
 
 

 

  
Abstract— This paper proposes an age artificial immune 

system (AAIS), for optimal order pickings in an Automated 
Storage and Retrieval System (AS/RS) with multiple input/ output 
stations. A mathematical model is presented to describe the 
characteristics of the AS/RS. It is optimized with the proposed 
algorithm, which is based on the clonal selection principle and the 
aging concept. Unlike conventional algorithms for artificial 
immune systems, the proposed algorithm consists of antibodies 
whose abilities to be cloned and to survive depend on their ages, 
and adopts a mutation scheme based on randomized rankings. To 
further improve the performance of AAIS, a crossover operator is 
also included in the algorithm to form the AAIS_CX algorithm. 
The performance of both algorithms is tested with the problems of 
optimal order pickings in an AS/RS with multiple input/output 
stations. Comparison of the results obtained by using AAIS_CX, 
AAIS, the techniques of nearest neighbor heuristics, genetic 
algorithms and ant colony systems clearly shows that AAIS_CX is 
superior to the other algorithms. Suggestions for future work are 
also included. 
 

Index Terms— Artificial immune system, AS/RS, clonal 
selection, order picking.  

I. INTRODUCTION 
  Many computational intelligence methodologies are inspired 
from natural phenomena, such as evolution and biological 
processes in human bodies. Artificial immune system, which 
has received much attention in recent years, is inspired from the 
immune system in human bodies. The technique is capable of 
learning and using memory to enhance the utilization of the 
available information. It is also well known for its efficiency in 
adapting to a changing environment. It has been applied to 
solve problems in a wide range of areas, such as pattern 
recognition, vehicle routing, and job shop scheduling.     

Mak, Lau and Wang [1] have introduced the concept of 
aging in genetic algorithms for the design of virtual cellular 
manufacturing systems. They have assumed that the survival 
and birth rates of the chromosomes are age dependent, and that 
the chromosomes are discarded when their ages have exceeded 
a certain value. It has been shown that the aging concept is 
effective in preventing the search process from premature 
convergence. In this paper, an age artificial immune system 
(AAIS) based on the clonal selection principle and the aging 
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concept is proposed. Unlike conventional algorithms for 
artificial immune systems, the proposed algorithm consists of 
antibodies whose abilities to be cloned and to survive depend 
on their ages, and adopts a mutation scheme based on 
randomized rankings. To further improve the proposed 
algorithm, a crossover operator is also included to form the 
AAIS_CX algorithm. Both algorithms are used to solve an 
order picking problem for an AS/RS with multiple input/output 
(I/O) stations. The results are compared with those of other 
metaheuristics like genetic algorithm (GA) and ant colony 
system (ACS).  

This paper is organized as follows. Section 2 gives the 
literature review on the related topics. Section 3 describes the 
proposed algorithms and explains how they differ from 
conventional ones. Numerical experiments of optimizing the 
order picking sequence for an AS/RS with multiple I/O stations 
are presented in section 4. The conclusion and suggestions for 
further research are given in Section 5. 

II. LITERATURE REVIEW 
Artificial immune system (AIS) is inspired from the human 

immune system which consists of cells, molecules and organs. 
They form an identification mechanism which is capable of 
identifying and combating dysfunction from one’s cells and 
infectious microorganisms. In the immune system, antigen 
presenting cells (APC) ingest and digest harmful antigens 
found. They fragment the antigens into antigenic peptides 
which form major histocompatibility complex (MHC) 
molecules. T cells then recognize the MHC molecules and are 
activated to divide and secrete chemical signals to mobilize 
other components of the immune system, e.g. B-cells, to 
combat the antigens. B-cells which have receptor molecules of 
a single specificity on the surface then divide and differentiate 
into plasma cells which secrete antibodies, and the antibodies 
can neutralize antigens. In order to response to different 
antigens, a wide diversity of B-cells is needed and achieved by 
frequent mutation and editing of genes [2].  

