean-reversion rate κ,
and market price of volatility risk λv absorbed into κ
and σ, is

∂U

∂t
= rU − 1

2vS2 ∂2U

∂S2
− rS

∂U

∂S
− ρσvS

∂2U

∂S∂v

− 1
2σ2v

∂2U

∂v2
− κ(θ − v)

∂U

∂v
.

The terminal condition for a call option is

U(S, v, T) = max(S − E, 0).

Boundary conditions are

U(0, v, t) = 0, U(S, v, t) ≈ S − Ee−r(T−t) for large S.

Let U(S, v, t) = Y (S, t)+C(S, v, t), where Y satisfies the
Black-Scholes equation (2) for a call option. Subtracting
off Y , Heston’s equation can be written

∂C

∂t
= rC − 1

2vS2 ∂2C

∂S2
− rS

∂C

∂S
− ρσvS

∂2C

∂S∂v

− 1
2σ2v

∂2C

∂v2
− κ(θ − v)

∂C

∂v
+ F,

where

F (S, v, t) = −ρσvS
∂2Y

∂v∂S
− 1

2σ2v
∂2Y

∂v2
− κ(θ − v)

∂Y

∂v
.

The terminal condition is C(x, v, T) = 0 and the bound-
ary conditions are C(0, v, t) = 0 and C(∞, v, t) = 0. F
and Y can be computed using the Black Scholes formula
or numerically as in section 2.

The change of variables

c(x, w, t) =
1
E

C(EeL1x, θeL2w, t)

gives the Heston equation in the form

ċ = rc − 1
2vL−2

1

∂2

∂x2
c − ρσL−1

1 L−1
2

∂2

∂x∂w
c

− 1
2σ2v−1L−2

2

∂2

∂w2
c − (r − 1

2v)L−1
1

∂

∂x
c

+
(
(1
2σ2 − κθ)v−1 + κ

)
L−1

2

∂

∂w
c

+E−1F (EeL1x, θeL2w, t) (6)

on (x, w) ∈ [−1, 1] × [−1, 1]. The terminal condi-
tion is c(x, w, T) = 0 and the boundary conditions are
c(−1, w, t) = 0 and c(1, w, t) = 0. We assume that ∂c/∂w
is zero on the boundaries w = ±1.

Introduce the notation X = x ⊗ 1T
N2

, W = 1N1 ⊗ wT ,
i = 2 : N1 − 1 , j = 2 : N2 − 1, C = c(X,W, t),
V = diag(θeL2w), and D(1) = D, where 1 is a vector
of ones. The differentiation matrix approximation of a
partial derivative at the nodes on a tensor product grid
is

∂d1+d2c

∂xd1∂wd2
(x⊗1T ,1⊗wT) ≈ D(d1)c(x⊗1T ,1⊗wT)D(d2)T .

(7)
Applying this formula to (6) gives the discretisation

Ċi,j = Ii,:
(
rC − 1

2L−2
1 D(2)CV − ρσL−1

1 L−1
2 DCDT

− 1
2σ2L−2

2 CD(2)T V−1 − L−1
1 DC(rI − 1

2V)

+ L−1
2 CDT

(
(1
2σ2 − κθ)V−1 + κI

)
+E−1F (EeL1X, θeL2W, t)

)
I:,j. (8)

This formula is rather long, but so is Heston’s PDE; each
term of (6) has been translated directly into a term with
similar notation. Combining (8) with the boundary con-
ditions

C1,: = CN1,: = 0T , Ii,:CDT I:,1 = Ii,:CDT I:,N2 = 0

gives N1 · N2 equations for the N1 · N2 variables in C.
Applying the Kronecker product identity that converts
matrix products into matrix-vector products, these equa-
tions can be written as the linear constant-coefficient
DAE

Mvec(Ċ) = Avec(C) + b,

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rIj,: ⊗ Ii,: − 1
2L−2

1 Vj,: ⊗ D(2)
i,: −

ρσL−1
1 L−1

2 Dj,: ⊗ Di,:−
1
2σ2L−2

2 V−1
j,: D(2) ⊗ Ii,: −

L−1
1 (rIj,: − 1

2Vj,:) ⊗ Di,:+
L−1

2

(
(1
2σ2 − κθ)V−1

j,: + κIj,:
)
D ⊗ Ii,:

I ⊗ I1,:

I ⊗ IN1,:

D1,: ⊗ Ii,:
DN2,: ⊗ Ii,:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M =
[

Ij,: ⊗ Ii,:
0

]
,

and

b =
[

vec(E−1F (EeL1Xi,j , θeL2Wi,j , t))
0

]
.

