
 
 

 

  
Abstract— In this paper a new approach to optimize nuclear 

power plant designs based on global risk reduction are described. 
In design the focus is on as components quality as redundancy 
levels. Meanwhile in maintenance and test tasks the focus is on as 
scheduling tasks as human reliability. The models based on 
probabilistic risk analysis are used to evaluate several designs and 
schedules proposed by an hybrid genetic algorithm. The best 
alternative is chosen to minimize the economical risk of down the 
production or of have an accident for all reasons considered. 

This approach has resulted in a new methodology to assure the 
risk for complex industrial systems too in a global way. So, it is 
possible considering several aspects such as component qualities, 
redundancy levels, task schedules for maintenance or tests tasks, 
and reliability human as a whole. 
 

Index Terms—Optimize, Design, Risk, Genetic Algorithm.  
 

I. INTRODUCTION 
  The nuclear power plants are very complex systems and 

represent especial cases where faults not end with the 
production down (the same case occurs with the fossil power 
plants). Moreover, the faults may affect to the public when the 
energy provider is shutting down. From 60’s these cases were 
analyzed using several techniques and approaches. But in the 
last fifteen years new techniques was developed. The review in 
this point will be centered mainly in the nuclear area. 

From design point of view the focus was paid on the 
redundancy levels [1]-[5]. In the cases of maintenance and test 
of systems the focus was paid on the schedules [6]-[13]. The 
aging effects on components was reviewed and updated 
[14]-[17] improves the models or the parameter estimation. By 
the other hand, the risk approach becomes in a relevant point of 
view [15], [18]-[21]. 

The improvements of computation power allowed face more 
complex models and try global approaches. This paper describe 
a global approaches based on probabilistic risk assessments and 
genetic algorithms. 

The works was done on CAREM-25 NPP, an innovative 
project that will be built in Argentina in a few years. 

 

 
Manuscript received March 22, 2007. This work was supported in part by 

the CEDIAC Institute, Engineering Faculty, National University of Cuyo.  
J. E. Núñez Mc Leod, S. S. Rivera and J. H. Barón are with Engineering 

Faculty, National University of Cuyo,  M5502KFA, Argentina (phone: +54 261 
4135000 ext. 2135,  fax: +54 261 4380120, emails: 
jnmcleod@cediac.uncu.edu.ar, srivera@cediac.uncu.edu.ar & 
baron@cediac.uncu.edu.ar). 

II. REGULATION 
Nuclear area has a very stringent regulation. In Argentina the 
regulation is based on risk. For obtain a license of nuclear 
power plant construction the contractor must demonstrate that 
the design accomplish with mandatory bound. This 
requirement can be seen in Fig. 1 
The Fig. 1 is an X-Y graph, the frequency [1/yr] vs. Individual 
doses [mSv] graph. In this, several points will represent 
several types of accidents in the installation. If those points are 
situated under the bound, the plant is acceptable from risk 
point of view (and in a simplified way). So, in this case the risk 
is related to accident in the plant. 
 

III. MODELLING 
Several model types are needed to represent the possible 

faults that could conduct to an accidental o incidental situation 
in a power plant. One model type is needed to modelling the 
components faults and other to modelling the human error. For 
the first, Fault Tree Analysis [22] is used and for the human 
error, Human Event Trees [23]. In Fig. 2 a partial Fault Tree of 
a loss of main water supply in a Combined Cycle is shown. 

The Fault Trees modeling the combination of root causes, by 
mean by Boolean gates that could produce an undesired fault 
(named Top event). The root causes are named basic event. 
When associate a quantitative model to basic event, we can 
compute the failure probability of the Top event. When 
modeling a basic event we taken into account a failure rate  
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Figure 2. Fault Tree of the Emergency Flooding Systems in massive flooding regime. For clearness reason redundancy 1 was drawn only 

 
model with aging, maintenance time interval and test time 
interval. When two o more basic event are related by something 
like a manufacturer or design or whatever an special common 
cause failures (CCF) model must be taken into account [24, 25]. 
The CCF is the weakness of the redundant components, systems 
or structures.  

When some basic event is related to a human error a modeled 
using Human Event Trees (HET) is needed. In the Fig. 3 an 
example for a generic maintenance tasks is shown. 

The quantification of HET is a very difficult task. The human 
error rate for each tasks is not known at first. In nuclear area 
several deep studies were done and a set of human error rate for 
several activities are available. A lot of these activities are very 
similar that in a fossil power plant and the extrapolation is 
straightforward. When the all basic human errors are quantified 
then the HET may be computed. 

