

A Multi-Agent Approach for
Intelligent Traffic-Light Control

Visit Hirankitti, Jaturapith Krohkaew, and Chris Hogger, Member, IAENG

Abstract—In this paper we propose a multi-agent approach for

traffic-light control. According to this approach, our system
consists of agents and their world. In this context, the world
consists of cars, road networks, traffic lights, etc. Each of these
agents controls all traffic lights at one road junction by an
observe-think-act cycle. That is, each agent repeatedly observes
the current traffic condition surrounding its junction, and then
uses this information to reason with condition-action rules to
determine in what traffic condition how the agent can efficiently
control the traffic flows at its junction, or collaborate with
neighboring agents so that they can efficiently control the traffic
flows, at their junctions, in such a way that would affect the traffic
flows at its junction. This research demonstrates that a rather
complicated problem of traffic-light control on a large road
network can be solved elegantly by our rule-based multi-agent
approach.

Index Terms—Intelligent Transportation System, Multi-Agent
System.

I. INTRODUCTION
Traffic congestion is a crucial problem in a large city. It is

normally caused by an improper control of traffic lights which
is not corresponding to the current traffic condition
surrounding the road junction. In this paper we propose a
multi-agent approach for traffic light control which efficiently
manages the traffic according to the current traffic condition. It
aims to reduce each car’s delayed time at each junction. This is
achieved by an agent’s observe-think-act cycle. That is, the
agent continuously observes the current traffic conditions by
collecting traffic data, and the data will then be used for
reasoning with the traffic-light-control rules by the agent’s
inference engine to determine how a signal will be changed on
each traffic light at each junction, so that the traffic can be
managed efficiently.

The problem of intelligent traffic control has been studied in
the area of intelligent transportation system for many years. We
will refer to only a few that are related to our work. The first
one is the method of Vehicle Actuated Signal Control [1]. This
method controlled traffic lights by considering the number of
cars waiting in the queue to be serviced by a traffic light.

Manuscript received April 28, 2007.
Visit Hirankitti and Jaturapith Krohkaew are with the Intelligent

Communication and Transportation Research Laboratory, Department of
Computer Engineering, Faculty of Engineering, King Mongkut’s Institute of
Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok,
Thailand 10520 email: v_hirankitti@yahoo.com and kjatura@yahoo.com

Chris Hogger is with the Department of Computing, 180 Queen’s Gate,
South Kensington campus-Imperial College London, London, United Kingdom
SW7 2AZ email: cjh@doc.ic.ac.uk

Sensors are placed at a short distance from the junction in order
to detect cars and count the number of passing cars. When the
current green light is going to turn red, but the sensor can detect
that some cars have come in that range of distance, the duration
of this green light is extended further. This scenario will repeat
until no more cars have arrived in that range or the maximum
duration for the green light has been reached.

Some approaches employed machine learning methods, such
as reinforcement learning and genetics algorithm [2, 3], to learn
traffic patterns of different time in a day and used them to
control the traffic lights. This seems feasible when all the
commuters behave normally. However, in real life it is hardly
to be so. Other approaches used Fuzzy controllers [4, 5] to
adjust only the duration of green light of each traffic light to
match the current traffic condition, but not to change the signal
patterns. Thus, this is not capable of controlling the traffic
patterns.

Some works are based on a multi-agent approach. For
example, [6] adopted case-based reasoning to control traffic
lights. The agent observed traffic condition at a junction and
used this information to match with candidate cases from its
case-base, consequently it applied the solution of the selected
case to control the traffic lights. Obviously this approach is
quite similar to a rule-based approach we investigate in this
paper. An agent proposed in [7] used some properties of the
current states of all traffic patterns as the criterion to determine
what will be the next traffic-light pattern.

For the rest of the paper, it is organized as follows. In the next
section we first state our problem description. In section 3 the
overall multi-agent system architecture is introduced. Section 4
describes our Logo-based traffic simulator and what traffic data
the agents have to observe. In sections 5 and 6 the details of
traffic control rules and the agent’s inference engine are given
respectively. An experiment with the system is reported in
section 7. Finally we conclude our paper in section 8.