This DAE is readily solved using any of the implicit
timestepping formulas given in Appendix B, and the nu-
merical solution with moderately dense grid agrees well
with the solution given by Heston’s formula (Figure 3).

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

50 100 200

−0.1

0

0.1

S

 C(S,θ,0)

Figure 3: Finite difference/Alexander solution of the
stochastic volatility model (dots) and Heston’s formula
(line). Model parameters are E = 100, σ = 0.1, r = 0,
T = 0.5, κ = 2, θ = 0.01, and ρ = 0.5. Numerical pa-
rameters are N1 = 60, N2 = 15, eL1 = 2, eL2 = 4, and
h = −0.05.

The tradeoff between computing time and accuracy as
the discretisation mesh is refined is shown in Figure 4.
For this problem the finite difference method is faster
than the spectral collocation method because the lack
of smoothness in the terminal condition prevents the
spectral method from achieving exponential convergence
rates.

5 Optimal maintenance and shutdown

Sometimes machines generate (or are expected to gener-
ate) poor profit flows. The decision whether and when
to shut down a machine to end an expected negative
profit flow is an optimal stopping problem. In the model
for optimal maintenance and shutdown given in [2], the
marginal cost of maintenance equals the expected present
value of marginal profits, ensuring the optimal decision.
The model leads to the nonlinear ODE

0 = π + aF ′ +
1
2c

(F ′)2 +
σ2

2
F ′′ − rF

on π1 ≤ π ≤ πN , with boundary conditions

F (π1) = 0, F ′(π1) = 0, F (πN)− a

r2
− 1

2cr3
− πN

r
= 0.

Here a is the depreciation rate of the profit flow, F is the
rate of the maintenance, σ is the profit flow volatility, c is
the maintenance cost, and π the value of the profit flow.
There are three boundary conditions for the second order
ODE because the value of π1 (the “critical level”) is also
to be determined.

The change of variables

y(x) = F
(
(x + 1)

πN

2
+ (1 − x)

π1

2

)

10
−1

10
0

10
1

0

0.01

0.02

0.03

finite difference
spectral collocation

cpu time (s)

error

N
2
=7

N
2
=7

N
2
=23 N

2
=13

Figure 4: Efficiency of different discretisations of stochas-
tic volatility model. Here ‘error’ is the maximum abso-
lute difference between the numerical value and Heston’s
formula’s value for C(S, θ, 0), with parameters as in Fig-
ure 3 except for N1 and N2, which vary with N1 = 4N2.
Alexander’s formula is used for time stepping.

transforms the ODE into

0 = (x + 1)
πN

2
+ (1 − x)

π1

2
+

2a

πN − π1
y′

+
2

(πN − π1)2c
(y′)2 +

2σ2

(πN − π1)2
y′′ − ry

on −1 ≤ x ≤ 1.

Denoting yi = y(xi) for i = 1, . . . , N and yN+1 = π1, the
differentiation matrix approximation of the ODE is

0 = (x2:N−1 + 1)
πN

2
+

1
2
(1 − x2:N−1)yN+1

+
2a

πN − yN+1
D2:N−1,1:Ny1:N

+
2

(πN − yN+1)2c
(D2:N−1,1:Ny1:N)2

+
2σ2

(πN − yN+1)2
D(2)

2:N−1,1:Ny1:N − ry2:N−1,

where the square is taken componentwise. This, together
with the boundary conditions

y1 =
2

πN − yN+1
D1,1:Ny1:N = yN− a

r2
− 1

2cr3
−πN

r
= 0,

gives N +1 equations for the N +1 unknowns. This non-
linear equation system with Newton iteration using the
matrix of partial derivatives with respect to the unknowns
y, whose derivation is straightforward. Using π1 = 0 and
y(x) = 1

2 (x+1)yN to define initial values of y for the iter-
ation, the Newton method typically converges to machine
precision in 5 iterations.

