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Abstract—In this paper we propose a multi-agent approach for 

traffic-light control. According to this approach, our system 
consists of agents and their world. In this context, the world 
consists of cars, road networks, traffic lights, etc. Each of these 
agents controls all traffic lights at one road junction by an 
observe-think-act cycle. That is, each agent repeatedly observes 
the current traffic condition surrounding its junction, and then 
uses this information to reason with condition-action rules to 
determine in what traffic condition how the agent can efficiently 
control the traffic flows at its junction, or collaborate with 
neighboring agents so that they can efficiently control the traffic 
flows, at their junctions, in such a way that would affect the traffic 
flows at its junction. This research demonstrates that a rather 
complicated problem of traffic-light control on a large road 
network can be solved elegantly by our rule-based multi-agent 
approach. 
 

Index Terms—Intelligent Transportation System, Multi-Agent 
System.  
 

I. INTRODUCTION 
Traffic congestion is a crucial problem in a large city. It is 

normally caused by an improper control of traffic lights which 
is not corresponding to the current traffic condition 
surrounding the road junction. In this paper we propose a 
multi-agent approach for traffic light control which efficiently 
manages the traffic according to the current traffic condition. It 
aims to reduce each car’s delayed time at each junction. This is 
achieved by an agent’s observe-think-act cycle. That is, the 
agent continuously observes the current traffic conditions by 
collecting traffic data, and the data will then be used for 
reasoning with the traffic-light-control rules by the agent’s 
inference engine to determine how a signal will be changed on 
each traffic light at each junction, so that the traffic can be 
managed efficiently. 

The problem of intelligent traffic control has been studied in 
the area of intelligent transportation system for many years. We 
will refer to only a few that are related to our work. The first 
one is the method of Vehicle Actuated Signal Control [1]. This 
method controlled traffic lights by considering the number of 
cars waiting in the queue to be serviced by a traffic light. 
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Sensors are placed at a short distance from the junction in order 
to detect cars and count the number of passing cars. When the 
current green light is going to turn red, but the sensor can detect 
that some cars have come in that range of distance, the duration 
of this green light is extended further. This scenario will repeat 
until no more cars have arrived in that range or the maximum 
duration for the green light has been reached.  

Some approaches employed machine learning methods, such 
as reinforcement learning and genetics algorithm [2, 3], to learn 
traffic patterns of different time in a day and used them to 
control the traffic lights. This seems feasible when all the 
commuters behave normally. However, in real life it is hardly 
to be so. Other approaches used Fuzzy controllers [4, 5] to 
adjust only the duration of green light of each traffic light to 
match the current traffic condition, but not to change the signal 
patterns. Thus, this is not capable of controlling the traffic 
patterns. 

Some works are based on a multi-agent approach. For 
example, [6] adopted case-based reasoning to control traffic 
lights. The agent observed traffic condition at a junction and 
used this information to match with candidate cases from its 
case-base, consequently it applied the solution of the selected 
case to control the traffic lights. Obviously this approach is 
quite similar to a rule-based approach we investigate in this 
paper. An agent proposed in [7] used some properties of the 
current states of all traffic patterns as the criterion to determine 
what will be the next traffic-light pattern. 

For the rest of the paper, it is organized as follows. In the next 
section we first state our problem description. In section 3 the 
overall multi-agent system architecture is introduced. Section 4 
describes our Logo-based traffic simulator and what traffic data 
the agents have to observe. In sections 5 and 6 the details of 
traffic control rules and the agent’s inference engine are given 
respectively. An experiment with the system is reported in 
section 7. Finally we conclude our paper in section 8. 

II. PROBLEM DESCRIPTION 
Initially we shall state our problem and its assumptions. That 

is, we assume all the roads under consideration are 2-way roads, 
each side of which has 3 lanes as depicted in Fig. 1; when each 
road meets others this creates a ‘junction’, which could be a 
3-road junction, 4-road junction, etc. A traffic light is a device 
emitting light in green, red, and amber, to express different 
meanings, i.e. green means ‘go ahead”, red ‘stop’, and amber 
‘caution’. For convenience, in this paper we shall consider only 
the green and red signals. 