II. PROBLEM DESCRIPTION
Initially we shall state our problem and its assumptions. That

is, we assume all the roads under consideration are 2-way roads,
each side of which has 3 lanes as depicted in Fig. 1; when each
road meets others this creates a ‘junction’, which could be a
3-road junction, 4-road junction, etc. A traffic light is a device
emitting light in green, red, and amber, to express different
meanings, i.e. green means ‘go ahead”, red ‘stop’, and amber
‘caution’. For convenience, in this paper we shall consider only
the green and red signals.

We can calculate the number of traffic lights required for a
junction from

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

where n is the number of roads met at a junction,
Di is the number of free-flow able to pass through
the junction from each road i

For example, the number of traffic lights for a 4-road junction
in Fig.2 is (3–1) + (3–1) + (3–1) + (3–1) = 8; they control the 8
traffic flows of the junction, and they are called a, b, c, d, e,
f, g, and h respectively. Apparently, there are 12 possible
patterns of the traffic lights for controlling the traffic flows, i.e.
{a,b},{a,c},{a,f},{b,d},{b,g},{c,d},{c,h},{d,e},
{e,f},{e,g},{f,h}, and {g,h}. For simplicity, we associate a
number to each pattern as seen in Fig. 3. For a traffic light l, one
can identify, from these 12 patterns, as many as 3 pairs for l, e.g.
there are {a,b},{a,c}, and {a,f} for a, and we call either b or
c or f as a buddy of a.

Figure 1. A 2-way road with 6 lanes.

Figure 2. All traffic lights for a 4-road junction.

Precisely, the traffic-light control problem is how long to set
green or red to each pattern and what sequence to arrange
among the patterns, so that the average delayed time of each car
at each traffic-light of the junction can be kept minimum.

Figure 3. All the 12 possible traffic light patterns.

III. SYSTEM ARCHITECTURE
Our system consists of agents and their world. The world in

this context is made of real cars on the roads, the road network,
the traffic, the traffic lights, etc. Each agent is responsible for
controlling all the traffic lights at one junction. It monitors and
controls all the traffic lights at each junction by observing only
the part of its world, a small part of the whole traffic world, in
order to perceive the traffic information surrounding one
junction, then reasoning with this information, and applying the

traffic-control rules to control all the traffic lights; this activity
will be repeated forever; see Fig. 4. The consequence of the rule
application may result in a change in the current traffic-light
pattern, or the need for the agent to collaborate with other
agents so that they would control their traffic lights more
efficiently.

Figure 4. The multi-agent architecture for traffic-light control.

To work with a road network containing a large number of
junctions, a community of such agents is required; these agents
will perform their individual works while collaborating with
others in order to solve complicated traffic problems. They are
supervised by the supervisor agent who possesses traffic
control rules for solving traffic problems at a larger scale. In
Fig.4 although the supervisor agent cannot observe the world
directly, it can reason with a part of the whole world’s current
state which is assembled from each small part observed by each
agent.

A. The Traffic Simulator
It is not easy to do the real trial of traffic-light control, since it

affects everyday commuters. To make life easier, the real
agents’ world is replaced by a virtual world, that is, a traffic
simulator. In fact, this traffic simulator gives us many benefits;
it is even better than the real traffic. Firstly, with the simulator
we can simulate various traffic scenarios the way we wish to
test our agent approach. Secondly, the simulator can easily
provide necessary traffic data in real-time for analysis by the
agents. This traffic data is observed continuously by the agents.
Furthermore, the agents can control the traffic lights easily by
just feeding instructions in terms of control parameters back to
the simulator in order to set the duration of green or red lights
for some traffic lights at some junctions.

B. The Agent
Each agent we adopted for the traffic-light control is a logical

agent being composed of (Traffic) Observer, Knowledge Base,
Inference Engine, and Communication Module.

The (Traffic) Observer continuously observes the traffic
condition at a road junction under its responsibility while
passing the observed traffic data, in terms of facts, to the
working memory of its Inference Engine. Given the observed
facts in its working memory, Inference Engine retrieves
condition-action rules from Knowledge Base and tries to match
the observed facts with the rules’ condition parts. If any of
these succeed, the actions parts of the eligible rules will be
fired; this produces two possible consequences: firstly,
Inference Engine takes the actions as being stated in the fired

Traffic
Simulator

...