By mimicking human’s immune system, AIS can be applied 
to cases with no prior knowledge [3]. According to [3], there 
are 3 main categories of AIS. They are clonal selection 
principle based AIS, GA-aided AIS and immune networks. 
Clonal selection principle describes how the antibodies with 
higher affinity are selected, cloned and mutated, such that the 
population of antibodies can recognize and combat the present 
antigens better. CLONAGE [4] is one of the most popular 
algorithms based on this principle, which does not include any 
crossover operation among antibodies. GA-aided AIS makes 
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use of the crossover operator in GA to form new antibodies on 
top of the clonal selection principle. Algorithms based on 
immune networks are inspired by the network principle among 
cells. It is suggested that B-cells are stimulated by antigens, and 
suppressed by other similar B-cells at the same time. This 
improves the diversity of cells and makes the algorithms more 
adaptable to a changing environment. 

The proposed AAIS is based on the clonal selection 
principle. In AAIS, mutation is the only process which changes 
the antibodies, thus determining the efficiency of the algorithm. 
However, too much mutation may lead to loss of good 
antibodies. The difficulty can be overcome in some cases by 
including tailored made mutation schemes in the algorithms. 
For example, two tailor-made mutation processes, division 
processing with Simulated Annealing and escape processing 
were introduced in [5] for creating and integrating sub-tours 
among solutions to solve n-TSP problems. It was shown that 
the resulting algorithm is better than GA in terms of solution 
quality and computational time. Another clonal selection 
principle based algorithm called opt-IA was proposed in [6], 
which is a modification of CLONAGE [4]. In such an 
algorithm, B-cells are selected without duplication from the 
cloned population to form B-cells of the next generation. The 
remaining slots in the new population are filled up by randomly 
generated new B-cells. Unlike AAIS, the aging concept is not 
applied to the cloning and survival of antibodies in opt-IA. A 
B-cell is simply erased from the population at a particular age 
under the static strategy, or is erased with a probability 
governed by the equation, ( ) ( )BeP Bdie

ττ /2ln1 −−=  where Bτ  is the 
age of an antibody. To test the performance of opt-IA, the 
algorithm is applied with different hypermutation operators to 
solve trap functions and a protein structure prediction problem 
[6]. It is shown that opt-IA performs better than CLONAGE. 
Although opt-IA is parameter sensitive, the performance of the 
algorithm can be improved by simultaneously using different 
mutation schemes. In [7], the performances of CLONAGE and 
opt-IA are tested and compared by solving the one counting 
problem, trap functions, numerical functions, and the protein 
structure prediction problem. However, no test is conducted for 
common NP hard problems, like TSP and VRP. 

In the development of the age genetic algorithm (AGA), 
Mak, Lau and Wang [1] have introduced a more 
comprehensive age concept to enhance diversity in the 
population. The survival and birth rates of individuals in a 
population depend on their ages. Age-group l+1 of the new 
population is generated from age-group l according to the 
survival rate of the individuals. Individuals are selected as 
parents from different age groups according to their birth rates 
to give birth to new individuals. From the results reported in 
[1], AGA performs better than conventional GA. Compared 
with opt-IA, the age concept introduced in [1] is more 
comprehensive and brings larger effect on the search process. 

Based on the clonal selection principal and the aging concept 
described above, the proposed AAIS is used to solve an order 
picking problem for an AS/RS with multiple I/O stations. Since 
the introduction of AS/RS 50 years ago, different models of the 
system have been widely used in different industries. AS/RS do 
not only minimize human efforts in handling materials, but also 

increases the capability of handling heavy cargoes and allows 
computerized control to achieve optimal efficiency. Its 
advantages have been reported in many studies [8]. The order 
picking problem of an AS/RS has also been widely studied. 
Han [9] has shown that using dual command cycle in order 
pickings, the throughput of an AS/RS can be increased by 
10-15%. Kanet [10] has detailed the cost related to the 
operations of an AS/RS and uses integer programming to 
determine the optimal operation sequence for retrieval of 
orders. Chetty and Reddy [11] have proposed a GA to solve the 
retrieval order sequencing problem for an AS/RS and have 
compared the algorithm with heuristics rules such as FCFS and 
NNB. The same problem has also been studied by Yin and Ran 
[12] using multiple pass GA. Lee and Schaefer [13] have 
presented both static and dynamic approaches to solve the order 
picking problem for an AS/RS with single I/O station. In the 
static approach, the optimal retrieval order sequence for a block 
of orders is determined. Once the orders have been completely 
processed, another block of orders is selected and its optimal 
retrieval order sequence determined. Berg and Gademann [14] 
have also applied a static block sequence approach to solve the 
order picking problem for an AS/RS with the I/O station 
located at an arbitrary position. They have modeled the 
problem as a transportation problem. Ghamai and Wang [8] 
have proposed a genetic algorithm to sequence retrieval orders 
for an AS/RS with multiple stock locations and shown that their 
algorithm performs much better than enumeration in terms of 
computational speed. However, the problem of optimizing both 
storage orders and retrieval orders simultaneously for an 
AS/RS with multiple I/O stations has received very little 
attention, although its solution has a profound effect on the 
operation of the system. 

