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Abstract—In this paper I use Monte Carlo simu-
lated option data to investigate the empirical power
of six Risk Neutral Density (RND) estimation tech-
niques. Three alternative approaches are used for
comparison and the choice of the most suitable
method depends on: their performance to correctly
price options, their capacity to fit the true density -
which is estimated from the underlying asset series -
and their ability to forecast the future realization of
the underlying asset. I found that the decision de-
pends on the purpose of the framework: for pricing
purpose, the interpolation techniques would be ade-
quate. However, if the aim is to extract market ex-
pectations, the Edgeworth expansion should be used.

Keywords: Risk Neutral Density, Monte Carlo simu-

lation, Probability Integral Transform

1 Introduction

Options traded on financial assets allow market partic-
ipants to take views on the future values of the assets
themselves. This projection towards the future confers to
the option a sort of forward-looking information on the
future evolution of the underlying assets. For example, in
the case of Call option, the larger today’s premium is, the
higher is the probability to exert the option and greater is
the likelihood that the asset price finishes above the strike
price at maturity. These probabilities, taken together,
form the so-called implied Probability Density Function
also referred as Risk Neutral Density function (henceforth
RND). More precisely, when the market operators eval-
uate theoretically an option price, they formulate their
own estimates of these probabilities and their ’feelings’
about future evolutions of the underlying asset are sum-
marized in the RND. The reason why it is called ’Risk
Neutral’ density is that because it is estimated in a risk
neutral world (in opposition with the real world) under
which all investors are assumed to have no risk prefer-
ences. A relatively large number of estimation methods
has been proposed in the empirical literature and almost
all are based on one of the following approaches:

i. Assuming that the underlying asset follows a partic-
ular stochastic process and constructing the RND
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from the estimated process (Geometric Brownian
Motion giving the lognormal distrbution as a RND).

ii. Fitting a particular parametric form for the density
which would reflect as well as possible the market
conditions (mixture of 2 lognormals or the Edge-
worth expansion).

iii. Using interpolation techniques to smooth the Call
pricing function. The RND is then obtained by nu-
merical differentiation (2 interpolation methods in
spaces (volatility / strike) and (volatility / delta)).

iv. Semi-parametric techniques based on implied bino-
mial trees.

Given these alternative techniques, a question arises:
’what about their reliability?’ Numerous comparison
tools dealing with the stability and the accuracy of the
estimated RND were considered: [1] tested the relative
stability of the alternative RNDs and their robustness to
small perturbations. [3] chose to deal with the pricing
errors i.e. the performance to provide a good assessment
of the observed option prices; while [6] studied the abil-
ity of the RND to closely recover the realized summary
statistics. All these studies provided rather different con-
clusions concerning the most suitable method to adopt.
For example, [4] proved the superiority of the non para-
metric techniques over the parametric ones using FTSE
index option data whereas the study of [2] performed on
the Norwegian option market found exactly the opposite
result. According to this, a natural concern arises: the
choice of a specific method seems to be related to the
market data used. This problem would be resolved using
unreal simulated data. Therefore, the simulation frame-
work into which the comparison is carried out would not
relate to any specific market. In this case, the best esti-
mation method would be considered as the best ever.
To achieve this purpose, the attention is focused on the
RND itself. Indeed, some authors argued that the RND
corresponds to the real-world density1 only if investors
were risk neutral, and the difference between the two den-
sities arises because of the existence of a risk premium2.
But since simulated data are used, the risk premium is

1Also called true density, physical density, subjective density or
empirical density. In this study I will retain the term ”true density”.

2See [7] for more relevant discussion of this point.
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null and the two densities should be the same. On the ba-
sis of this, two questions have to be addressed: how close
is the estimated RND to the true density? And do the
RND derived from option prices provide a good forecast
of the true density? This paper attempts to address these
concerns and six different estimation methods (which are
the simple lognormal, the mixture of 2 lognormals, the
Edgeworth expansion, 2 interpolation methods in spaces
(volatility / strike) and (volatility / delta) and the im-
plied binomial trees3 are compared according to: their
capacity to correctly price option prices, their ability to
assess accurately the true density and their performance
to correctly forecast future outcomes of the underlying
asset.
The rest of the paper is organised as follows: The next
section presents the simulation framework into which the
estimation will be performed. Three different compari-
son tools are then presented and implemented in section
3. The paper concludes in a brief summary.

