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Abstract—Associative neural memories are models of 
biological phenomena that allow for the storage of pattern 
associations and  the retrieval of the desired output pattern 
upon presentation of a possibly noisy or incomplete version 
of an input pattern. In this paper, we introduce fuzzy swarm 
particle optimization technique for convergence of 
associative neural memories based on fuzzy set theory. An 
FPSO consists of clustering of swarm’s particle by applying 
fuzzy c-mean algorithm to attain the neighborhood best. We 
present a singular value decomposition method for the 
selection of efficient rule from a given rule base required to 
attain the global best. Finally, we illustrate the proposed 
method by virtue of some examples. 

Index Terms—Artificial neural network, Convergence, ,  
Fuzzy c-mean, Particle swarm optimization, Singular value 
decomposition. 

   

I. INTRODUCTION 
An artificial neural network (ANN) is an analysis 

paradigm that is a simple model of the brain and the back-
propagation algorithm is the one of the most popular 
method to train the artificial neural network. Recently 
there have been significant research efforts to apply 
evolutionary computation techniques for the purposes of 
evolving one or more aspects of artificial neural networks. 

 The efficient supervised training of feedforward neural 
networks (FNNs) is a subject of considerable ongoing 
research and numerous algorithms proposed to this end. 
The back propagation (BP) algorithm [1] is one of the 
most common supervised training methods. Although BP 
training has proved to be efficient in many applications, its 
convergence tends to be slow, and yields to suboptimal 
solutions [2]. 

 Attempts to speed up training and reduce convergence 
to local minima have been made in the context of gradient 
descent [3, 4, 5 ]. However, these methods are based on 
variable weight, learning rate, step size and bias to 
dynamically adapt BP algorithm, and use a constant gain 
for any sigmoid function during its training cycle. 

Evolutionary computation methodologies have been 
applied to three main attributes of neural networks: 
network connection weights, network architecture 
(network topology, transfer function), and network 
learning algorithm. 

Particle swarm optimization (PSO) is a population 
based stochastic optimization technique [6,7] inspired by 
social behavior of bird flocking or fish schooling. This is 
modeled by particles in multidimensional space that have 
a position and a velocity. These particles are flying 
through a hyperspace and have two essential reasoning 
capabilities: the memory of their own best position and 
knowledge of the swarm’s best, best simply meaning the 
position with the smallest objective function value. 
Members of a swarm communicate good positions to each 
other and adjust their own position and velocity based on 
good positions. There are two main ways this 
communication is done: 

• A global best that is known to all and 
immediately updated when a new best position 
is found by any particle in the swarm. 

• A “Neighborhood” best where each particle 
only immediately communicates with a subset 
of the swarm about best positions. 

The remainder of this paper is organized as follows. In 
Section II, preliminaries of particle swarm optimization 
are presented. Fuzzy c-mean algorithm is developed for 
swarm’s clustering to attain the neighborhood best in 
Section III. Singular value decomposition has been 
proposed for approaching the global best in Section IV. 
An illustrated example has shown in Section V. Finally, 
we make concluding remarks in Section VI. 

II. THE PARTICLE SWARM OPTIMIZATION 
PSO’s precursor was a simulator of the social behavior 
that was used to visualize the movement of a birds’ flock. 
Several version of the simulation model were developed, 
incorporating concepts such as nearest neighbor velocity 
matching and acceleration by distance [6,8]. Two variants 
of the PSO algorithm were developed. One with a global  
neighborhood and another with local neighborhood [9].  

Suppose that the search space is -dimensional, and 
then the  particle of the swarm can be represented by a 

-dimensional vector

D
thi

D ( 1, 2, ...... )X x x x Di i i i= . The 
velocity (position change) of this particle can be 
represented by another -dimensional 
vector . The best previously 

visited position of the  particle is denoted 

as . Defining  

D
( 1, 2, ...... )V v v v Di i i i=

thi
( 1, 2, ...... )P p p p Di i i i= )1 2, , ......,( kC CC
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as the index of the best particle in the swarm (i.e.  
particle is the best), and let the superscript denote the 
iterative number, then the swarm is manipulated 
according to the following two equations [6]: 

thg

1
1 2( ) (n n n n n n n n

aid id gd idid id
C r p x C r p xZ Z a

+ = + − + − )

1+

N

))

(1)                    

1n n n
id id idx x Z+ = +                                                         (2) 

Where ;  and   is the size of 
the swarm;   is a positive constant called, acceleration 
constant  are the random numbers, uniformly 
distributed in [0,1]; and determines the 
iteration numbers. 