When the system faults were modeled the next step is model 
the accidental sequences (AS) with Event Trees (ET) [26]. In 

AS several system performing their functions successful or 
unsuccessful. The combination of different systems performing 
their functions right or wrong drive the AS to different plant 
states. These may be totally successful, partially successful or 
unsuccessful. Each state may be separate into simpler states and 
grouped according to some criteria.  

The ETs are computed and the plant states are quantified. In 
the Fig. 4 an ET are shown. On the right hand may be seen the 
different plant states obtained. 

Above in the graph are located the different systems that 
perform their functions when the AS is developed. 

In the case of fossil power plant we are near of the finish. The 
next paragraph is only applied to nuclear power plants. 

With the ETs quantified and grouped by similar core damage, 
the next step may be done. In this step the core damage is used to 
define a source of radioactive material and different models of 
transport are used. So, the contamination area may be defined 
and doses on the public may be quantified. 
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Figure 3. Human Event Tree for a maintenance activity. 
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Figure 4. An Event Tree for lost of heat sink. E is the initiating event (lost of heat sink) and headers (J, K, N, etc.) several emergency systems that 
they will act in time. 

 

I. RISKS 
In nuclear power plants the risk is formed with the frequency 

of AS and the individual doses due to the accident and the end 
plant state. The worst case include accidents with radiation on 
operator and public. This risk is inherently defined with the 
original design and increased with the maintenance and test 
tasks scheduled during the plant life. 

Without design changes, the right maintenance and test tasks 
done adequacy. The personnel must be qualified and the 
procedures must be available. This is a truism nowadays. But 
the complex interaction between components quality, 
redundancies, time between maintenances, time between tests, 

level of supervision in each task, interaction with emergency 
systems, and so on, reveal a new complex that need a new 
approach to optimize the new designs.  

 

II. PROBLEM 
The variables are defined below: 
 
Ce  equipment cost, 
Cm maintenance cost, 
Ct  test cost, 
m  number of subsystems, 
n  number of stages in each subsystem, 
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fail to check restoration tasks (20-
22.10)

fail to use a
restoration list(20-6.5)

erroneus setup
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maintenance (20-7.4)

supervisor fail to
check (20-22.1)
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Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



 
 

 

x  redundancies in each stage on each subsystem, 
cl  release categories, 
PD mean likelihood of doses, 
D  doses, 
P  population, 
G  punishment, 
e  initiating event, 
f(e) frequency of initiating event, 
qd  unreliability on demand 
N  task number 
t  time in standby 
θ component life characteristic 
µ  aging factor 
qM unreliability due to maintenance tasks 
qP  unreliability due to test tasks 
ccf group common cause failure 
a  matrix initiate event – emergency system 
d  initiate event doses 
f(d) max freq. allowed for d (regulatory constraint) 
b  redundancy 
Tep time between tests 
N  maintenances by period 
 
The problem to solve may be presented as follow: 
 
minimize 
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supinf NNN j ≤≤  (5) 
 
This problem can be reduce to the Lueker formulation [27] 

for demonstrate that is a NP-Complete problem. 
The importance of this conclusion is that at the moment, all 

the algorithms known for NP-complete problems use 
exponential time with respect to the size of the input. It is not 
known if there are better algorithms, thus, to solve a 
NP-complete problem of arbitrary size is used one of the 
following approaches: approximation, probabilistic, special 
cases and heuristic. In this problem was decided to implement 
an Hybrid Evolutionary Algorithm. This algorithm should 
guarantee a correct exploration of the space search and a time of 
reasonable convergence. 

III. HYBRID EVOLUTIONARY ALGORITHM 
Genetic Algorithm (GA) [28] is a paradigm that emulate the 

natural selection like was expressed by Charles Darwin [29]. 

It was decided not to use a standard or predefined GA. The 
decision was based on that the generic algorithms do not 
incorporate information of the problem. This is not the 
recommendable thing for cases of extreme complexity (like 
NP-complete problems). The most algorithm will work with an 
excessive time of convergence and  a large amount of used 
memory storing the generated populations of individuals. 

Based on a set of previous works [30][31][32], a series of 
strategies was developed to incorporate specific knowledge of 
the problem to the EA. The sampling of the space were 
optimized developing a special technique. The method is named 
Stochastic Stratified Tournament Sampling (SSTS) [33]. This 
method obtains a sample that allows to adequately handling the 
genetic diversity (alternative diversity). This is an important 
issue on the searching for the best alternative. 