2 Monte Carlo approach to generate sim-

ulated data

For some financial markets, option contracts are not al-
ways available neither for all strike prices, nor for all ma-
turities and therefore, some estimation methods of the
RND are not easily applicable. For example, the non
parametric techniques related to the volatility Smile in-
terpolation are intensive in data and require the avail-
ability of a minimum number of options to facilitate the
implementation of the interpolation. Therefore, it would
be preferable to have a sufficient number of options that
disables any data discrimination that may block the es-
timation process. That is why it is more useful to work
with simulated option data rather than real data. Fur-
thermore, disposing of sufficiently large number of data
makes tests more robust and statistical indicators more
relevant.

Before presenting the simulation procedure, a Data Gen-
erating Process (DGP) has to be chosen to simulate tra-
jectories of the underlying asset. The question is which
process to choose? Given its proprieties, the Heston
stochastic volatility model, would be the best to encom-
pass all observed market characteristics i.e. non constant
volatility, asymmetries and fat tails. The underlying price
dynamics are described by the following diffusion equa-
tions:

dS = µSdt +
√

σSdW1

dσ = κ(θ − σ)dt + v
√

σdW2

Where µ is the drift of the underlying process, θ is the
long-term mean of the volatility, κ governs the rate at
which the volatility converges to its long-term value,

3See [4] for an overview of these techniques

v represents the variance of the volatility, dW1 and
dW2 are Wiener processes correlated by a coefficient ρ:
dW1dW2 = ρ dt.
Note that the Heston’s model has been subject of many
studies in the empirical literature and largely employed
to model the behavior of financial asset prices. This
would be an additional motivation for this choice.
The parameters defining Heston model must be fixed
in a logical sense before launching the simulations. I
fixr = 0.05, κ = 1, θ = 0.37, v = 0.1 and ρ = 0.27. The
choice of these values is not arbitrary. Indeed, the rate
of reversion and the variance of volatility, respectively 1
and 0.1, have been voluntarily selected low in order to
limit the dispersion of the estimations. Intuitively, when
its variance trends toward 0, the volatility becomes less
random and one can expect the RND to have thin tails.
Long-term volatility parameter θ = 0.37 materializes
the phenomenon of volatility clustering according to
which high volatility periods succeed or precede low
volatility periods, resulting in a median long-term value.
Finally, correlation between the underlying returns and
the volatility is positive and equal to 0.27. This means
that as positive shocks occur, the likelihood for getting
further large upward movements increases, resulting in
a positive asymmetry in the RND with fat left tail and
thin right tail.
Once the DGP chosen and its parameters defined, the
simulation procedure can start.
A first simulation consists of generating
1 path of 11000 steps to up to 44 years which
results in 11000 daily values of the underlying
S0, S∆t, S2∆t..., S11000 and 11000 daily values of the
volatility σ0, σ∆t, σ2∆t..., σ11000 (1 step equals to 1 day:
∆t = 0.004). The starting values are set to S0 = 48 and
σ0 = 0.32. This first simulation is referred as Case A.
The first 499 observations are then eliminated from the
sample in order to avoid distortions due to the initial
assumptions of the simulation process. Thus, a first
sample of 10501 observations of S (S500, S501, ..., S11000)
and σ (σ500, σ501, ..., σ11000) is set up and will be used
thereafter as a starting point for estimations and tests.
A second simulation gives a new sequence of the
underlying asset {Fi}N

i=1 as well as a new sequence
of the volatility {Vi}N

i=1. It consists of generating
1 step 5000 random paths using the same DGP and the
same diffusion parameters as previously. This second
simulation is referred as Case B. ”Today’s” values of
both underlying asset and volatility are observed on the
generated random path of Case A when the simulation
is launched: F0 = S500 et V0 = σ500.
After that, Call option prices are numerically calculated
using Monte Carlo integration; the Call evaluation
formula becomes:

C =
1

N
e−r∆t

N
∑

i=1

max(0, Fi − K) (1)
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Here, the maturity is fixed to 1 month which corresponds
to 21 working days, ∆t = 0.004 and N = 5000. A total of
9 Call options are calculated for 9 different strike prices.
The 9 exercise prices are set equal to the average Fa of
the 5000 simulated data F plus and minus 4 rates below
and above this average, resulting in 1 at the money, 4 in
the money and 4 out of the money options. The equally
spaced exercise prices are: K = (1 ± x)Fawhere x = 2.5,
5, 7.5 and 10 respectively.