III. ALGORITHMS 

A. AAIS 
In the proposed AAIS, antibodies are assigned with an 

attribute called age. The algorithm differs from opt-IA in that 
the number of antibodies selected to enter the next generation 
and the number of clones produced from each selected antibody 
depend on the ages of antibodies. Both the clonal rate and the 
survival rate of an antibody increase initially and decline 
gradually as its age. Table 1 shows an example which indicates 
that the antibody reaches its golden age at age =2, and is 
eliminated from the body at age = 4. 
Table 1 Clonal and survival rates 

Age 0 1 2 3 4 
Clonal Rate 0.5 0.8 0.9 0.6 0.3 
Survival Rate 0.4 0.6 0.6 0.3 0 

The following notations are used to facilitate the presentation: 
t       iteration index (t= 0,1,2…) 
n       population size 
N       number of orders to be sequenced 
nf number of antibodies survived to iteration 

t+1 
nr number of new antibodies randomly 

generated for iteration t+1 
cri      clonal rate at age i 
sri       survival rate at age i 
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m       parameter in determining MN(t, a) 
Ab(t)     the set of antibodies at iteration t 
Ab(t,a)     antibody a at iteration t 
CAb(t)     the set of cloned antibodies at iteration t 
CAb(t,a)    cloned antibody a at iteration t 
CAb(t,best)   the best cloned antibody at iteration t 
age(Ab(t, a))  age of Ab(t, a) at iteration t 
age(CAb(t,a))  age of CAb(t, a) at iteration t 
RAb(t,a) rank of the source of clones, Ab(t, a) among 

Ab(t) 
Aff(Ab(t,a))   affinity of Ab(t, a) at iteration t 
Aff(CAb(t,a))  affinity of CAb(t, a) at iteration t 
CN(t,a) number of clones created from selected Ab(t, 

a)at iteration t 
TCN total number of clones created in each 

iteration 
MN(t,a) number of mutation carried out for CAb(t, a) 

at iteration t 
Pb(CAb(t,a)) probability of CAb(t, a)  to be survived at 

iteration t 
The basic procedures of the proposed age artificial immune 
system are outlined below: 
Step 1: Set t =0, generate n antibodies randomly, and assign 
age(Ab(t,a)) = 0 for a = 1,2,3…n 
 
Step 2:  
a) Clone all the antibodies in Ab(t) to CAb(t,a). The number of 
clones created from Ab(t,a) is determined by: 

( )( ) ( )

( )( ) ( )

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−×
×

×
=

∑
=

cn

i
itCAbitCAbage

atCAbatCAbage nTCN
Affcr

Affcr
roundatCN

c

1
,,

,,),(
 

b) Assign: age(CAb(t,a)) = 0 for a = 1, 2, 3. .. (TCN-nc) 
c) For x = 1, 2,…nc; a= (TCN-nc+1)… .(TCN-nc), copy Ab(t,x) 
to the CAb(t,a), set age(CAb(t,a)) = age(Ab(t,x)). 
 
Step 3: Mutate the cloned antibodies by interchanging sections 
of the antibodies. The mutation scheme of interchanging two 
orders in the solution is applied here. The number of times of 
mutation performed is determined by: 
MN(t,a) =  round(RAb(t,a) × rand(0,1) ×  m) 
and no mutation is performed on CAb(t,a), for a= 
(TCN-nc+1)… .(TCN-nc) 
 
Step 4: Set t = t +1; generate the population by: 
a) Copy nr randomly created antibodies to Ab(t,x)  
b) Assign age(Ab(t,x)) = 0 for x = 1,2,.. nr.  
c) Select nf antibodies from CAb(t-1) to Ab(t) and assign them 

as Ab(t,x) for x =  nr+1, …, nr +nf. with the following 
probability 

( )( )
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d) Assign   age(Ab(t, a)) = age(Ab(t-1, a))+1 for a= 1,2…TCN 
e) Copy CAb(t, best) to Ab(t, n) 
 
Step 5: Check the pre-specified stopping condition. If it is 
satisfied, terminate the search process, and return the overall 
best solution as the final solution. Otherwise, go to step 2. 