In the Stochastic Tournament Sampling (STS) method, by 
using a simple sampling, a competing pair of individuals is 
obtained.  For example, they compete by its ability to fit an 
objective function, or stochastically weighted by the adjustment 
function of each one.  One limitation of this scheme is that 
certain portions of the population space may not be sampled.  
An improvement over this scheme is the SSTS, where the 
population is stratified (e.g. in groups of 5 individuals) and the 
sampling is con-ducted in each group, looking for proper pairs.  
Then a competence (tournament) is performed, based on a 
weighted adjustment of both chromosomes.  The se-lection can 
be conducted in such a way that a stable population of solutions 
is maintained, or increasing the population of solutions. 

The goal of the SSTS technique is to maintain a high diversity 
of alternatives as long as possible, by the share of portions of 
relevant information to the new generations, as a faster way to 
obtain the quasi optimum of the solutions. 

Based as well on these previous works the design to a Hybrid 
Evolutionary Algorithm was oriented that combines the 
properties of the Evolutionary Strategies [34] and the Genetic 
Algorithms. 

In GA in general the values needed to solve a problem are 
sort in an array named chromosome for its similarity with the 
natural counterpart. Normally, a set of chromosome generates in 
a random way form a population. Randomly two individuals are 
selected from the population for breed two new individuals. In 
this moment a cross point is chosen randomly on the 
chromosome and then the genetic material are exchanged. The 
Fig. 5 shows the process. This is known as a crossover operator.  

Figure 5. Crossover process 
 

crossover point
Parent 1

9,69 3,36 10,98 17,71 1 1 2 1

Parent 2
1,82 1,28 47,48 20,80 2 2 1 1

Offspring 1
9,69 3,36 10,98 20,80 2 2 1 1

Offspring 2
1,82 1,28 47,48 17,71 1 1 2 1
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individual ranges
1,82 1 2 real values
1,28 1 2 real values

47,48 1 110 real values
20,80 1 25 real values

2 1 3 integer values
2 1 2 integer values
1 1 3 integer values
1 1 2 integer values  

Figure 6. Table of ranges 

The mutation operator is other key in this hybrid genetic 
algorithm. The idea is that this operator generates offspring 
feasible always. In that sense, each gen has appended some of 
the schemas shown in the figure 6. 
Note that there are two groups well defined. This is necessary to 
simplify the operator implementation. The mutation is 
expressed in a mathematical form as:  

λλ IImpm →:  (6) 
 
The application of this operator is: 
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Where ai represents the ith gen and pm is the mutation 
probability. χi denotes an uniform random variable sampled 
anew for each gen. lri and upi represent the variable lower bound 
and upper bound respectively and q is the first integer value gen 
in the chromosome. 

The chromosome contains the information about component 
quality, redundancy level, maintenance interval, test interval 
and so on. 

IV. RESULTS 
The resolution of each individual consumed 1.39 seconds. It 

were made different executions of the program with 50 and 100 
individuals by generation and of 50 from 1,000 generations. For 
all the cases the quasioptimum solution was found before the 50 
generations, nevertheless were proved sizes of generations like 
1,000 to confirm that one was not in the presence of 
quasioptimum that could be improved with the evolution 
processes. This process consumed 3 hours and 50 minutes 
approximately. 

Results were compared with the original design. The best 
optimized design allocate in several cases a double redundancy 
where three was allowed. A right supervision level was assigned 
to reduce the human error and none over supervision was 
assigned. The maintenance interval over mechanical 
components was found to be shorter than for electronic 
components and the test interval over electronic components 
was found to be shorter than for mechanical components. But 
the most important result was to obtain a balanced design with 
their future maintenance and test schedules established from a 
risk point of view, and for the minimum total cost. 

Fig. 7 shows a comparison results without optimization (on 
left) and results with optimization (on right). In this graphics the 
points joined with lines appertain to the same release category. 
Some sets with the optimization are moved up but they always 
stay under the regulatory bound. These displacements 
represents a decrease in the total cost of the plant. 

 

V. CONCLUSION 
The approach to optimize design, maintenance tasks and test 

tasks was robust and their results can be replicated. The use of 
Probabilistic Risk Assessment techniques resulted in detailed 
and flexible methodology to modeling. The use of genetic 
algorithm to optimize a complex problem resulted efficient and 
fast having into account the size of the search space. 

 

Figure 7. Results comparison. On Y-axis represent frequency (1/year) and X-axis represent doses (mSv). 
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