1, 2, ....d D= 1, 2, ....i = N

aC
1, 2r r

1, 2, ....n =

   Equations (1) and (2) define the initial version of the 
PSO algorithm. Since there was no actual mechanism for 
controlling the velocity of a particle, it was necessary to 
impose a maximum value  on it. If the velocity 

exceeded this threshold, it was set equal to . This 
parameter is proved to be crucial, because large values 
could results in the particles moving past good solutions, 
while small values could result in insufficient exploration 
of the search space. This lack of control mechanism for 
the velocity resulted in low efficiency for PSO. 

maxV

maxV

   Various attempts have been made to improve the 
performance of the base line PSO with varying success. 
Eberhart and Shi focus on optimizing the update 
equations for the particles [9]. Angeline used a selection 
mechanism in an attempt to improve the general quality 
of the particles in swarm. Kennedy uses cluster analysis 
to modify the update equation, so that particles attempt to 
confirm to the centre of their clusters rather than 
attempting to conform to a global best.   
    The aforementioned problem was addressed by 
incorporating a weight parameter for the previous 
velocity of the particle. Thus in the latest version of the 
PSO, Equations (1) and (2) are changed to the following 
ones [10]:  

1 2

1

1 2( ( ) (a a

n
n n n n n n n
id id id id idid

Z x W Z C r p x C r p x
+
= + − + −  

1 1n n n
id id idx x Z+ += +  

    In our proposed model both the approaches have been 
consider together. First, we clustered the swarm by 
applying fuzzy c-mean algorithm to attain the 
neighborhood best and then we reduce the number of 
rules required to attain the global best by virtue of 
singular value decomposition method. 
 

 

III. NEIGHBORHOOD BEST USING FCM 
   The Fuzzy c – Means algorithm generalizes the hard c – 
means algorithm to allow a particle of swarm to partially 

belong to a multiple clusters. Therefore, it produces a soft 
partition for a given swarm. To do this, the objective 
function J  of hard c-means has been extended in two 
ways. 

• The fuzzy membership degrees in clusters were 
incorporated into the formula, and 

• An additional parameter  is introduced as a 
weight exponent in the fuzzy membership. 

p

   The extended objective function, denoted J, is 

         2

1
( ( )( , )

k p
k ii ki x Xk

x x vcJ P V μ
= ∈
∑ −∑=  

Where  is a fuzzy partition of the swarm p X  formed 

by C . The parameter  is a weight that 
determines the degree to which partial members of a 
cluster affect the clustering result. 

1 2, , ......, kC C p

Theorem3.1 A constrained fuzzy partition 

 can be a local minimum of the objective 
function J only if the following conditions are satisfied: 

)1 2, , ......,( kC CC

( )
1

22 1

1
( ) 1

k p
i ji j

x x v x vcμ
−

=
= − −∑     

                                                            (3) 1 ,i k x X≤ ≤ ∈

( ( )) ( ( ))
np p

i i ix X x X
xv x xc cμ μ

∈ ∈
×= ∑ ∑ 4)i k≤ ≤     1  (  

Based on this theorem, FCM updates the prototypes and  
 
 
 
 
the membership function iteratively using (3) and (4) 
until a convergence criterion is reached. 
 
                   
 

Weights of Fuzzy c-means, p=2
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                          Fig.1 (a) Weight of the FCM algorithm for p = 2  
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Fig1 (b) Weight of the FCM algorithm for p = 3 
 
The algorithm of FCM can be described as: 
FCM   ( , , , )X c m ε
X : an unlabeled swarm size 
C : the number of clusters to form 
p : the parameter in objective function 
ε : a threshold for the convergence criteria. 
Initial prototype  1, 2 , ......., }{ v vcV v=

Repeat 
previousV V←  

 Compute membership function using (4) 
Update the prototype,  in V using (3) iv

Until  
1

c previous
vv iii

ε− ≤∑
=

  

IV. GLOBAL BEST USING SVD 
In our proposed model, after clustering the particles of 

swarm, orthogonal transformation method is used for 
selecting important fuzzy rules from a given rule base [11, 
12, 13, 14 ]. Unlike conventional methods where multiple 
iterations are usually required to find “optimal” number of 
fuzzy rules, orthogonal transformation methods are a non 
iterative procedure. Therefore, orthogonal transformation 
methods are computationally less expensive compared to 
the conventional methods especially when the numbers of 
particles in the swarm are too large. In this section we 
introduce   how to use singular value decomposition 
(SVD) to select the most important fuzzy rules from a 
given rule base and construct compact fuzzy models with 
better generalization ability. 