Supervisor

World’s
current state

Agent

1 2 3 5 4 6

7 9 8 10 11 12

{a,c} {e,g} {a,b} {c,d} {e,f} {h,g}

{a,f} {c,h} {e,d} {b,g} {b,d} {f,h}

a
b

c
d

g h

e f

[] 3;)1(
1

≥−−= ∑
=

nDnL
n

i
i

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

rules, and this results in some control parameters being passed
to the simulator to control some traffic lights, or the agent
communicates some facts using the Communication Module to
another agent for a co-operative control; alternatively, some
facts are inferred as the result of the firing of the rules and these
facts will be asserted to the working memory of Inference
Engine and ready to be matched with the rules in the next round
of the rule application cycle. After that the same process as
explained from the beginning of this paragraph will repeat
again. In short, the agent performs an endless observe-think-act
cycle to continuously observe the traffic data and control the
traffic lights.

Figure 5. The single agent architecture for traffic-light control.

The agent’s Knowledge Base does not only contain rules for
traffic-light control, but also facts necessary for the control
purpose, for example, those describing the agent’s local
topology of the road network, the names of the traffic flows and
traffic lights under its responsibility, and the names of
neighboring agents who collaborate with this agent.

C. The Community of Agents
The big picture of the traffic-light control proposed here is a

multi-agent system where individual agents take charge in
observing traffic condition only at the junctions assigned to
them while using this information to control only the traffic
lights of those junctions; to do so, in some situation these
agents may require collaboration with other nearby agents to
exchange extra traffic information, which cannot be observed
by themselves, in order to enhance the performance of their
traffic control.

IV. TRAFFIC SIMULATION AND OBSERVATION
The traffic simulator employed in this research is developed

in NetLogo [9]. The traffic world is hence simulated by a
NetLogo world, i.e. the cars are simulated by turtles, the roads
by patches, and sensors by observers, and it fits well with the
assumption we made earlier in section 2. With the ability of
massive concurrent computation the NetLogo can provide, this
traffic simulator suits our research purpose very well.

A. Traffic Data
The traffic simulator observes the traffic data continuously

and instantly reports it to the world’s current state, a small part
of which is currently observed by every agent, see Fig. 5. This
data consists of:

• The current active pattern (being set to green) of the
traffic lights.

• The current value (in seconds) of the count-down

counter of the current active pattern.
• Queue length of each traffic flow to be serviced by a

traffic light. It is calculated from the discrepancy
between the number of the cars getting into and the
number of the cars leaving the queue of each lane.
These two figures are measured by the two sensors
placing at each end of a queue, see Fig. 6. To ensure
the accuracy of these figures, we assume that when
any car getting into a queue it cannot change the lane
until it has left the queue.

• Downstream space availability, measured in the
number of cars able to fill in this space. This figure
measures the space availability at the downstream of
the traffic flow. (The downstream indicates the
direction on another side of the junction where the
cars leaving the traffic light will move to.)

• Incoming rate indicating the number of the cars
getting into the queue per second.

• Service rate indicating the number of the cars leaving
the queue per second.

Figure 6. All the traffic sensors.

B. Traffic Evaluation
We can easily evaluate the performance of the overall traffic

under control, since NetLogo allows every agent, i.e. turtle,
patch, and observer, in the NetLogo world to perform
introspection, in that, such an agent is aware of its own state
and can perform book-keeping of this information within itself.
With this ability we can program a car to record its delayed time
caused by being in a queue, and we can later use this
information collected from every car to find out the average
delayed time of all cars during the traffic simulation in
real-time whenever required.

V. KNOWLEDGE BASE
Our logical agent is developed in Prolog. Now we describe

its knowledge base which contains facts and rules for the
traffic-light control purpose.