 
In human bodies, it is unreasonable to assume that the 

mutation for antibodies with the same affinity is always the 
same. So, a mutation scheme is proposed based on randomized 
ranking in step 3. The number of mutation operations 
performed is defined as round(RAb(t,a)*rand(0,1)*m). A 
random factor is added to introduce variations in the mutation 
for the antibodies of same affinity. Meanwhile, the ranking 
among the selected antibodies is still used as a guideline to 
direct the search process to more promising areas, as more 
clones are produced from better antibodies. Different degree of 
mutation performed on duplicated antibodies allows different 
degree of exploitation and exploration from the same solution. 
This prevents the search process from being trapped in a local 
optimum easily. Besides, it is important to maintain the 
antibody representing the overall best solution so far. If an 
antibody is found to be better than the overall best antibody, it 
replaces the overall best antibody to become the new overall 
best antibody. This enables the search process to converge to 
the global optimal solution regardless of the initial population 
distribution. 

B. AAIS_CX 
To further improve the performance of AAIS, a crossover 

operator is incorporated into the basic algorithm of AAIS to 
form the AAIS_CX. The procedures of AAIS_CX are outlined 
as follows: 
Steps 1 – 3 are the same as steps 1–3 of AAIS. 
 
Step 4: Select a pool of candidate antibodies by: 
a) Copy nr randomly created antibodies to the pool, assign 

their ages = 0. 
b) Select nf antibodies from all the CAb(t-1, a) with the 

following probability: 
  ( )( )
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c) Copy CAb(t, best) to the candidate pool 
 
Step 5: Select antibodies from the whole population and assign 
them to the parent pool by using the 2-antibodies-competition 
process: select two antibodies randomly, and assign the one 
with higher affinity to the parent pool. 
 
Step 6: Build Ab(t+1) by using the following steps: 
a) Select antibodies from the candidate pool in accordance 

with their survival rate. An antibody can survive to the 
iteration t+1 if the random number generated is smaller than 
its survival rate corresponding to its age,  
rand(0,1) <= sr age(CAb(t-1, a)).  

b) Assume that y antibodies have survived. (n-y) children 
antibodies created by the crossover operations are selected 
to enter Ab(t+1). The crossover operations used can be any 
conventional crossover operation, such as EAX and single 
point crossover.  
In this paper, a heuristics based crossover operator is 

proposed to solve the order picking problem. Its procedures can 
be illustrated in the following example. A random number r (0< 
r < N) is selected. The orders located in the sequence position r 
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of parent 1 and parent 2 are candidates to be the first order to be 
picked in the child antibody.  Between these two orders, the one 
which is feasible and closer to the origin should be selected. 
Assuming that order A is the 1st order of the child antibody. The 
orders immediately following order A in parents 1 and 2 are 
compared. The one which is feasible and closer to order A is 
selected as the next picking order in the child antibody. If both 
orders are infeasible, a feasible order is then selected randomly. 
The process continues until the whole child antibody is formed.  
 
Step 7: Check the pre-specified stopping condition. If it is 
satisfied, terminate the search process, and return the overall 
best solution as the final solution. Otherwise, go to step 2.  

 
Figure 1 shows the flow of AAIS_CX. In general, the age 

concept is applied in the following areas: 
1. Cloning: Under the conventional clonal selection principal, 
a highly affiliated antibody could produce a relatively large 
number of clones, which causes an imbalance between 
exploitation and exploration of the search space, resulting in 
the trapping of the search process into a local optimum. When 
the aging concept is applied to the cloning process, antibodies 
which have reached a certain age are discarded even though 
they possess high affinity, thus allowing less affiliated 
antibodies to be cloned. This results in a better balance between 
exploitation and exploration of the search space. 
2. Survival: The survival probability of an antibody depends 
on its age. The abandonment of old antibodies with high 
affinity will provide room for new antibodies to enter the next 
generation during the search process. This improves diversity 
and prevents premature convergence. 