We can calculate the number of traffic lights required for a 
junction from 
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where n is the number of roads met at a junction, 
Di is the number of free-flow able to pass through 
the junction from each road i 

 
For example, the number of traffic lights for a 4-road junction 
in Fig.2 is (3–1) + (3–1) + (3–1) + (3–1) = 8; they control the 8 
traffic flows of the junction, and they are called a, b, c, d, e, 
f, g, and h respectively. Apparently, there are 12 possible 
patterns of the traffic lights for controlling the traffic flows, i.e. 
{a,b},{a,c},{a,f},{b,d},{b,g},{c,d},{c,h},{d,e}, 
{e,f},{e,g},{f,h}, and {g,h}. For simplicity, we associate a 
number to each pattern as seen in Fig. 3. For a traffic light l, one 
can identify, from these 12 patterns, as many as 3 pairs for l, e.g. 
there are {a,b},{a,c}, and {a,f} for a, and we call either b or 
c or f as a buddy of a. 
 

 

  
 

Figure 1. A 2-way road with 6 lanes. 

 
 

Figure 2. All traffic lights for a 4-road junction. 
 

Precisely, the traffic-light control problem is how long to set 
green or red to each pattern and what sequence to arrange 
among the patterns, so that the average delayed time of each car 
at each traffic-light of the junction can be kept minimum. 

 

 
 

Figure 3. All the 12 possible traffic light patterns. 
 

III. SYSTEM ARCHITECTURE 
Our system consists of agents and their world. The world in 

this context is made of real cars on the roads, the road network, 
the traffic, the traffic lights, etc. Each agent is responsible for 
controlling all the traffic lights at one junction. It monitors and 
controls all the traffic lights at each junction by observing only 
the part of its world, a small part of the whole traffic world, in 
order to perceive the traffic information surrounding one 
junction, then reasoning with this information, and applying the 

traffic-control rules to control all the traffic lights; this activity 
will be repeated forever; see Fig. 4. The consequence of the rule 
application may result in a change in the current traffic-light 
pattern, or the need for the agent to collaborate with other 
agents so that they would control their traffic lights more 
efficiently. 

 
 

Figure 4. The multi-agent architecture for traffic-light control. 
 

To work with a road network containing a large number of 
junctions, a community of such agents is required; these agents 
will perform their individual works while collaborating with 
others in order to solve complicated traffic problems. They are 
supervised by the supervisor agent who possesses traffic 
control rules for solving traffic problems at a larger scale. In 
Fig.4 although the supervisor agent cannot observe the world 
directly, it can reason with a part of the whole world’s current 
state which is assembled from each small part observed by each 
agent.  

A. The Traffic Simulator 
It is not easy to do the real trial of traffic-light control, since it 

affects everyday commuters. To make life easier, the real 
agents’ world is replaced by a virtual world, that is, a traffic 
simulator. In fact, this traffic simulator gives us many benefits; 
it is even better than the real traffic. Firstly, with the simulator 
we can simulate various traffic scenarios the way we wish to 
test our agent approach. Secondly, the simulator can easily 
provide necessary traffic data in real-time for analysis by the 
agents. This traffic data is observed continuously by the agents. 
Furthermore, the agents can control the traffic lights easily by 
just feeding instructions in terms of control parameters back to 
the simulator in order to set the duration of green or red lights 
for some traffic lights at some junctions. 

B. The Agent 
Each agent we adopted for the traffic-light control is a logical 

agent being composed of (Traffic) Observer, Knowledge Base, 
Inference Engine, and Communication Module. 

The (Traffic) Observer continuously observes the traffic 
condition at a road junction under its responsibility while 
passing the observed traffic data, in terms of facts, to the 
working memory of its Inference Engine. Given the observed 
facts in its working memory, Inference Engine retrieves 
condition-action rules from Knowledge Base and tries to match 
the observed facts with the rules’ condition parts. If any of 
these succeed, the actions parts of the eligible rules will be 
fired; this produces two possible consequences: firstly, 
Inference Engine takes the actions as being stated in the fired 
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rules, and this results in some control parameters being passed 
to the simulator to control some traffic lights, or the agent 
communicates some facts using the Communication Module to 
another agent for a co-operative control; alternatively, some 
facts are inferred as the result of the firing of the rules and these 
facts will be asserted to the working memory of Inference 
Engine and ready to be matched with the rules in the next round 
of the rule application cycle. After that the same process as 
explained from the beginning of this paragraph will repeat 
again. In short, the agent performs an endless observe-think-act 
cycle to continuously observe the traffic data and control the 
traffic lights. 