A. Facts for Traffic-Light Control
For each agent to be able to control all the traffic lights at

each junction and also collaborate with other neighboring
agents, it needs to have knowledge about road topology, paths
(road segments), traffic flows, traffic lights, neighboring

Traffic Flow

Queue length Detector

Downstream Space
Detector

A small
part of
world’s
current

state

Knowledge
Base

Inference
Engine

Observer

Comm.
Module

Other Agent

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

agents, and their relationships.
For a road network shown in Fig. 7, it contains four

junctions: A, B, C, and D, and the traffic at A is managed by
agentA, the traffic at B is managed by agentB, and so on. Two
junctions are connected by a directed path, which contains two
traffic flows: f1 and f2. Each traffic flow is controlled by a
traffic light, and it also has a downstream flow which is the
flow that the cars will go to when the light turns green.

Figure 7. illustrates agents, junctions, paths, traffic flows, and traffic lights.

For example, the agentA’s Knowledge Base contains the
following facts:

manages(myself,junctionA) manages(agentB,junctionB)
manages(agentC,junctionC)
…

connects(p2a,junctionA,junctionB) connects(p2b,junctionB,junctionA)
connects(p8a,junctionA,junctionC) connects(p8b,junctionC,junctionA)
…

flows_of_path(p2a,p2a:f1,p2a:f2) flows_of_path(p2b,p2b:f1,p2b:f2)
flows_of_path(p8a,p8a:f1,p8a:f2) flows_of_path(p8b,p8b:f1,p8b:f2)
…

controls(a, p1a:f1) controls(b, p1a:f2) controls(c, p2b:f2) controls(d, p2b:f1)
controls(e, p8b:f2) controls(f, p8b:f1) controls(g, p7a:f1) controls(h, p7a:f2)
downstream_of(p2a:f1,p1a:f1) downstream_of(p8a:f2,p1a:f2)
downstream_of(p1b:f2,p2b:f2) downstream_of(p7b:f1,p2b:f1)
downstream_of(p7b:f2,p8b:f2) downstream_of(p2a:f2,p8b:f1)
downstream_of(p8a:f1,p7a:f1) downstream_of(p1b:f1,p7a:f2)

B. Rules for Traffic-Light Control
The rules possessed by each individual agent for traffic-light

control are in the form

Condition → Action,

where Condition is conjunctive normal form of atomic
sentences and Action is a conjunction of atomic sentences; the
whole implication is universally quantified.

Condition states the condition that what agent can observe
from the world’s current state can be satisfied and that requires
a certain Action response from the agent. In [8] we have
identified 13 rules for controlling the traffic-lights in different
traffic conditions as follows.
Rule1: if current_state(P) and state_counter(N) and N ≤ 0
 then pattern_duration(T) and change_state(P,T)
Rule2.1: if current_state(P) and flow_of_state(P,F1,F2) and queue_length(F1,Q)
 and Q = 0 and flow_is_on&bflow_is_off (F1,Fb)
 then find_max_delayed_bflow(F2,F1,F2b) and
 turn_off_flow&on_bflow(F1,F2b) and controls(LF1,F1) and
 controls(LF2b,F2b) and turn_off_light(LF1) and turn_on_light (LF2b)
Rule2.2: if current_state(P) and flow_of_state(P,F1,F2) and queue_length(F2,Q)
 and Q = 0 and flow_is_on&bflow_is_off (F2,Fb)