IV. SYSTEM  ANALYSIS 
This study seeks to determine the optimal order picking 

sequence for an AS/RS with multiple I/O stations at an air 
cargo terminal. An optimal order picking sequence is essential 
to enhance the operational efficiency of the following three 
processes: (1) inbound cargoes are unloaded from planes and 
stored in the AS/RS before they are retrieved for order breaking 
service or picking up by customers, (2) outbound cargoes either 
arrive at the terminal in containers or as bulk cargoes, which are 
then packed together and stored in the AS/RS until they are 
retrieved to be loaded on planes, (3) some cargoes are 
reshuffled to better utilize the warehouse space. At each input 
station, storage orders are handled in a first-come-first-serve 
basis, and retrieval orders are taken from the rack to a particular 
output station, while reshuffle orders are moved from one rack 
to another.  

All orders can simply be considered as of the same type but 
with different starting locations and destinations. It is assumed 
that the stacker crane is originally located at the origin, (0, 0), 
i.e. the bottom-left corner of the racks. Hence, the distance 
traveled in serving the first order is calculated as the sum of the 
distance traveled from the origin to the starting location of the 
first order and the distance traveled from the starting location to 
its destination. The distance traveled in serving any other order 
is calculated as the sum of the distance traveled between the 
destination of the preceding order to the starting location of the 

current order and the distance from the starting location to the 
destination of the current order. It is also assumed that the 
stacker crane will return to the origin after serving the last 
order. Therefore, the extra distance traveled after the last order 
is calculated as the distance traveled from the destination of the 
last order to the origin. The time to transfer containers between 
the crane and the racks is assumed to be negligible. Indeed, this 
problem can be formulated as a constrained traveling salesman 
problem (TSP). 

Fig. 1 Structure and features of AAIS_CX 
A. Mathematical Model 

The following notations are used in the development of the 
mathematical model.  
tβk  traveling time for the order βk 
tlast  traveling time of the extra distance traveled after all 

orders are finished 
βk  an order to handled by the stacker crane. {β1, β2, .. βN } 

is therefore a sequence of N orders to be handled.  
N   number of orders 

kgW β   horizontal distance traveled to the starting location of  

order βk  

kgH β   vertical distance traveled to the starting location of  

order βk  

kpW β
  horizontal distance traveled to the destination of order 

βk  

kpH β    vertical distance traveled to the destination of order βk  

Wlast  horizontal distance traveled after finishing the last order 
Hlast  vertical distance traveled after finishing the last order 

kwS β
  column index of the starting location of order βk 

khS β
  row index of the starting location of order βk 

kwD β
  column index of the destination of order βk 

khD β
  row index of the destination of order βk 

h  height of a rack 
w   width of a rack 
SPh   horizontal speed 
SPv    vertical speed 
IPx  The set of storage order from the input station x 

Parents selection and 
Crossover 

Population of antibodies 

Population of antibodies 

Cloned antibodies 

Mutated antibodies 

Randomized 
selection of 
antibodies 
to be cloned 

No. of clones 
depends on 
age and 
affinity 

Randomized 
Rank based 
Mutation 

Probability to 
survive 
depends on 
survival rates 
depending on 
age 

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



 
 

 

kxInd β  Index of storage order βk in the input station x, i.e. if 

order βk is the 1st order at input station x, then 
kxInd β  will 

be 1 
The objective of the model is to minimize the time needed to 
handle all orders at the AS/RS, including storage, retrieval and 
reshuffle orders: 
Minimize {∑

=

n

k
k

t
1

β
+ lastt }              (1) 
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             (11) 

Subject to  
b > a  if 

axInd β  <  
bxInd β  3,2,1,, =∀∈∀ xIPxba ββ   (12) 