 

 
 

Figure 5. The single agent architecture for traffic-light control. 
 

The agent’s Knowledge Base does not only contain rules for 
traffic-light control, but also facts necessary for the control 
purpose, for example, those describing the agent’s local 
topology of the road network, the names of the traffic flows and 
traffic lights under its responsibility, and the names of 
neighboring agents who collaborate with this agent. 

C. The Community of Agents 
The big picture of the traffic-light control proposed here is a 

multi-agent system where individual agents take charge in 
observing traffic condition only at the junctions assigned to 
them while using this information to control only the traffic 
lights of those junctions; to do so, in some situation these 
agents may require collaboration with other nearby agents to 
exchange extra traffic information, which cannot be observed 
by themselves, in order to enhance the performance of their 
traffic control. 

IV. TRAFFIC SIMULATION AND OBSERVATION 
The traffic simulator employed in this research is developed 

in NetLogo [9]. The traffic world is hence simulated by a 
NetLogo world, i.e. the cars are simulated by turtles, the roads 
by patches, and sensors by observers, and it fits well with the 
assumption we made earlier in section 2. With the ability of 
massive concurrent computation the NetLogo can provide, this 
traffic simulator suits our research purpose very well. 

A. Traffic Data 
The traffic simulator observes the traffic data continuously 

and instantly reports it to the world’s current state, a small part 
of which is currently observed by every agent, see Fig. 5. This 
data consists of: 

• The current active pattern (being set to green) of the 
traffic lights. 

• The current value (in seconds) of the count-down 

counter of the current active pattern. 
• Queue length of each traffic flow to be serviced by a 

traffic light. It is calculated from the discrepancy 
between the number of the cars getting into and the 
number of the cars leaving the queue of each lane. 
These two figures are measured by the two sensors 
placing at each end of a queue, see Fig. 6. To ensure 
the accuracy of these figures, we assume that when 
any car getting into a queue it cannot change the lane 
until it has left the queue. 

• Downstream space availability, measured in the 
number of cars able to fill in this space. This figure 
measures the space availability at the downstream of 
the traffic flow. (The downstream indicates the 
direction on another side of the junction where the 
cars leaving the traffic light will move to.) 

• Incoming rate indicating the number of the cars 
getting into the queue per second. 

• Service rate indicating the number of the cars leaving 
the queue per second. 

 
Figure 6. All the traffic sensors. 

 

B. Traffic Evaluation 
We can easily evaluate the performance of the overall traffic 

under control, since NetLogo allows every agent, i.e. turtle, 
patch, and observer, in the NetLogo world to perform 
introspection, in that, such an agent is aware of its own state 
and can perform book-keeping of this information within itself. 
With this ability we can program a car to record its delayed time 
caused by being in a queue, and we can later use this 
information collected from every car to find out the average 
delayed time of all cars during the traffic simulation in 
real-time whenever required. 

V. KNOWLEDGE BASE  
Our logical agent is developed in Prolog. Now we describe 

its knowledge base which contains facts and rules for the 
traffic-light control purpose. 

A. Facts for Traffic-Light Control 
For each agent to be able to control all the traffic lights at 

each junction and also collaborate with other neighboring 
agents, it needs to have knowledge about road topology, paths 
(road segments), traffic flows, traffic lights, neighboring 
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agents, and their relationships. 
For a road network shown in Fig. 7, it contains four 

junctions: A, B, C, and D, and the traffic at A is managed by 
agentA, the traffic at B is managed by agentB, and so on. Two 
junctions are connected by a directed path, which contains two 
traffic flows: f1 and f2. Each traffic flow is controlled by a 
traffic light, and it also has a downstream flow which is the 
flow that the cars will go to when the light turns green. 

 
 

Figure 7. illustrates agents, junctions, paths, traffic flows, and traffic lights. 
 