The procedure described in Case B is recurred 500 times
by moving forward by 21 days on the path simulated in
Case A. For example, to calculate the second batch of
Call prices, a new sequence of F is generated similarly
as previously with initial values F0 = S521 and V0 =
σ521. I finally obtain 500 times 9 Call option prices with
fixed 1-month maturity. These prices will be used for
the application of RND estimation techniques presented
above.

3 Comparing the selected estimation

techniques

In this section, the six selected methods are implemented
and tested: the Black & Scholes simple lognormal dis-
tribution which will be considered as the benchmark,
mixture of two lognormals, Edgeworth expansion, both
interpolation methods in spaces (volatility / strike) and
(volatility / delta) and the implied binomial tree method.

3.1 Comparing the pricing errors

One approach to assess the performance of the estimation
techniques is to examine how closely they fit actual option
prices and the method presenting the smallest pricing er-
rors will be considered as the best to fit option prices.
For each of the six RNDs, the theoretical Call option
price Cth is calculated numerically from the formula (1)
and compared to the simulated price Csim derived from
the Case B simulation. To assess the quality of the esti-
mation as well as to appraise the model’s goodness-of-fit,
two criteria are computed each day: the first one is the
well-known Root mean Squared Error (RMSE):

RMSE =
1

N

√

√

√

√

N
∑

i=1

(Csim
i − Cth

i )2

The RMSE is a dimensionless metric which facilitates
the comparison between various models for different con-
tracts. Nevertheless, it is sensitive to great pricing errors,
which could in some cases distort the interpretations: an
error of 0.5 on a Call option equal to 8 does not have
the same significance on another equal to 0.5. Whereas
the error accounts for 6.25% of the first Call option, it
is 100% for the second Call option. Thus, it would be
necessary to put into perspective the error to the corre-
sponding observation. The second criteria, the Relative

Root mean Squared Error (RRMSE), accounts for this
asymmetry:

RRMSE =
1

N

√

√

√

√

N
∑

i=1

(
Csim

i − Cth
i

Csim
i

)2

The figures in table (1) are obtained first by calculating
the RMSE and the RRMSE for each method and then,
by calculating the mean and standard deviation (between
brackets) over the 500 observations (m = 500).

It is quite obvious that the two statistics are rather
concordant and lead to almost the same results. In-
deed, according to the RMSE, interpolation methods
(volatility / strike) and (volatility / delta) provide the
most accurate estimates with values about 0.59 × 10−3

and 0.67 × 10−3 respectively. Then, with a RMSE of
1.22 × 10−3, the Edgeworth approximation proves to
be the best parametric technique with, in addition,
a relatively low dispersion; follow after the simple
lognormal and the mixture of two lognormals. Finally,
the implied binomial tree method provides the worst
pricing performance with a very large error value equal
to 99.78 × 10−3.
The analysis of the RRMSE provides a classification
quasi similar with one exception: the pricing perfor-
mance of the mixture of lognormals exceeds that of the
lognormal distribution. This result seems more logical
insofar as the second method constitutes a particular
case of the first one. The bad pricing performance of the
mixture of lognormals is rather surprising. The great
dispersion (equal to 0.4975×10−3) characterizing RMSE
averages could be the reason: only few errors but with
large magnitude generate a high RMSE coefficient. This
problem is not likely to occur in the case of the RRMSE
since each error is reported to the corresponding obser-
vation, which confers great robustness to this metric.
The implied binomial tree method has a catastrophic
evaluation performance with the highest RMSE and
RRMSE coefficients. This result is due more to imple-
mentation irregularities than to the bad specification of
the model: indeed, during the optimization procedure,
all the constraints of the equation (9) were not filled
and the algorithm did not always converge towards a
final solution. In particular, the forth constraint, which
stipulates that the theoretical Call price should be equal
to the simulated price, was often violated.