 then find_max_delayed_bflow(F1,F2,F1b) and
 turn_off_flow&on_bflow(F2,F1b) and controls(LF2,F2) and
 controls(LF1b,F1b) and turn_off_light (L2) and turn_on_light (LF1b)
Rule2.3: if current_state(P) and flow_of_state(P,F1,F2) and
 flow_is_on&bflow_is_off(F1,Fb) and downstream_of(Fd,F1) and
 downstream_maxsize(Fd,M) and downstream_size(Fd,D) and
 M - D ≤ 1
 then find_max_delayed_bflow(F2,F1,F2b) and
 turn_off_flow&on_bflow(F1,F2b) and controls(LF1,F1) and
 controls(LF2b,F2b) and turn_off_light (LF1) and turn_on_light (LF2b)
Rule2.4: if current_state(P) and flow_of_state(P,F1,F2) and
 flow_is_on&bflow_is_off(F2,Fb) and downstream_of(Fd,F2) and
 downstream_maxsize(Fd,M) and downstream_size(Fd,D) and
 M - D ≤ 1
 then find_max_delayed_bflow(F1,F2,F1b) and
 turn_off_flow&on_bflow(F2,F1b) and and controls(LF2,F2) and
 controls(LF1b,F1b) and turn_off_light (L2) and turn_on_light (LF1b)
Rule2.5: if current_state(P) and flow_of_state(P,F1,F2) and
 flow_is_off&bflow_is_on(F1,_) and flow_is_off&bflow_is_on(F2,_)
 then set_state_counter(0)
Rule2.6: if current_state(P) and flow_of_state(P,F1,_) and
 flow_is_off&bflow_is_on(F1,Fb) and downstream_of(Fd,F1) and
 downstream_maxsize(Fd,M) and downstream_size(Fd,D) and
 M - D > 10 and queue_length(F1,Q) and Q ≠ 0
 then turn_on_flow&off_bflow(F1,Fb) and controls(LF1,F1) and
 controls(LFb,Fb) and turn_off_light(LFb) and turn_on_light(LF1)
Rule2.7: if current_state(P) and flow_of_state(P,_,F2) and
 flow_is_off&bflow_is_on(F2,Fb) and downstream_of(Fd,F2) and
 downstream_maxsize(Fd,M) and downstream_size(Fd,D) and
 M - D > 10 and queue_length(F2,Q) and Q ≠ 0
 then turn_on_flow&off_bflow(F2,Fb) and controls(LF2,F2) and
 controls(LFb,Fb) and turn_off_light(LFb) and turn_on_light(LF2)
Rule3.1: if current_state(P) and state_counter(N) and 0 < N ≤ 5 and
 flow_of_state(P,F1,_) and queue_length(F1,Q) and
 boundary_queue_length(F1,Qb) and Q > 0.90 * Qb and
 queue_service_rate(F1,S) and incoming_rate(F1,I) and I > S
 then to_extend_time_for_flow(F)
Rule3.2: if current_state(P) and state_counter(N) and 0 < N ≤ 5 and
 flow_of_state(P,_,F2) and queue_length(F2,Q) and
 boundary_queue_length(F2,Qb) and Q > 0.90 * Qb and
 queue_service_rate(F2,S) and incoming_rate(F2,I) and I > S
 then to_extend_time_for_flow(F)
Rule3.3: if current_state(P) and flow_of_state(P,F1,F2) and
 state_counter(N) and max_greentime(Tmax) and N < Tmax and
 to_extend_time_for_flow(F1)
 then state_greentime(Tg) and greentime_extension(Tx) and
 time_ext4counter(Tg,Tx,Tmax,Tadd) and
 Text is N + Tadd and set_state_counter(Text) and
 Tgx is Tg + Tadd and set_state_greentime(Tgx)
Rule3.4: if current_state(P) and flow_of_state(P,F1,F2) and
 state_counter(N) and max_greentime(Tmax) and N < Tmax and
 to_extend_time_for_flow(F2)
 then state_greentime(Tg) and greentime_extension(Tx) and
 time_ext4counter(Tg,Tx,Tmax,Tadd) and
 Text is N + Tadd and set_state_counter(Text) and
 Tgx is Tg + Tadd and set_state_greentime(Tgx)
Rule4: if current_state(P) and state_greentime(Tg) and
 max_greentime(Tmax) and Tg > Tmax
 then pattern_duration(T) and change_state(P,T)

Rule 1 states that if the current pattern of the traffic lights,
that being set green, has its counter value reduced to 0, then the
current pattern needs to change to the next pattern. The change
cycle of the traffic pattern is:

Rule 2.1 or 2.2 states that if one of the two flows of the

current pattern has no cars waiting in its queue, then its current
green light has to be set to red; and while the green time still
remains for this pattern, we will find all the buddies (except the
current buddy that forms this pattern) for the light that remains
green and set the longest waiting one to be green as well.

