
 
 

 

  
Abstract — There is not a method for analysing unreplicated 

factorial designs that performs well for various configurations of 
number and size of active effects. Moreover, the most popular tool that 
has been applied is informal and subjective. To overcome these 
drawbacks, this paper suggests a multiple testing to help practitioners 
making objective decisions and identifying active effects with a 
minimum number of additional runs for a wide range of active effects 
configurations. The selected methods are efficient and easy to 
implement by practitioners, including those who do not have a 
profound knowledge of statistics. Two examples from the literature 
exemplify and justify the proposed approach. 
 

Index Terms — Design of experiments, Error rate, Location 
Effects, Screening.  
 

I. INTRODUCTION 
Managers and engineers of today's modern industrial world 

have placed an increased emphasis on achieving breakthrough 
improvements in productivity and quality of processes and 
products through the application of Design of Experiments 
(DoE) and other statistical techniques. DoE provides a 
theoretical basis for experimentation in many domains of 
knowledge and is particularly appropriate for studying 
simultaneously several variables, in order to identify the input 
variables with greatest effect on the output variable (the 
response or outcome of the experiment) and the levels at which 
they should be kept to improve process or product 
performance. 

Two-level fractional factorial designs have been used as 
screening designs to reduce the number of input variables to a 
manageable few by carrying over just a fraction of all 
factor-level combinations. The experimental runs are often 
replicated to obtain an estimate of experimental error which can 
be used to construct statistical tests for assessing factor 
significance. However, when experiments are conducted in 
manufacturing facilities, the processes complexity often makes 
the replication of physical experiments prohibitive, if not 
impossible, due to either technical, economical or time 
constraints. Consequently, unreplicated factorial designs have 
been assuming an important role in process and product 
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improvement.  
The identification and selection of methods for analysing 

unreplicated factorial designs are not simple tasks. They are 
scattered in many different technical and scientific journals, 
which may not be readily available and require financial 
resources to subscribe them. Fortunately, comparisons on 
methods performance have been reported in the literature, for 
example in [1]-[2], which facilitates their selection. 

The main purpose of this paper is to present methods 
objectively selected from the literature and illustrate them 
through examples, so that practitioners can make objective 
decisions and identify the active effects in unreplicated 
factorial designs with a minimum number of additional runs. 

 

II. ANALYSIS OF UNREPLICATED FACTORIAL DESIGNS – 
THEORETICAL FRAME 

Analysis of unreplicated factorial designs has been quite 
explored and still constitutes an open and active research field. 
The most popular tool for identifying active effects in 
unreplicated factorial designs is the normal or the half-normal 
probability plot of the contrasts. These plots have been 
extensively applied although several researchers recognise that 
they are informal and subjective. It is not easy to identify and 
classify as inactive the effects that fall along a straight line, and 
as active the ones that tend to “fall off the line”. Even when all 
effects are inactive the plotted points do not lie perfectly on a 
straight line, which highlights the subjectivity in deciding what 
constitutes “falling off the line”. Whether or not a particular 
contrast is included into the model may depend on 
practitioners’ sensibility and knowledge on process and 
product. Thus, objective methods are preferable and numerous 
alternatives have been reported in the literature. It is important 
to avoid empirical practices and subjective analyses in 
experimental studies, reinforcing one important message: 
efficient methods whose interpretation is not subjective are 
more suitable and advisable, mainly for those who do not have 
enough background in DoE.  

There are several competing methods but, in general, these 
methods only work well under the so-called effects sparsity 
principle, that is, under the assumption that only a few effects 
are active. This hypothesis is frequently true, but not always. In 
practice, there is not previous knowledge on the number and 
magnitude of active effects or whether abnormalities (outliers) 
exist in the data set. Furthermore, there is not one method that 
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performs well for various configurations of number and size of 
active effects. For these reasons, it is advisable to apply, 
separately but to the same data set, methods that perform well 
for a small number (up to 20%) of active effects, for a large 
number (more than 20% up to 50%) of active effects, and also 
in presence of an outlier.  

Misidentify an active effect as inactive (Type II error) is 
much more severe than misidentify an inactive effect as active 
(Type I error) and can compromise the efficiency of subsequent 
experiments. For these reasons, greater emphasis should be 
placed on keeping low Type II errors and accepting higher 
Type I errors in the screening phase. According to [2], the most 
powerful methods for an EER (Experimentwise Error Rate – 
error rate of declaring at least one inactive effect as active under 
the null hypothesis that no contrast is active) as close to 5% as 
possible are presented in [2]-[3].  

This paper reviews and illustrates these methods and the 
method presented in [4], which can identify the real active 
effects when there are abnormalities (outliers) in the data. This 
method computes the effects based on the rank transformation 
of the experimental results, and then identifies the active effects 
applying a formal test of normality coupled with an outlier test.  

To test the normality of the contrasts one should apply the 
statistic 

 
 
(1) 
 
 
 

where c  is the average of the ordered contrasts ic  and iz  is 
the ith inverse normal order-statistic in a sample of size m, as 
defined in [5]. For a low significance level of ´W test, the 
active effects are those whose contrasts fall outside the 
interval [ ]FF dd 2 ,2 +−  where Fd  is the difference 

between the third and the first quartiles of ic . The effects 
whose contrasts fall outside the interval are candidates for 
being considered active effects.  