Up to now, to assess the performance of the esti-
mation methods, I used quantitative indicators that
measure the deviation between simulated and theoretical
option prices. But what would be the conclusions in a
statistical universe? Indeed, the question whether these
deviations are statistically significant can be addressed.
The relevance of this question is reinforced since a model
can provide with a good quality of adjustment which,
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however, could be non-significant in a statistical sense.
Thus, it would be interesting to carry out a statistical
test to assess more accurately the deviations between
theoretical and simulated option prices. The problem is
formulated as follows:

Csim = α0 + α1C
th + ε

I separately apply this test to the six methods by re-
placing each time the theoretical Call option price by
that provided by the tested method. I also carry out
the Wald test of the null assumption H0 : α0 = 0 and
α1 = 1 according to which the theoretical option price is
an unbiased estimate of the true option price. The num-
ber of parameter restrictions is equal to 2 and therefore,
the statistic of this test follows the Chi-square distribu-
tion with 2 degrees of freedom: ℵ2(2). The critical values
on 95% and 99% bands are respectively 5.99 and 9.21.
A statistic higher (lower) than 5.99 implies the rejection
(acceptance) of the null at a 5% confidence level. The
results are presented in table (2):

Not surprisingly, the coefficients of determination are
very close to 100% and the regression parameters α0 and
α1 are very close to respectively 0 and 1. Nevertheless,
the Wald test indicates that the null assumption is
rejected for all the regressions and consequently, any of
the six estimation methods provides satisfactory results
from a statistical point of view.

All in all, we can say that non-parametric methods
perform better than parametric and semi parametric
methods. This result is not, though, confirmed by
statistical tests. Naturally, this leads us to consider al-
ternative comparison tools. In the following, I will focus
on the RNDs themselves and study their profiles, which
would constitute an important source of exploitable
information.

3.2 Implied RND function vs. true density
function

The RND is not the true probability density. Whereas
the former is inferred from quoted option prices, the latter
is not available and should be estimated from observable
time series of the underlying asset. The difference be-
tween the two distributions arises from the presence of
risk aversion: indeed, the RND can be interpreted as the
market’s aggregate beliefs regarding future states of the
world and consequently, incorporates investor’s attitude
toward risk. The RND would be equivalent to the true
market density only if there is no aggregate risk in the
market or assuming risk neutrality.
Working with simulated data overcomes this problem:
not only the actual density is available and directly de-
rived from various simulated scenarios of the underly-
ing asset, but also the RND integrates no formulation

about risk aversion since it is estimated from simulated
option data and not from real option data. Thus, the
RND should be exactly equal to the true density func-
tion. Based on this assertion, one possibility of compar-
ing RND estimation methods raises: which one would
provide the most accurate estimation of the ‘real’ density
function?
To answer this question, I estimate first the true den-
sity qtrue from the 5000 simulated underlying prices F in
the Case B and second, apply separately each of the six
estimation methods on option prices to derive the RND
qRND .The estimation of qtrue is carried out using Ker-
nel estimator K(u) to obtain a sufficiently smooth and
continuous density function:

qtrue(F ) =
1

Nh

N
∑

i=1

K(
F − Fi

h
)

Where
∫

K(u)d(u) = 1 to ensure qtrue to be a probability
density function and h is the bandwidth of the Kernel
estimator. I choose to work with the Gaussian Kernel
which is the most commonly used.
Crucial for the Kernel estimation is the choice of the lo-
cal bandwidth; a too small one will lead to an erratic
distribution whereas a too large one will smooth away
important details in the distribution. For this, I follow
[?] who proposes an optimal value for the bandwidth hopt:

hopt = 0.9N−
1
5 A

Where A = min(σ, iqr/1, 34), iqr being the interquartile
range.

Figures (1a-f) display estimated RNDs and true densities
for each of the estimation methods4.

The graphics above underscore the following observa-
tions:

– All RNDs underestimate the left tail of the true den-
sity. Indeed, the left true density tail lies systemat-
ically below its RND counterpart. In a real world,
this report would be interpreted so as the market
does not expect any crash in the underlying asset
and therefore assigns low probability to the occur-
rence of this event.

– Interpolation methods are the best to fit correctly
the true density and the two densities are almost
superposed.