Figure 5 shows that the spectral collocation method con-
verges much faster than the finite difference method, as

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

10
�3

10
�2

10
�1

10
0

10
�4

10
�3

10
�2

10
�1

cpu time (s)

error

 N=25

 N=50
 N=8

 N=100

 N=10

 N=200

 N=11

 N=400 N=12

 spectral
 collocation

 finite difference

Figure 5: Error vs. computing time for the optimal main-
tenance and shutdown problem with a = −0.1, σ =
0.2, r = 0.1, c = 200, πN = 10. The error is that of
the computed value of the critical level π1, using as refer-
ence the value π1 = −0.1794460361577 computed using
spectral collocation with N = 100.

expected for such a problem with a smooth solution.
However, the finite difference method’s performance is
acceptable for moderate precision levels, and several or-
ders of magnitude faster than the finite difference method
used in [2].

6 Concluding Remarks

In this paper we presented four case studies to illustrate
the differentiation matrix formalism as a tool for devel-
oping discretised models for financial differential equa-
tions in one and two dimensions. The use of a high level
notation that closely resembles the original differential
equation was exploited to rapidly produce effective solu-
tion code in the matrix-oriented scientific programming
language Matlab. The unified formulation facilitated nu-
merical comparison of different discretisation schemes (fi-
nite difference vs. spectral collocation) and time-stepping
schemes (Alexander vs. Crank-Nicolson).

In addition to the finite difference and Chebyshev spectral
collocation discretisations presented here, other discreti-
sation methods can be implemented using the same dif-
ferentiation matrix models simply by substituting the ap-
propriate differentiation matrix formulas. These include
spectral collocation schemes using other basis functions
(radial, sinc , Fourier, Laguerre), and higher order finite
difference schemes. Finite element methods can also be
incorporated into the differentiation matrix formalism by
generalising the basic approximation formula (1) to

f (d)(x) ≈ E−1D(d)f(x),

where E is the finite element “mass matrix”.

For problems with dimension higher than two the matrix
notation no longer suffices, and one would need the more

general notation of multilinear algebra. For such prob-
lems we would not explicitly form the Kronecker products
in the codes, and would use iterative solvers in place of
gaussian elimination.

References

[1] R. Alexander, Diagonally implicit Runge-Kutta
methods for stiff ODE’s, SIAM J. Numer. Anal.,
14, 1977, 1006–1021.

[2] T. Dangl & F. Wirl, Investment under uncertainty:
calculating the value function when the Bellman
equation cannot be solved analytically, Journal of
Economic Dynamics and Control, 28, 2004, 1437–
1460.

[3] S. L. Heston, A closed-form solution for options with
stochastic volatility with applications to bond and
currency options, The Review of Financial Studies,
6 (2) 1993, 327–343.

[4] S. Ikonen & J. Toivanen, Pricing american options
using LU decomposition, University of Jyväskylä
Dept of Mathematical Information Technology Re-
port, 2005.

[5] L. N. Trefethen, Spectral Methods in Matlab, SIAM,
2000.

[6] J. A. C. Weideman & S. C. Reddy, A Matlab differ-
entiation matrix suite, ACM Transactions on Math-
ematical Software, 26 (4), 2000, 465–519.

A Differentiation matrix formulas

The function domain is assumed to be x ∈ [−1, 1]. Func-
tions with domain ξ ∈ [a, b] can be transformed using the
affine change of variables

ξ =
1 − x

2
a +

1 + x

2
b.

A.1 Finite differences

The central difference formula for approximating the first
derivative is

y′(x) ≈ y(x + δ) − y(x − δ)
2δ

.