Rule 2.3 or 2.4 states that if the downstream space of one of
the two flows of the current pattern is full (no car can move

1 2

10

11 12 3 4

9 8 7 6 5

p1
a
b

f1
f2

p1a

f1
f2

p1b

e f
c
d

h g

A

f1 f2
p7a

f1 f2
p7b

f1 f2
p8a

f1 f2
p8b

h g

c
d

a
b

e f

f1
f2

p4a

f1
f2

p4b

f1 f2
p9a

f1 f2
p9b

f1
f2

p2a

f1
f2

p2b

f1
f2

p5a

f1
f2

p5b

a
b

a
b

c
d

f1
f2

p3a

f1
f2

p3b

c
d

f1
f2

p6a

f1
f2

p6b

h g

f1 f2
p10a

f1 f2
p10b

e f

f1 f2
p12a

f1 f2
p12b

e f

f1 f2
p11a

f1 f2
p11b

h g

B

D C

p2 p3

p4 p5 p6

p7

p8

p9

p10

p11

p12

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

into), then its current green light has to set to red; and while the
green time still remains for this pattern, we will find all the
buddies (except the current one that forms this pattern) for the
light that remains green and set the longest waiting one to be
green too.

Rule 2.5 states when both of its flows were set to red (due to
Rule 2.1, 2.2, 2.3, or 2.4), it needs to change to the next pattern.

Rule 2.6 and 2.7 produce the reverse effects of 2.3 and 2.4
respectively, i.e. if one of the lights of the current pattern was
turned red, but now there is a plenty of space at its downstream,
then it has to be set back to green again.

Rule 3.1 or 3.2 states if the duration of green time of the
current pattern is ending, but the rate of the cars getting into the
queue of one of its flows is greater than the service rate, i.e. the
rate of the cars leaving the queue, while the current queue
length is greater than 90% of the boundary (maximum) queue
length, then a small extra green time is given to this pattern.

Rule 3.3 and 3.4 ensure that the extra green time to be added
to the green time of a pattern (as the results of 3.1 and 3.2
respectively) will not result in a total green time exceeding the
maximum green time.

Rule 4 overrides all the rules, i.e. the duration for any pattern
be given green lights in total has to be not more than the
maximum green time. When it reaches that, it must be changed
to the next pattern.

These are some rules relevant for intelligent control of the
traffic lights by individual agents.

C. Rules for Agent Collaboration
In addition, rules for agent communication and collaboration

are also necessary. In this traffic-light control problem, each
agent can observe the traffic condition only surrounding itself
and can control only the traffic lights at its junction. In many
circumstances they need to collaborate with other neighboring
agents to extend their knowledge (or observation) to be able to
achieve a better traffic-light control.

An example is illustrated by Fig.8, agentA can detect that the
downstream at flows p2a:f1 and p2a:f2 are full whilst agentB
cannot know that. This will cause a problem for agentA who
wants to release the cars into path p2a to avoid traffic
congestion at its junction. To collaborate with agentB, it
therefore reports this observation to agentB, so that agentB can
act upon this quickly by releasing flow p2a:f1 and/or p2a:f2.
Here we can express Rule 5 and 6 for this agent collaboration:
Rule5.1: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D ≥ M
 and flows_of_path(P,Fd,_) and connects(P,J,NextJ) and
 manages(myself,J) and manages(Agent,NextJ)
 then tell(Agent,full_end_of_flow(P,Fd,null))
Rule5.2: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D ≥ M
 and flows_of_path(P,_,Fd) and connects(P,J,NextJ) and
 manages(myself,J) and manages(Agent,NextJ)
 then tell(Agent,full_end_of_flow(P,null,Fd))
Rule5.3: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D < M
 and flows_of_path(P,Fd,_) and connects(P,J,NextJ) and
 manages(myself,J) and manages(Agent,NextJ)
 then tell(Agent,not_full_end_of_flow(P,Fd,null))
Rule5.4: if downstream_size(Fd,D) and downstream_maxsize(Fd,M) and D < M
 and flows_of_path(P,_,Fd) and connects(P,J,NextJ) and
 manages(myself,J) and manages(Agent,NextJ)
 then tell(Agent,not_full_end_of_flow(P,null,Fd))

With Rule 5.1 and 5.2 when the agent detects that a
downstream at a flow is full, it alerts the neighboring agent.