Singular value decomposition takes a rectangular -by-
 matrix

n
p A , in which the n rows represents the genes and 

the columns represents the experimental condition [15]. 
The SVD theorem states: 

T
n p n n n p p pA U S V× × ×= ×

I ×=

 
Weights of Fuzzy c-means, p=3
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Where U U   T
n n

           T
V p pV  (i.e. U  and V  are orthogonal) I ×=

S  = diag 1, 2 , ....., ) ( min{ , })( n p
m R m n pσ σσ ×∈ =  is a 

diagonal matrix with . The 
columns of U  are the left singular vectors has singular 

values and is diagonal (mode amplitudes); and V  has 
rows that are the right singular vectors (expression level 
vectors).  

01 2 ..... mσ σσ ≥ ≥ ≥≥

T

In the basic principle of using SVD for fuzzy rule 
selection, we can use fuzzy model with constant 
consequent constituents as an example. This type of fuzzy 
model, which is usually referred to as the zero order TSK 
model, has the following form [16]. 

:  and x  is  is 1 1 2:  If  is  and ........2A Ai i mR x A xi im    

Then . is ;  1, 2, ....y C i Mi =

Where C  is the constant constituents. The total output of 
the model is computed by. 

i

1 1

M M
Y w ci i ii i
= ∑ ∑
= =

w  

Where  is the matching degree. wi
The SVD starts with an oversized rule base and then 

remove redundant or less important fuzzy rules through a 
“one pass” operation. Finally the efficient rule obtained is 
obeyed by all the swarm’s cluster to approach the global 
best. In next section we will illustrate the method by 
taking few examples.  

V.    ILLUSTRATIVE   EXAMPLES 
Suppose we are given a swarm of size six particle, each 

of which has two features F1 and F2.We list the particle in 
given table. Assuming that we want to use FCM to 
partition the swarm in two clusters [16], suppose we set 
the parameter  in FCM at 2, and the initial prototypes to 

 = (5,5)   = ( 10,10 ).    
p

1v 2v
Table1.   A swarm to be partitioned 

 
1F  2F  

X1 2 12 
X2 4 9 
X3 7 13 
X4 11 5 
X5 12 7 
X6 14 4 

 
The initial membership functions of the two clusters are 
calculated using (3): 

      ( )22
1 1 1 11 1

( ) 1 jj
x x v xcμ =
= − −∑ v  

      1 1
2

x v−  = 32 +72 = 9 + 49 = 58 
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2

1 2x v−  = 82 + 22 = 64 + 4 = 68 

      11
( )xcμ   = 1/ [(58/58) + (58/68)]                         

Similarly, we obtain the following: 
       12

( )xcμ  = 1/[(68/58)+(68/68)] = 0.4603     

    21
( )xcμ  = 1/[(17/17)+(17/37)] = 0.6852  

   22
( )xcμ  = 1/ [(37/17) + (37/37)] = 0.3148 

   31
( )xcμ  = 1/[(68/68)+(68/18)] = 0.2093 

    32
( )xcμ  = 1/ [(18/68) + ((18/18)] = 0.7907 

   41
( )xcμ  = 1/ [(36/36) + (36/26)] = 0.4194  

    42
( )xcμ  = 1/ [(26/36) + (26/26)] = 0.5806 

   51
( )xcμ  = 1/ [(53/53) + (53/13)] = 0.197 

   52
( )xcμ  = 1/ [(13/53) + (13/13)] = 0.803 

    61
( )xcμ  = 1/ [(82/82) + (82/52)] = 0.3881 

    62
( )xcμ  = 1/ [(52/82) + (52/52)] = 0.6119 

Therefore, using these initial prototypes of the two 
clusters, the membership function indicates that 1x  and 

2x  are more in the first cluster, while the remaining 
particles in the   swarm are more in the second cluster.  

The FCM algorithm then updates the prototypes 
according to (4). 