Equation (1) shows that the objective function represents the 
total traveling time of the stacker crane, which consists of two 
parts: (1) the total amount of time required to handle orders 1 to 
N, and (2) the amount of time required to travel back to the 
origin after order N has been completed. Hence, minimizing 
this objective function is equivalent to maximizing the 
throughput of the stacker crane which is defined as 3600/ 
(objective value /N). Equation (2) calculates the time required 
to handle one order. It is the summation of the time needed to 
travel the distance from the destination of the preceding order 
to the starting location of the current order and the distance 
from the starting location of the current order to its destination. 
As the stacker crane can move horizontally and vertically 
simultaneously, the time is measured as the maximum of the 
times needed to complete the horizontal movement and the 
vertical movement, respectively. Equations (3) and (4) 
calculate the horizontal (vertical) distance traveled by 
multiplying the width (height) of a rack with the differences of 
the column (row) indexes for the 2nd to the Nth orders. 
Equations (5) and (6) calculate the horizontal (vertical) distance 
for the 1st order when the column (row) indexes of the origin 
are zero. Equations (7) and (8) calculate the horizontal and 
vertical distances from the starting location of an order to its 
destination. Equation (9) calculates the time for the stacker 
crane to travel back to the origin after all orders are finished, 
which is the maximum of the time given by equations (10) and 
(11), of completing the horizontal movement and the vertical 
movement, respectively.  

Constraint (12) states that storage orders βa and βb, waiting at 
the same input station with order βa precedes order βb, should be 
handled in a first-come-first-serve manner. It is because the 
stacker crane cannot access order βb before order βa has left the 
station. Hence, if  

axInd β  <  
bxInd β   , order βa precedes order βb, 

its position in the entire order sequence must be larger than that 
of order βa, and if 

axInd β >1, order βa cannot occupy the first 

position of the entire order sequence.  
 
B. Experiments 

The proposed AAIS and AAIS_CX are used to determine the 
optimal order picking sequence for an AS/RS. To evaluate the 
algorithms, their performances are compared with that of 
nearest neighbor heuristics (NNB), genetic algorithm (GA), 
and ant colony system (ACS). In order to satisfy constraints 
(12) and (13), special heuristics is embedded in the procedures 
of GA, ACS, AAIS and AAIS_CX to ensure that every solution 
remains feasible throughout the search process.  

In the AS/RS, there is only one aisle, with 16x9 storage racks 
on each side of the aisle. There are 3 input and 3 output stations 
located on different floors. The output stations are located at the 
racks (3, 5), (3, 7) and (3, 9), while the input stations are located 
at the racks (6, 1), (6, 3) and (6, 7). 18 randomly generated test 
cases are used in the experiments.  The cases consist of 20, 50 
and 100 orders. The percentage of storage, retrieval and 
reshuffle orders are 35%, 55% and 10%, respectively.   

In the experiments, ACS algorithm runs 1000 iterations with 
10 ants for cases with 20 and 50 orders, and only 500 iterations 
for cases with 100 orders to keep the computation time at a 
reasonable level. As suggested in the literature [15], the 
parameters qo and 

oτ are set as 0.9 and 1/CNNB, respectively,  β  
is chosen from the range [2, 5], and both ρ  and ξ  are chosen 
from the range [0.1, 0.9]. GA runs 100 iterations with a 
population size of 100 for test cases with 20 and 50 orders, and 
200 iterations for cases with 100 orders to achieve better 
results. AAIS and AAIS_CX run 500 iterations with a 
population size of 100, and a clone size of 200 respectively. All 
the algorithms are programmed in JAVA and run on a Pentium 
IV 3.2 GHz computer with 512M Ram. 
 
C. Results and Discussion 

Tables 2 and 3 summarize the best and the average of the best 
solutions obtained by running each of the algorithms 10 times, 
as well as the average of the corresponding computation time 
needed to achieve the best solutions. Figures 3 and 4 show the 
convergence behavior of the search processes of GA, ACS, 
AAIS and AAIS_CX in one typical run. 

The results show that, when the number of orders is 20 or 50, 
AAIS performs better than ACS and GA in 5 out of 10 test 
cases. However, when the number of orders has increased to 
100, it has better performance in all test cases. In addition, 
AAIS achieves the “optimal” results in the shortest time in most 
cases. The results also show that AAIS_CX has the best 
performance among all five algorithms in all test cases, even 
though it needs longer computation time to derive the “optimal” 
results when compared with other algorithms. However, the 
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differences become smaller as the number of orders increases. 
Moreover, it can be seen from figures 3 and 4 that both AAIS 
and AAIS_CX have better exploration ability in searching for 
the “optimal” solution. The aging concept prevents the search 
process of both algorithms from premature convergence, while 
the clonal selection process keeps exploring areas with 
promising results. Hence, both AAIS and AAIS_CX are 
efficient methodologies for solving order picking problems, 
especially when the number of orders is large. 