Dong [3] defined an estimator of the contrast standard error 
by  

 
 
(2) 
 
 

where m is the number of contrasts, inactivem  is the number of 

inactive contrasts characterised by 052 S.ci ≤ , and 

( )icmedian.S ×= 510 . A contrast is declared active if 

(3) 
 

where ( ) 29801 1 m.+=γ .  
This method is the most powerful, that is, has the greatest 

ability to identify all active effects and no inactive effects, 
which is the ideal case, for a small number of active effects, 
namely for one and two effects with the same or different 
magnitudes [2]. 

 
Chen and Kunert [2] proposed a multistage stage procedure 

whose test statistic MaxUr  is based on the generalised 
likelihood ratio test statistic  

 
 
 
(4) 
 
 
 

where k (k = 1, 2, …, m-1) is the estimate number of active 
contrasts. Considering that 

 
(5) 
 

and 
 
(6) 
 

one should consider that r is the number of active contrasts if 
MaxUr is larger than a critical value r,m,cα , where α  is the 
significance level and m  is the number of contrasts. 

This method is the most powerful for a larger number of 
active effects, more than 3 out of 15, with the same or different 
magnitude [2]. 

 

III. EXAMPLES 
This paper re-analyses two examples from the vast literature 

on DoE. The first one is an unreplicated factorial design 
presented in [6] and interpreted through empirical analysis of 
experimental results. The study aimed at identifying the effects 
with significant influence on the lower eutectic temperature in 
freeze-dried pharmaceutical products. The second one 
describes the application of an unreplicated factorial design in 
developing a nitride etch process on a single-wafer plasma 
etcher [7]. 

 

Example 1 – Lower Eutectic Temperature 

In regard to lower eutectic temperature, Sunberg [6] 
concluded that B and BC were active location effects. The large 
magnitude of these effects is highlighted in the half-normal 
probability plot of contrasts (see Figure 1). In this situation, 
with few effects with large magnitude, Dong’s and Chen and 
Kunert’s methods also identify those effects as active. This is 
not surprising because there are small differences in methods 
performance when the active effects have large magnitudes [2]. 
Moreover, it is important to point out that the active effects are 
identified by Chen and Kunert’s method for a low value of the 
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significance level, providing much more confidence in 
accepting them as active effects. Aguirre and Trejo’s method 
reveals the same conclusion (see Table 1), which was 
unexpected because the Rank method, in general, destroys the 
ability for detecting active effects when there are not outliers in 
the data. 
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Fig. 1 – Lower eutectic temperature 

 

Example 2 – Nitride Etch Process 
In [7] is analysed the etch rate for silicone nitride in a 

single-wafer plasma etcher for the following variables: gas 
flow (A), the power applied to the cathode (B), the pressure in 
the reactor chamber (C), and the spacing between the anode and 
the cathode (D). Analysing a normal probability plot, the 
authors concluded that the main effects of A and D, as well as 
the AD interaction, were significant.  

Figure 2 shows one active effect of large magnitude (D) and 
two active effects of smaller magnitude (A and AD). According 
to Table 1, the three methods lead to different conclusions. The 
erroneous solution of Aguirre and Trejos’ method is not 
surprising because there are not abnormalities in the data set. 
The solution provided by Chen and Kunert´s method reveals 
five active effects while Dong´s method concludes that only 
three effects are active. This can be explained because, 
according to Chen and Kunert [2], their method may declare 
active some inactive effects for some configurations of active 
effects, which seems to be the case in this example. When 
Dong’s and Chen and Kunert’s methods present different 
solutions, it is necessary to run additional experiments for 
identifying the real active effects. Firstly, one should run an 
experiment at the selected levels of active effects identified by 
both methods and, afterwards, run the other trials by adding up 
each one of the remaining active effects at a time. The real 
active effects are identified looking at the experiments results 
and taking into account the objective of the study. In this 
example, the effects A, D and AD are identified as active by 
both methods. So, the first experiment should include factors A 
and D at their best levels, which would be identified from 
analysis of interaction AD. The following experiment should 
include factors B and C at their best levels, which would be 
identified from analysis of interaction BC. Since the study 
objective is to minimise the lower eutectic temperature, B and 
C are active effects if this experiment yields a value smaller 
than the one obtained in the previous experiment.  
 

Table 1 – Results summary 
Method Example 1 Example 2 

Dong B BC A D AD - - 
Chen and Kunert B BC A D AD BC ABC

D 
Aguirre and Trejo B BC D AD AC - - 
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Fig. 2 – Nitride etch process 

 

IV. CONCLUSIONS 
There are configurations of active effects distinct of those 

ones plotted in Figures 1 and 2. Nevertheless, the authors argue 
that Dong’s and Chen and Kunert’s methods will identify all 
active effects for the most common configurations that arise in 
practice. When both methods present the same solution, this is a 
strong indicator of the real active effects. On the contrary, if the 
methods identify different active effects, the inactive effects 
misidentified as active can be determined through few 
additional trials, as illustrated in example 2. Informal 
procedures and graphical methods, such as normal and 
half-normal probability plots, allow a visual check on the 
accuracy of the decisions provided by other methods, being 
especially useful in the detection of outliers. When the normal 
plot of the estimated effects does not show any evident 
abnormality, this may mean that the data set is free of outliers 
and, consequently, Aguirre and Trejo’s method application is 
unnecessary. 

The methods presented in this paper may not be the magic 
wand to improve process and product quality. However, they 
are efficient, do not require any special algorithm or software to 
be implemented and can enhance the decision making process 
whenever the practitioner has to analyse the results obtained 
from unreplicated factorial designs. 
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