For example, the agentA’s Knowledge Base contains the 
following facts: 

manages(myself,junctionA)    manages(agentB,junctionB) 
manages(agentC,junctionC) 
… 

connects(p2a,junctionA,junctionB)  connects(p2b,junctionB,junctionA) 
connects(p8a,junctionA,junctionC)  connects(p8b,junctionC,junctionA) 
… 

flows_of_path(p2a,p2a:f1,p2a:f2)  flows_of_path(p2b,p2b:f1,p2b:f2) 
flows_of_path(p8a,p8a:f1,p8a:f2)  flows_of_path(p8b,p8b:f1,p8b:f2) 
… 

controls(a, p1a:f1) controls(b, p1a:f2) controls(c, p2b:f2) controls(d, p2b:f1) 
controls(e, p8b:f2) controls(f, p8b:f1) controls(g, p7a:f1) controls(h, p7a:f2) 
downstream_of(p2a:f1,p1a:f1)   downstream_of(p8a:f2,p1a:f2) 
downstream_of(p1b:f2,p2b:f2)   downstream_of(p7b:f1,p2b:f1) 
downstream_of(p7b:f2,p8b:f2)   downstream_of(p2a:f2,p8b:f1) 
downstream_of(p8a:f1,p7a:f1)   downstream_of(p1b:f1,p7a:f2) 

B. Rules for Traffic-Light Control 
The rules possessed by each individual agent for traffic-light 

control are in the form 

Condition → Action, 

where Condition is conjunctive normal form of atomic 
sentences and Action is a conjunction of atomic sentences; the 
whole implication is universally quantified. 

Condition states the condition that what agent can observe 
from the world’s current state can be satisfied and that requires 
a certain Action response from the agent. In [8] we have 
identified 13 rules for controlling the traffic-lights in different 
traffic conditions as follows. 
Rule1: if current_state(P) and state_counter(N) and N ≤ 0  
 then pattern_duration(T) and change_state(P,T) 
Rule2.1: if current_state(P) and flow_of_state(P,F1,F2) and queue_length(F1,Q) 
   and Q = 0 and flow_is_on&bflow_is_off (F1,Fb) 
 then find_max_delayed_bflow(F2,F1,F2b) and 
  turn_off_flow&on_bflow(F1,F2b) and controls(LF1,F1) and 
  controls(LF2b,F2b) and turn_off_light(LF1) and turn_on_light (LF2b) 
Rule2.2: if current_state(P) and flow_of_state(P,F1,F2) and queue_length(F2,Q) 
  and Q = 0 and flow_is_on&bflow_is_off (F2,Fb) 