 
6 62 2

1 1 11
( ( )) ( ( ))

` k k kikk
v x xc cμ μ

==
= ×∑ ∑ x  

 
     = 

[0.53972×(2,12)+0.68522×(4,9)+0.20932×(7,13)+0.41942×
(11,5)+0.1972×(12,7)+0.38812×(14,4)] / 
[0.53972+0.68522+0.20932+0.41942+0.1972+0.38812] 

 
= [(7.2761/1.0979),(10.044/1.0979)] 
= (6.6273, 9.1484) 
 

6 62 2
2 2 21` 1

( ( )) ( ( ))k k kk k
v x xc cμ μ

= =
= ×∑ ∑ x  

= 
[0.46032×(2,12)+0.31482×(4,.9)+0.79092×(7,13)+0.58062×
(11,5)+0.8032×(12,7)+0.61192×(14,4)] / 
[0.46032+0.31482+0.79092+0.58062+0.8032+0.61192] 
 
= [(22.326/2.2928),(19.4629/2.2928)] 
= (9.7374, 8.4887)  
 
 

 
                     Fig.2 An example of Fuzzy c-mean Algorithm 
 
The update prototype  as shown in Fig2, is moved 

closer to the center of the cluster formed by 
1v

1x , 2x  and 

3x ; while the updated prototype 2v  is moved closer to the 

cluster formed by 4x , 5x  and 6x . 

Now we illustrate how to solve for SVD to obtain 
efficient rule for approaching the global best, let’s take the 
example of the matrix. 

2 4
1 3
0 0
0 0

A=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
For a  matrixW , the nonzero vector n n× X  is the 

eigenvector of W W if: W X  = λ X ,λ  is the eigenvalue 
of A  and X  is the eigenvector of A  corresponding to 

.So to find the eigenvalues of the entity we compute 

matrices 

λ
TAA  and TA A . The eigenvectors of TAA  make 

up the columns of U  so we can do the following analysis 
to findU . 

 

2 4 20 14 0 0
2 4 0 0 14 10 0 01 3
1 3 0 0 0 0 0 00 0

0 0 0 00 0

TAA W

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Since WX  then  ( ) . Xλ= 0

0

W I Xλ− =
Hence

20 14 0 0
14 10 0 0

( )
0 0 0
0 0 0

X W I X

λ
λ

λ
λ

λ

−
−

= − =
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Thus, from the solution of characteristic equation, we 
obtain =0, =0,  = 15+14.81, λ  = 15-14.81. This λ λ λ
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value can be used to determine the eigenvector that can be 
placed in the columns ofU . Thus, we obtain the 
following equations. 
19.883 1X  +14 2X  = 0; 14 1X  + 9.883 2X  = 0; 3X =0; 

4X =0 
Upon simplifying the first two equations we obtain a ratio 
which relates the value of 1X  and 2X . The values of 1X  
and 2X  are chosen such that the elements of S are the 
square roots of the eigenvalues. Thus a solution that 
satisfies the above equation 1X =-0.58 and 2X =0.82 and 

3X = 4X =0 (this is the second column of the U  matrix). 
Substituting the other eigenvalues we obtain: 
-9.883 1X  + 14 2X  = 0; 14 1X -19.883 2X  = 0; 3X  = 0; 

4X =0 .Thus a solution that satisfies this set of equations 
is 1X  = 0.82 and 2X  = -0.58 and 3X  = 4X  = 0 (this is 
the first column of the U  matrix ). Combining these we 
obtain: 
 

0.82 0.58 0 0
0.58 0.82 0 0

0 0 1
0 0 0

U

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0
1

 

Similarly, we can find the value ofV  

  

2 4
2 4 0 0 1 3
1 3 0 0 0 0

0 0

TA A=

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

Similarly, we can obtain the expression 

0.40 0.91
0.91 0.40

V
−

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                        
 

Finally, the  is square root of the eigenvalues from S
TAA  or  TA A  and can be obtained directly giving us: 

 

5.47 0
0 0.37
0 0
0 0

S =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

It is obvious that .. This is what the paper 
was indicating. 

.1 2 3 ....σ σ σ

VI.   Conclusion 
In this research, a new approach is proposed for the 
convergence of associative neural memories by using the 
Fuzzy Particle Swarm Optimization technique (FPSO). 
The approach focuses on the neighborhood best and 
global best to increase the speed of convergence. In 

addition, this proposed model overcomes the local 
minima problem which is major issue with the PSO 
technique. 
      The illustrated examples suggest that our new 
approach can be used successfully as real time memory 
convergence technique for the artificial neural network.  
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