Rule 5.3 and 5.4 capture the inverses of 5.1 and 5.2
respectively.
 For every agent to act in response to the message sent by
Rule 5, it requires the following rules:

Figure 8. Efficient traffic-light control requires collaboration between agents.

Rule6.1: if current_state(P) and state_counter(N) and
 (full_end_of_flow(_,F1,null) or full_end_of_flow(_,null,F1)) and
 queue_length(F1,Q1) and boundary_queue_length(F1,Qb1) and
 Q1 ≥ Qb1 and downstream_of(Fd1,F1) and
 downstream_maxsize(Fd1,M1) and
 downstream_size(Fd1,D1) and M1 – D1 > 40 and
 flows_of_state(Next_P,F1,F2) and
 (not_full_end_of_flow(_,F2,null) or not_full_end_of_flow(_,null,F2))
 then store_previous_state(P,N) and pattern_duration(T) and
 set_current_state(Next_P,T)
Rule6.2: if current_state(P) and state_counter(N) and
 (full_end_of_flow(_,F1,null) or full_end_of_flow(_,null,F1)) and
 queue_length(F1,Q1) and boundary_queue_length(F1,Qb1) and
 Q1 ≥ Qb1 and downstream_of(Fd1,F1) and
 downstream_maxsize(Fd1,M1) and
 downstream_size(Fd1,D1) and M1 – D1 > 40 and
 (full_end_of_flow(_,F2,null) or full_end_of_flow(_,null,F2)) and
 F1≠F2 and queue_length(F2,Q2) and
 boundary_queue_length(F2,Qb2) and Q2 ≥ Qb2 and
 downstream_of(Fd2,F2) and downstream_maxsize(Fd2,M2) and
 downstream_size(Fd2,D2) and M2 – D2 > 40 and
 flows_of_state(Next_P,F1,F2)
 then store_previous_state(P,N) and pattern_duration(T) and
 set_current_state(Next_P,T)

 Rule 6.1 handles the case where one flow is full whilst Rule
6.2 handles the case where two flows are full altogether. In
either case, the agent will determine which traffic-light pattern
to set in order to release the cars from the full flow(s) while
ensuring that the downstream(s) can accommodate the flow(s).
The new pattern is set as an interrupt to the current pattern
which will be restored later once Rule 1 is fired.

Another example is the circumstance supposing p2a:f1
and/or p2a:f2 is empty (see Fig. 7 and compare it with the
previous circumstance). In this case, agentB has to report this to
agentA, so that agentA can release the cars to utilize this empty
space.
Rule7.1: if queue_length(F,0) and flows_of_path(P,F,_) and
 connects(P,J,NextJ) and manages(Agent,J) and

manages(myself,NextJ)
 then tell(Agent,empty_flow(P,F,null))
Rule7.2: if queue_length(F,0) and flows_of_path(P,_,F) and connects(P,J,NextJ)
 and manages(Agent,J) and manages(myself,NextJ)
 then tell(Agent,empty_flow(P,null,F))
Rule7.3: if queue_length(F,Q) and Q ≠ 0 and flows_of_path(P,F,_) and
 connects(P,J,NextJ) and manages(Agent,J) and

manages(myself,NextJ)
 then tell(Agent,not_empty_flow(P,F,null))
Rule7.4: if queue_length(F,Q) and Q ≠ 0 and flows_of_path(P,_,F) and
 connects(P,J,NextJ) and manages(Agent,J) and

manages(myself,NextJ)
 then tell(Agent,not_empty_flow(P,null,F))