 then find_max_delayed_bflow(F1,F2,F1b) and 
  turn_off_flow&on_bflow(F2,F1b) and controls(LF2,F2) and 
  controls(LF1b,F1b) and turn_off_light (L2) and turn_on_light (LF1b) 
Rule2.3: if current_state(P) and flow_of_state(P,F1,F2) and 
  flow_is_on&bflow_is_off(F1,Fb) and downstream_of(Fd,F1) and 
  downstream_maxsize(Fd,M) and downstream_size(Fd,D) and  
  M - D ≤ 1 
 then find_max_delayed_bflow(F2,F1,F2b) and 
  turn_off_flow&on_bflow(F1,F2b) and controls(LF1,F1) and 
  controls(LF2b,F2b) and turn_off_light (LF1) and turn_on_light (LF2b) 
Rule2.4: if current_state(P) and flow_of_state(P,F1,F2) and 
  flow_is_on&bflow_is_off(F2,Fb) and downstream_of(Fd,F2) and  
  downstream_maxsize(Fd,M) and downstream_size(Fd,D) and  
  M - D ≤ 1 
 then find_max_delayed_bflow(F1,F2,F1b) and  
  turn_off_flow&on_bflow(F2,F1b) and and controls(LF2,F2) and 
  controls(LF1b,F1b) and turn_off_light (L2) and turn_on_light (LF1b) 
Rule2.5: if current_state(P) and flow_of_state(P,F1,F2) and  
  flow_is_off&bflow_is_on(F1,_) and flow_is_off&bflow_is_on(F2,_) 
 then set_state_counter(0) 
Rule2.6: if current_state(P) and flow_of_state(P,F1,_) and 
  flow_is_off&bflow_is_on(F1,Fb) and downstream_of(Fd,F1) and 
  downstream_maxsize(Fd,M) and downstream_size(Fd,D) and  
  M - D > 10 and queue_length(F1,Q) and Q ≠ 0  
 then turn_on_flow&off_bflow(F1,Fb) and controls(LF1,F1) and 
  controls(LFb,Fb) and turn_off_light(LFb) and turn_on_light(LF1) 
Rule2.7: if current_state(P) and flow_of_state(P,_,F2) and 
  flow_is_off&bflow_is_on(F2,Fb) and downstream_of(Fd,F2) and  
  downstream_maxsize(Fd,M) and downstream_size(Fd,D) and  
  M - D > 10 and queue_length(F2,Q) and Q ≠ 0 
 then turn_on_flow&off_bflow(F2,Fb) and controls(LF2,F2) and 
  controls(LFb,Fb) and turn_off_light(LFb) and turn_on_light(LF2) 
Rule3.1: if current_state(P) and state_counter(N) and 0 < N ≤ 5 and 
  flow_of_state(P,F1,_) and queue_length(F1,Q) and  
  boundary_queue_length(F1,Qb) and Q > 0.90 * Qb and 
  queue_service_rate(F1,S) and incoming_rate(F1,I) and I > S 
 then to_extend_time_for_flow(F) 
Rule3.2: if current_state(P) and state_counter(N) and 0 < N ≤ 5 and 
  flow_of_state(P,_,F2) and queue_length(F2,Q) and  
  boundary_queue_length(F2,Qb) and Q > 0.90 * Qb and 
  queue_service_rate(F2,S) and incoming_rate(F2,I) and I > S 
 then to_extend_time_for_flow(F) 
Rule3.3: if current_state(P) and flow_of_state(P,F1,F2) and 
  state_counter(N) and max_greentime(Tmax) and N < Tmax and 
  to_extend_time_for_flow(F1) 
 then state_greentime(Tg) and greentime_extension(Tx) and  
  time_ext4counter(Tg,Tx,Tmax,Tadd) and 
  Text is N + Tadd and set_state_counter(Text) and  
  Tgx is Tg + Tadd and set_state_greentime(Tgx) 
Rule3.4: if current_state(P) and flow_of_state(P,F1,F2) and 
  state_counter(N) and max_greentime(Tmax) and N < Tmax and 
  to_extend_time_for_flow(F2) 
 then state_greentime(Tg) and greentime_extension(Tx) and  
  time_ext4counter(Tg,Tx,Tmax,Tadd) and 
  Text is N + Tadd and set_state_counter(Text) and  
  Tgx is Tg + Tadd and set_state_greentime(Tgx) 
Rule4: if current_state(P) and state_greentime(Tg) and 
  max_greentime(Tmax) and Tg > Tmax 
 then pattern_duration(T) and change_state(P,T) 

Rule 1 states that if the current pattern of the traffic lights, 
that being set green, has its counter value reduced to 0, then the 
current pattern needs to change to the next pattern. The change 
cycle of the traffic pattern is: 

 
Rule 2.1 or 2.2 states that if one of the two flows of the 

current pattern has no cars waiting in its queue, then its current 
green light has to be set to red; and while the green time still 
remains for this pattern, we will find all the buddies (except the 
current buddy that forms this pattern) for the light that remains 
green and set the longest waiting one to be green as well. 

Rule 2.3 or 2.4 states that if the downstream space of one of 
the two flows of the current pattern is full (no car can move 

1 2 

10 

11 12 3 4 

9 8 7 6 5 

p1 
a 
b 

f1 
f2 

p1a 

f1 
f2 

p1b 

e f 
c 
d 

h g 

A 

f1 f2 
p7a 

f1 f2 
p7b 

f1 f2 
p8a 

f1 f2 
p8b 

h g 

c 
d 

a 
b 

e f 

f1 
f2 

p4a 

f1 
f2 

p4b 

f1 f2 
p9a 

f1 f2 
p9b 

f1 
f2 

p2a 

f1 
f2 

p2b 

f1 
f2 

p5a 

f1 
f2 

p5b 

a 
b 

a 
b 

c 
d 

f1 
f2 

p3a 

f1 
f2 

p3b 

c 
d 

f1 
f2 

p6a 

f1 
f2 

p6b 

h g 

f1 f2 
p10a 

f1 f2 
p10b 

e f 

f1 f2 
p12a 

f1 f2 
p12b 

e f 

f1 f2 
p11a 

f1 f2 
p11b 

h g 

B 

D C 

p2 p3 

p4 p5 p6 

p7 

p8 

p9 

p10 

p11 

p12 

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



 
 