– On the RND provided by interpolation method in
a space (volatility / strike), some erratic movements
are observable around the mode. Nervertheless, they

4Over a list of 500 observations of RNDs and true densities, those
represented in the figure (1) correspond to the 131e observation.
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do not appear if the interpolation is performed in the
(volatility / delta) space. So, we can say that moving
from a (volatility / strike) space towards a (volatility
/ delta) space makes the RND smoother and avoids
the appearance of abrupt jumps in the probabilities.
This result is not surprising since the objective to
move from the first to the second space is indeed to
prevent such distortions.

– The implied binomial tree method and the mixture
of lognormals provide completely shifted RNDs com-
pared to the true density. This indicates that the
mean of the distribution is wrongly estimated by
these two techniques.

The question of whether visible differences between
the two densities are statistically significant needs to
be addressed by using non parametric goodness of fit
tests. I consider two goodness-of-fit tests: the two-
sample Kolmogorov-Smirnov and the two-sample Cramr-
von Mises. These tests compare the cumulative distri-
bution functions rather than the probability distribution
functions. More concretely, the two-sample Kolmogorov-
Smirnov test (KS) is based on the maximum distance be-
tween two curves. It takes into account the whole of dis-
tribution’s quantiles to test the assumption H0 : Qtrue =
QRND, where Q is the cumulative distribution function:
Q =

∫

q(u)du. This is based on the following test statis-
tic:

D = sup
F

[

∣

∣Qtrue(F ) − QRND(F )
∣

∣

]

The two-sample Cramr-von Mises (CvM) statistic mea-
sures the quadratic deviations between two curves:

ω2 =
1

4

N
∑

i=1

[

Qtrue(Fi) − QRND(Fi)
]2

Table (3) displays the reject percentage of the null at 5%
and 10% levels for each of the estimation methods:

It is clear from the results in Table (3) that the two tests
do not provide exactly the same results and the CvM
test seems to be more ‘conciliate’ by rejecting the null as-
sumption in only two cases (the implied tree method and
the interpolation in a (volatility / strike) space method).
This obvious lack of precision leads us to prefer the KS
test which, by taking the maximum distance between the
two densities, gives more information about extreme de-
viations. This test indicates that Edgeworth expansion
method provides incontestably the best statistical perfor-
mance with an acceptance rate of 100%: for each of the
500 observations, the density estimated using this method
agrees with the true density with a difference statistically
non significant. Moreover, the choice of an interpolation

space proves to be very important insofar as switching
between the two spaces improves appreciably the results
(for example, the rejection rate decreases from 12.4% to
1.8% at 5% level by moving from the (volatility / strike)
space to the (volatility / delta) space). The poor perfor-
mance of the implied binomial tree method is confirmed
and the null assumption is rejected into almost half of
the cases regardless of the confidence band.

3.3 Testing the forecasting performance of
RNDs

Forecast evaluation consists in using the true density as
a point of reference to rank the RND estimation tech-
niques relative to their ability to well approximate the
true density. In this way, [10] use the Probability Inte-
gral Transform (PIT) approach, initially proposed by [8],
as an appropriate mean of evaluation of density forecast.
The PIT score is defined as:

zi,τ =

∫ St+τ

−∞

qi(u)du

= Qi(St+τ )

If forecasts and true densities coincide, then the sequence
of PITs zi of the realized outcomes St+τ observed at ma-
turity is independently and identically distributed (i.i.d)
with uniform distribution:

{zi}n
i=1

iid∼ U(0, 1)

The main power of the PIT approach is that it holds
regardless of the particular method followed to produce
the density forecasts, and therefore, can be used for all
the RND estimation techniques. For practical applica-
tions, testing whether the PIT series is i.i.d U(0, 1) can be
achieved by using simple visual tools such as histograms
or by carrying out goodness-of-fit tests.
Before starting the estimation, we need to put the prob-
lem in context by presenting the manner by which the se-
quence of the PITs is obtained. At every 21st observation
along the sequence of realization {St}11000

t=500 of Case A,
one PIT is calculated for each of the six estimated RNDs.
The forecast procedure starts at the first observation of
St (i.e. at the 500e observation) and the PIT is obtained
by calculating the cumulative probability corresponding
to the realization observed 21 days later:

z500 = Q500(S521)