The one-sided difference formulas

y′(x) ≈ −3y(x) + 4y(x + δ) − y(x + 2δ)
2δ

,

y′(x) ≈ y(x − 2δ) − 4y(x − δ) + 3y(x)
2δ

have the same order of accuracy as the central difference
formula. Let xi = −1+(i−1)δ for i = 1, 2, . . . N be a grid

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

of equally spaced points in [−1, 1], where δ = 2/(N − 1),
and let y(x) be the N -vector of function values at the
grid nodes. Using the above difference formulas, the first
derivative values can be approximated by

y′(x) ≈ D(1)y(x),

where the N × N differentiation matrix is

D(1) =
1
δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3/2 2 −1/2
−1/2 0 1/2

−1/2 0 1/2
.

−1/2 0 1/2
1/2 −2 3/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The differentiation matrix corresponding to the central
difference formula

y′′(x) ≈ y(x + δ) − 2y(x) + y(x − δ)
δ2

for the second derivative can be derived analogously.

A.2 Spectral collocation

Let φj be the polynomials of degree N − 1 satisfying
φj(xk) = δj,k for k = 1, . . . , N at the Chebyshev nodes

xk = cos((N − k)π/(N − 1)).

The polynomial p(x) =
∑N

j=1 φj(x)y(xj) interpolates the
function y at the nodes, that is, p(x) = y(x). The value
of the interpolating polynomial’s dth derivative at the
kth node is p(d)(xk) =

∑N
j=1 φ

(d)
j (xk)y(xj). This can be

written

p(d)(x) = D(d)y(x),

where [D(d)
k,j] = [φ(d)

j (xk)] is the dth order differentiation
matrix for the spectral collocation method. Formulas and
codes for generating these matrices are given in [6].

B Time integration formulas

The following formulas explain how to compute the in-
crement z in the time stepping formula

y(T + h) ≈ y(T) + hz

for the solution of a differential algebraic equation of the
form

My′(t) = f(t,y(t)).

The jacobian ∂f/∂y(T, y(T)) is denoted J. The solution
is computed by applying the time stepping formula re-
cursively.

Fully implicit (backward Euler): The increment z
is the solution of the equation

r(z) = Mz − f(T + h,y(T) + hz) = 0

It can be found by starting with z(0) = 0 and recursively
solving

(M − hJ)z(k) = f(T + h,y(T) + hz(k−1)) − hJz(k−1)

until ‖r(z(k))‖ is small enough. In the case f(t,y) =
Ay + b(t) with constant A, the equation for z is linear:

(M − hA)z = Ay(T) + b(T + h).

Crank-Nicolson (trapezoid): The increment z is the
solution of the equation

r(z) = Mz − 1
2 f(T, y(T)) − 1

2 f(T + h,y(T) + hz) = 0

It can be found by starting with z(0) = 0 and recursively
solving

(M − 1
2hJ)z(k) = − 1

2hJz(k−1) + 1
2 f(T, y(T))

+ 1
2 f(T + h,y(T) + hz(k−1))

until ‖r(z(k))‖ is small enough. In the case f(t,y) =
Ay + b(t) with constant A, the equation for z is linear:

(M − 1
2hA)z = Ay(T) + 1

2b(T) + 1
2b(T + h).

Alexander [1]: The stage equations are

r̃(z̃) = Mz̃ − γf(T + γh,y(T) + hz̃) = 0
r(z) = Mz − (1 − γ)f(T + γh,y(T) + hz̃)

− γf(T + h,y(T) + hz) = 0

where γ = 1 − (2)−1/2 ≈ 0.2929. The first stage value z̃
can be found by starting with z̃(0) = 0 and recursively
solving

(M−γhJ)z̃(k) = γf(T +γh,y(T)+hz̃(k−1))−γhJz̃(k−1)

until ‖r̃(z̃(k))‖ is small enough. Then z can be found by
starting with z(0) = 0 and recursively solving

(M − γhJ)z(k) = (1 − γ)f(T + γh,y(T) + hz̃)
+ γf(T + h,y(T) + hz(k−1))
− γhJz(k−1)

until ‖r(z(k))‖ is small enough. In the case f(t,y) =
Ay + b(t) with constant A, the equations are linear:

(M − γhA)z̃ = γAy(T) + γb(T + γh)
(M − γhA)z = (1 − γ)b(T + γh) + γb(T + h)

+ A(y(T) + h(1 − γ)z̃).

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