V. CONCLUSIONS 
In this paper, an Age Artificial Immune System (AAIS) has 

been proposed. The aging concept is used to govern the cloning 
and survival of antibodies. To further enhance the performance 
of the algorithm, a crossover operator is added to AAIS to form 
the Age Artificial Immune System with Crossover 
(AAIS_CX). The algorithms have been tested by solving an 
order picking problem for an AS/RS with multiple input/ output 
stations. It is shown that the performance of AAIS_CX is better 
than that of AAIS, GA and ACS in all test cases. Indeed, the 
proposed AAIS and AAIS_CX are efficient and effective 
means for optimizing order picking sequences. 

Although AIS has been shown to be efficient in optimization, 
the parameters of the algorithm, such as survival, clonal rates, 
and numbers of mutation, need to be fine-tuned for good 
performance. Therefore, future research can focus on designing 
algorithms in which the parameters change adaptively to the 
environment. In addition, the convergence behaviour of the 
proposed algorithms should also be investigated.  
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Fig. 3 Best-of-all solutions against time in the case 7 (50 
orders) for GA, ACS, AAIS and AAIS_CX; Fig. 4 Best-of-all 
solutions against time in the case 13 (100 orders) for GA, ACS, 
AAIS and AAIS_CX 
 
Table 2 Results of NNB, AAIS, AAIS_CX, ACS and GA in 
cases of 20 and 50 orders 
Case
/order NNB AAIS AAIS_CX ACS GA 

  avg best time avg best time avg best time avg best Time

13/100 2395 2155 2146 22.3 2139 2132 38.3 2297 2276 32.2 2263 2257 94.4 

14/100 2445 2206 2176 24.2 2162 2156 36.9 2303 2263 30.5 2292 2280 81.9 

15/100 2443 2231 2201 26.4 2192 2173 47.8 2364 2343 24.5 2337 2322 74.0 

16/100 2731 2561 2552 30.1 2524 2520 46.6 2660 2621 27.3 2621 2605 82.2 

17/100 2701 2469 2439 37.6 2431 2419 43.9 2577 2539 31.8 2529 2471 102.3

18/100 2698 2485 2479 36.4 2434 2427 42.7 2606 2566 33.7 2522 2508 73.9 

Table 3 Results of NNB, AAIS, AAIS_CX, ACS and GA in 
cases of 20 and 50 orders 
Case 
/order NNB AAIS AAIS_CX ACS GA 

    avg best time avg best time avg best time avg best Time 

1/20 436 371 370 1.1 349 345 9.4 359 356 0.9 359 350 5.6 

2/20 425 375 374 1.7 362 359 10.5 376 371 1.1 375 372 5.8 

3/20 488 395 394 0.9 383 382 13.4 394 386 1.2 387 383 7.1 

4/20 643 562 549 2.6 538 536 13.0 564 557 1.1 560 556 5.1 

5/20 579 517 512 0.3 506 503 8.3 522 517 1.2 517 512 8.1 

6/20 570 454 446 5.1 445 443 10.0 477 466 1.1 470 472 5.7 

7/50 1212 1080 1065 4.9 1063 1058 23.0 1117 1102 7.9 1092 1077 20.2 

8/50 1203 1096 1094 8.6 1070 1064 12.2 1144 1140 11.4 1099 1083 24.7 

9/50 1175 1043 1033 5.9 1017 1010 17.1 1060 1043 17.2 1036 1017 23.0 

10/50 1430 1375 1338 6.6 1324 1315 23.9 1356 1338 15.7 1339 1312 20.7 

11/50 1355 1259 1250 5.9 1230 1222 19.7 1278 1265 8.8 1258 1258 16.8 

12/50 1220 1171 1152 8.3 1124 1110 20.3 1160 1137 14.7 1143 1129 25.3 
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