Then, I move 21 days forward and calculate the second
PIT staring at t = 521 to obtain the PIT for the real-
ization 21 days later. This procedure is repeated a total
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of 500 times in order to generate 500 z-values for each of
the six RND estimation methods. As it was previously
mentioned, the sequence {zi}500

i=1 should be i.i.d U(0, 1) if
the RND provide good forecast of the true density.
Because of their ease of interpretation, histograms of the
z-series are used to verify the requirement that z is uni-
form over the interval [0, 1]5. Figure (2) provides 15 bins-
histograms relative to each of the RND estimation meth-
ods. If the density forecast is correctly calibrated then,
each of the histograms should be roughly flat and a ran-
dom of 10% of the 15 bars should fall outside the two
horizontal lines delimiting the 90% confidence interval.

It appears rather clearly that any of the estimation tech-
niques provides a good forecast of the true density since
systematic deviations from uniformity are observed in the
histograms. In the best of cases, only 8 of the 15 bars are
inside the confidence interval (case of the mixture of log-
normals, the Edgeworth expansion and the interpolation
in space (volatility / delta) method). The most signif-
icant violations are in particular observable around the
tails of the distribution: indeed, it appears that there
are many observations in the two extremes which sug-
gest that RNDs have tails which are too thin. Except
for the implied tree method, the RND tails tend to be
above their true density’s counterparts which means that
the RND assigns more probability to extreme outcomes
than it is observable on the effective realizations. These
U-shaped histograms can also be explained by the fact
that the forecast provides a too narrow variance of the
true density, resulting in a shaped distribution with thin
tails.
The comparison based on the uniform distribution could
be inappropriate for small sample size which is the case
here. Moreover, the fact that the comparison interval
is limited between 0 and 1 may make the results hard
to interpret. For these reasons, [9] suggests applying a
transformation to normality to the PIT series:

xi,τ = N−1(zi,τ ) = N−1
[

Qi(St+τ )
]

If the sequence of zi is iid U(0, 1), then the sequence of xi

must be iid according to a standard normal distribution.
The normal transformation allows the application of sev-
eral comparison techniques and tests. Among these tech-
niques, the well-known QQ-plot of the normal transform
variables, which displays a quantile-quantile plot of the
sample quantiles of xi versus theoretical quantiles from
normal distribution. If the distribution of xi is normal,
the plot will be close to line. Figure (3) displays these
plots:

We can see that the RND predicts very well the body
of the true density but much less its tails. As stated

5The assessment of the i.i.d condition can be achieved by plot-
ting correlograms of (z − E(z)) and powers of it.

previously, the RND underestimates the right tail of the
true density and the empirical right-hand quantiles of xi

are systematically above those of the standard normal
distribution. However, concerning the left tail, the re-
sults differ from those obtained from the histogram anal-
ysis: the parametric methods (the simple lognormal, the
mixture of lognormals and the Edgeworth expansion)
overestimate the left tail of the true density (the em-
pirical quantiles being above those of the standard nor-
mal distribution) and the non-parametric methods (Smile
interpolation-based methods) underestimate the left tail
of the true density (empirical quantiles being below those
of the standard normal distribution). In terms of absolute
performance, it appears that the Edgeworth RND pro-
vides the better forecast since it deviates rather slightly
from the true density on the tails.
All RNDs, except the implied binomial tree RND, present
the same profile for the body of the distribution and differ
on the tails. Therefore, it becomes legitimate to focus on
the extreme probabilities and the discrepancies between
the true density and the RND around the tails can be
studied more formally using the so-called scoring rule.
The idea consists in defining a generic interval associated
with the extreme quantiles {p l, pu} and a binary variable
Bt which takes the value of 1 if the true realization of the
underlying falls into this interval and 0 otherwise:

Bt,τ =

{

1 if St+τ ∈ {p l; pu}
0 otherwise

The interval forecast is correctly calibrated if the ex-
pected outcome of the underlying asset inside the pre-
specified interval is equal to the probability defined by
the extreme quantiles: E(Bt,h) = pu − p l. Table (4) re-
ports the results according to the estimation technique:

More than a confirmation of the bad forecast performance
in the tails of the RNDs, already observed on the his-
tograms of the figure (1), these results permit to quantify
the magnitude of these violations. It appears that, even
if all techniques fail to assess correctly the tails, some do
better job than others. In fact, the Edgeworth expansion
seems to be the best with the lowest score either in the left
tail or in the right tail; comes then the mixture of lognor-
mals, the two non-parametric interpolation methods, the
simple lognormal and finally the implied binomial trees
which should be rejected without any regret.