 

into), then its current green light has to set to red; and while the 
green time still remains for this pattern, we will find all the 
buddies (except the current one that forms this pattern) for the 
light that remains green and set the longest waiting one to be 
green too. 

Rule 2.5 states when both of its flows were set to red (due to 
Rule 2.1, 2.2, 2.3, or 2.4), it needs to change to the next pattern. 

Rule 2.6 and 2.7 produce the reverse effects of 2.3 and 2.4 
respectively, i.e. if one of the lights of the current pattern was 
turned red, but now there is a plenty of space at its downstream, 
then it has to be set back to green again. 

Rule 3.1 or 3.2 states if the duration of green time of the 
current pattern is ending, but the rate of the cars getting into the 
queue of one of its flows is greater than the service rate, i.e. the 
rate of the cars leaving the queue, while the current queue 
length is greater than 90% of the boundary (maximum) queue 
length, then a small extra green time is given to this pattern. 

Rule 3.3 and 3.4 ensure that the extra green time to be added 
to the green time of a pattern (as the results of 3.1 and 3.2 
respectively) will not result in a total green time exceeding the 
maximum green time. 

Rule 4 overrides all the rules, i.e. the duration for any pattern 
be given green lights in total has to be not more than the 
maximum green time. When it reaches that, it must be changed 
to the next pattern.  

These are some rules relevant for intelligent control of the 
traffic lights by individual agents. 

C. Rules for Agent Collaboration 
In addition, rules for agent communication and collaboration 

are also necessary. In this traffic-light control problem, each 
agent can observe the traffic condition only surrounding itself 
and can control only the traffic lights at its junction. In many 
circumstances they need to collaborate with other neighboring 
agents to extend their knowledge (or observation) to be able to 
achieve a better traffic-light control. 

An example is illustrated by Fig.8, agentA can detect that the 
downstream at flows p2a:f1 and p2a:f2 are full whilst agentB 
cannot know that. This will cause a problem for agentA who 
wants to release the cars into path p2a to avoid traffic 
congestion at its junction. To collaborate with agentB, it 
therefore reports this observation to agentB, so that agentB can 
act upon this quickly by releasing flow p2a:f1 and/or p2a:f2. 
Here we can express Rule 5 and 6 for this agent collaboration: 
Rule5.1: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D ≥ M 
  and flows_of_path(P,Fd,_)  and connects(P,J,NextJ) and 
  manages(myself,J) and manages(Agent,NextJ) 
 then tell(Agent,full_end_of_flow(P,Fd,null)) 
Rule5.2: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D ≥ M 
  and flows_of_path(P,_,Fd)  and connects(P,J,NextJ) and 
  manages(myself,J) and manages(Agent,NextJ) 
 then tell(Agent,full_end_of_flow(P,null,Fd)) 
Rule5.3: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D < M 
  and flows_of_path(P,Fd,_)  and connects(P,J,NextJ) and 
  manages(myself,J) and manages(Agent,NextJ) 
 then tell(Agent,not_full_end_of_flow(P,Fd,null)) 
Rule5.4: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D < M 
  and flows_of_path(P,_,Fd)  and connects(P,J,NextJ) and 
  manages(myself,J) and manages(Agent,NextJ) 
 then tell(Agent,not_full_end_of_flow(P,null,Fd)) 

With Rule 5.1 and 5.2 when the agent detects that a 
downstream at a flow is full, it alerts the neighboring agent. 

Rule 5.3 and 5.4 capture the inverses of 5.1 and 5.2 
respectively. 
 For every agent to act in response to the message sent by 
Rule 5, it requires the following rules: 

 
Figure 8. Efficient traffic-light control requires collaboration between agents. 