4 Conclusion

This paper sets out to examine the empirical performance
of six RND estimation techniques using three different
comparison tools (the pricing errors, the true density ap-
proximation and the forecast performance). The main
result that arises is that the choice of the suitable RND es-
timation technique depends on the purpose of the study:
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if the RND is used within an option pricing framework,
non parametric techniques would be the best; they in-
deed provide the lowest evaluation errors. This is rather
surprising because for parametric approaches, the distri-
bution is obtained directly by minimising the pricing er-
rors whereas in the non parametric methods, the implied
volatilities, and not the option prices, are approximated.
However, if the purpose is to study market expectations,
the Edgeworth expansion technique should be used with
caution since it approximates very well the body of the
true density and performs relatively not badly around the
tails.
This result may be interesting for academics and prac-
titioners concerned by investigating market expectations
implicit in option prices. Future researches may use real
data to see whether the most suitable technique depends
on market characteristics not.
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RMSE ×10−3 RRMSE ×10−3

Simple lognormal 1.94 (0.97) 6.02 (7.95)
Mixture of 2 lognormals 9.99 (49.75) 3.55 (7.73)
Edgeworth expansion 1.22 (0.25) 1.33 (3.57)
Implied binomial trees 99.78 (49.96) 7.56 (26.92)

Interpolation (volatility/strike) 0.59 (0.84) 0.62 (8.09)
Interpolation (volatility/delta) 0.67 (0.85) 0.63 (0.81)

Table 1: RMSE and RRMSE Means and standard devia-
tions (between brackets) for each of the estimation meth-
ods

R2 adjusted Wald statistic

Simple lognormal 99,98% 2327,91 *
Mixture of 2 lognormals 99,79% 24,67 *
Edgeworth expansion 99,99% 24221,10 *
Implied binomial trees 98,40% 2555,10 *

Interpolation (volatility/strike) 99,89% 570,52 *
Interpolation (volatility/delta) 99,83% 225,57 *

Table 2: Coefficients of determination, regression param-
eters and Wald test results. * indicates the significance
at 5% and 1% levels.

Test de KS Test de CvM

H0 : Qtrue = QRND Rejet H0 Rejet H0

5% 10% 5% 10%
Simple lognormal 1.6% 6.6% 0% 0%

Mixture of 2 lognormals 10% 10.2% 0% 0%
Edgeworth expansion 0% 0% 0% 0%
Implied binomila trees 44.2% 45.6% 32.2% 35%

Interpolation (volatility/strike) 12.4% 14% 3.4% 3.4%
Interpolation (volatility/delta) 1.8% 3.4% 0% 0%

Table 3: Kolmogorov-Smirnov and Cramr-von Mises
tests for the goodness of fit between the RND and the
estimated true density. Note: ‘reject H0’ is the percent-
age of rejection of the null assumption at 5% and 10%
levels. The critical values of the KS test at 5% and 10%
levels are respectively 0.0270 and 0.0243; those of the
CvM test are respectively equal to 0.4614 and 0.3473.

{p l; pu} = {0; 0.05} {p l; pu} = {0.95; 1}

Simple lognormal 0.1 0.04
Mixture of 2 lognormals 0.076 0.06
Edgeworth expansion 0.068 0.052
Implied binomial trees 0.02 0.094

Interpolation (volatility/strike) 0.08 0.074
Interpolation (volatility/delta) 0.076 0.074

Table 4: Score tail tests performed separately on the left
and the right tails of the forecast density for each of the
RND estimation methods.
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Figure 1: True probability density and RND for each
estimation technique.
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Figure 2: Histograms of Probability Integral Transforms
with 90% confidence bands for each of the RND estima-
tion methods.
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Figure 3: QQ-plot of Normal Transforms of the Probabil-
ity Integral Transforms for each of the RND estimation
methods.
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