Rule6.1: if current_state(P) and state_counter(N) and 
  (full_end_of_flow(_,F1,null) or full_end_of_flow(_,null,F1)) and 
  queue_length(F1,Q1) and boundary_queue_length(F1,Qb1) and 
  Q1 ≥ Qb1 and downstream_of(Fd1,F1) and 
  downstream_maxsize(Fd1,M1) and 
  downstream_size(Fd1,D1) and M1 – D1 > 40 and 
  flows_of_state(Next_P,F1,F2) and 
  (not_full_end_of_flow(_,F2,null) or not_full_end_of_flow(_,null,F2))  
 then store_previous_state(P,N) and pattern_duration(T) and 
  set_current_state(Next_P,T) 
Rule6.2: if current_state(P) and state_counter(N) and 
  (full_end_of_flow(_,F1,null) or full_end_of_flow(_,null,F1)) and 
  queue_length(F1,Q1) and boundary_queue_length(F1,Qb1) and 
  Q1 ≥ Qb1 and downstream_of(Fd1,F1) and 
  downstream_maxsize(Fd1,M1) and 
  downstream_size(Fd1,D1) and M1 – D1 > 40 and 
  (full_end_of_flow(_,F2,null) or full_end_of_flow(_,null,F2)) and 
  F1≠F2 and queue_length(F2,Q2) and 
  boundary_queue_length(F2,Qb2) and Q2 ≥ Qb2 and 
  downstream_of(Fd2,F2) and downstream_maxsize(Fd2,M2) and 
  downstream_size(Fd2,D2) and M2 – D2 > 40 and 
  flows_of_state(Next_P,F1,F2) 
 then store_previous_state(P,N) and pattern_duration(T) and 
  set_current_state(Next_P,T) 

 Rule 6.1 handles the case where one flow is full whilst Rule 
6.2 handles the case where two flows are full altogether. In 
either case, the agent will determine which traffic-light pattern 
to set in order to release the cars from the full flow(s) while 
ensuring that the downstream(s) can accommodate the flow(s). 
The new pattern is set as an interrupt to the current pattern 
which will be restored later once Rule 1 is fired. 

Another example is the circumstance supposing p2a:f1 
and/or p2a:f2 is empty (see Fig. 7 and compare it with the 
previous circumstance). In this case, agentB has to report this to 
agentA, so that agentA can release the cars to utilize this empty 
space. 
Rule7.1: if queue_length(F,0) and flows_of_path(P,F,_) and 
  connects(P,J,NextJ) and manages(Agent,J) and 

manages(myself,NextJ) 
 then tell(Agent,empty_flow(P,F,null)) 
Rule7.2: if queue_length(F,0) and flows_of_path(P,_,F) and  connects(P,J,NextJ) 
  and manages(Agent,J) and manages(myself,NextJ) 
 then tell(Agent,empty_flow(P,null,F)) 
Rule7.3: if queue_length(F,Q) and Q ≠ 0 and flows_of_path(P,F,_) and 
  connects(P,J,NextJ) and manages(Agent,J) and 

manages(myself,NextJ) 
 then tell(Agent,not_empty_flow(P,F,null)) 
Rule7.4: if queue_length(F,Q) and Q ≠ 0 and flows_of_path(P,_,F) and 
  connects(P,J,NextJ) and manages(Agent,J) and 

manages(myself,NextJ) 
 then tell(Agent,not_empty_flow(P,null,F)) 

 For every agent to act in response to the message sent by 
Rule 7, it requires the following rules: 
Rule8.1: if current_state(P) and state_counter(N) and 
  (empty_flow(_,Fd,null) or empty_flow(_,null,Fd)) and 
  downstream_of(Fd,F1) and queue_length(F1,Q) and 
  boundary_queue_length(F1,Qb) and Q ≥ 0.9 * Qb and 
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  flows_of_state(Next_P,F1,F2) and 
  (not_empty_flow(_,F2,null) or not_empty_flow (_,null,F2)) 
 then store_previous_state(P,N) and pattern_duration(T) and 
  set_current_state(Next_P,T) 
Rule8.2: if current_state(P) and state_counter(N) and 
  (empty_flow(_,Fd1,null) or empty_flow(_,null,Fd1)) and 
  downstream_of(Fd1,F1) and queue_length(F1,Q1) and 
  boundary_queue_length(F1,Qb1) and Q1 ≥ 0.9 * Qb1 and 
  (empty_flow(_,Fd2,null) or empty_flow(_,null,Fd2)) and Fd1≠Fd2 and 
  downstream_of(Fd2,F2) and queue_length(F2,Q2) and 
  boundary_queue_length(F2,Qb2) and Q2 ≥ 0.9 * Qb2 and 
  flows_of_state(Next_P,F1,F2) 
 then store_previous_state(P,N) and pattern_duration(T) and 
  set_current_state(Next_P,T) 

 Rule 8.1 handles the case where one flow is empty whilst 
Rule 8.2 handles the case where two flows are empty 
altogether. In either case, the agent will choose a traffic-light 
pattern whose flow(s) having full queue(s) to fill the empty 
downstream(s). 

D. Rules for the Supervisor Agent 
Every agent is required to report some of its traffic 

observation to the supervisor agent who can access all the facts 
in the whole world’s current state (see Fig. 4.). Because of this 
the supervisor agent can identify and solve a traffic problem at 
the global level. It employs the same architecture as the agent at 
each junction, but possesses a larger knowledge base. One 
instance of the rules for a global traffic control in its 
Knowledge Base is 
 if all_current_full_flows(Flow_List) and possible_loops(Flow_List,Loops) 
 then break(Loops) 

This rule detects a traffic deadlock by gathering all the current 
full flows, as those reported by the agents at the junctions, and 
trying to find all possible loops from them, if there exist some 
loops, the agent will try to break them right away by requesting 
some actions to be taken by some agents at the junctions. 
Further details of the supervisor agent’s role will be explored 
elsewhere. 

VI. INFERENCE ENGINE  
Each of the agents controls all the traffic lights at each 

junction by employing the observe-think-act cycle, which can 
be expressed abstractly as 
 Infinite-loop read facts from the working memory 
      match those facts with all rules 
      fire all rules that applicable 

This observe-think-act cycle is implemented as a simple rule 
interpreter in Prolog. Thus, the agent’s inference engine is a 
meta-program below. 
prove(true). 
prove(A or B) :- !, (prove(A) ; prove(B)).  
prove(A and B) :- !, prove(A), prove(B).  
prove(A) :- working_memory(A),!. 
prove(A) :- built-in(A),!,A. 
one_step_rule_interpreter(R_type) :-  
  findall(R,rule(R_type,R),Rule_list), 
  try_all_rules_and_fire_them(Rule_list). 
try_all_rules_and_fire_them([]). 
try_all_rules_and_fire_them([R|RL]) :- [Condition,'->',Action] = R, 
                          (prove(Condition), prove(Action) ; true ), 
         try_all_rules_and_fire_them(RL). 
rule_interpreter :- 
  one_step_rule_interpreter(_), 
  rule_interpreter. 

The consequence of a rule being fired is the action part of the 

rule will be executed; this results in the agent either sending this 
action as the control instructions to the simulator for it to 
change states of some traffic lights, asserting some facts to the 
agent’s working memory, or sending a message to a 
neighboring agent. 

VII. EXPERIMENTATION WITH 4 JUNCTIONS 
We test our system with a 4-junction road network as shown 

in Fig. 7. and compare the performance of the traffic-light 
control by collaborative agents with that of the traffic-light 
control by individual agents without collaboration (Rule 5, 6, 7 
and 8 are not used). In Fig. 9 we can see that the average 
delayed time (in seconds) of each car at each traffic-light of the 
four junctions for the former case is better than the latter when 
the simulator feeds the cars in 1 peak, 2 peaks, 3 peaks, and 4 
peaks of different directions. 
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Figure 9. A performance comparison between multi-agent control and 
individual-agent control of traffic lights. 

VIII. CONCLUSION 
We have proposed a multi-agent approach, based on a 

rule-based system, for traffic light control which efficiently 
manages the traffic according to the current traffic condition. It 
employs a uniform inference of observe-think-act cycle as well 
as communication and collaboration among agents. 
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