 For every agent to act in response to the message sent by
Rule 7, it requires the following rules:
Rule8.1: if current_state(P) and state_counter(N) and
 (empty_flow(_,Fd,null) or empty_flow(_,null,Fd)) and
 downstream_of(Fd,F1) and queue_length(F1,Q) and
 boundary_queue_length(F1,Qb) and Q ≥ 0.9 * Qb and

p1
a
b

e f
c
d

h g

A

a
b

c
d

h g

e f

B

p2 p3

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

 flows_of_state(Next_P,F1,F2) and
 (not_empty_flow(_,F2,null) or not_empty_flow (_,null,F2))
 then store_previous_state(P,N) and pattern_duration(T) and
 set_current_state(Next_P,T)
Rule8.2: if current_state(P) and state_counter(N) and
 (empty_flow(_,Fd1,null) or empty_flow(_,null,Fd1)) and
 downstream_of(Fd1,F1) and queue_length(F1,Q1) and
 boundary_queue_length(F1,Qb1) and Q1 ≥ 0.9 * Qb1 and
 (empty_flow(_,Fd2,null) or empty_flow(_,null,Fd2)) and Fd1≠Fd2 and
 downstream_of(Fd2,F2) and queue_length(F2,Q2) and
 boundary_queue_length(F2,Qb2) and Q2 ≥ 0.9 * Qb2 and
 flows_of_state(Next_P,F1,F2)
 then store_previous_state(P,N) and pattern_duration(T) and
 set_current_state(Next_P,T)

 Rule 8.1 handles the case where one flow is empty whilst
Rule 8.2 handles the case where two flows are empty
altogether. In either case, the agent will choose a traffic-light
pattern whose flow(s) having full queue(s) to fill the empty
downstream(s).

D. Rules for the Supervisor Agent
Every agent is required to report some of its traffic

observation to the supervisor agent who can access all the facts
in the whole world’s current state (see Fig. 4.). Because of this
the supervisor agent can identify and solve a traffic problem at
the global level. It employs the same architecture as the agent at
each junction, but possesses a larger knowledge base. One
instance of the rules for a global traffic control in its
Knowledge Base is
 if all_current_full_flows(Flow_List) and possible_loops(Flow_List,Loops)
 then break(Loops)

This rule detects a traffic deadlock by gathering all the current
full flows, as those reported by the agents at the junctions, and
trying to find all possible loops from them, if there exist some
loops, the agent will try to break them right away by requesting
some actions to be taken by some agents at the junctions.
Further details of the supervisor agent’s role will be explored
elsewhere.

VI. INFERENCE ENGINE
Each of the agents controls all the traffic lights at each

junction by employing the observe-think-act cycle, which can
be expressed abstractly as
 Infinite-loop read facts from the working memory
 match those facts with all rules
 fire all rules that applicable

This observe-think-act cycle is implemented as a simple rule
interpreter in Prolog. Thus, the agent’s inference engine is a
meta-program below.
prove(true).
prove(A or B) :- !, (prove(A) ; prove(B)).
prove(A and B) :- !, prove(A), prove(B).
prove(A) :- working_memory(A),!.
prove(A) :- built-in(A),!,A.
one_step_rule_interpreter(R_type) :-
 findall(R,rule(R_type,R),Rule_list),
 try_all_rules_and_fire_them(Rule_list).
try_all_rules_and_fire_them([]).
try_all_rules_and_fire_them([R|RL]) :- [Condition,'->',Action] = R,
 (prove(Condition), prove(Action) ; true),
 try_all_rules_and_fire_them(RL).
rule_interpreter :-
 one_step_rule_interpreter(_),
 rule_interpreter.

The consequence of a rule being fired is the action part of the

rule will be executed; this results in the agent either sending this
action as the control instructions to the simulator for it to
change states of some traffic lights, asserting some facts to the
agent’s working memory, or sending a message to a
neighboring agent.

VII. EXPERIMENTATION WITH 4 JUNCTIONS
We test our system with a 4-junction road network as shown

in Fig. 7. and compare the performance of the traffic-light
control by collaborative agents with that of the traffic-light
control by individual agents without collaboration (Rule 5, 6, 7
and 8 are not used). In Fig. 9 we can see that the average
delayed time (in seconds) of each car at each traffic-light of the
four junctions for the former case is better than the latter when
the simulator feeds the cars in 1 peak, 2 peaks, 3 peaks, and 4
peaks of different directions.

Average delayed time of each car

76.19 78.75 80.81 82.72

57.07 60.22
66.16

52.09

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

1 peak 2 peaks 3 peaks 4 peaks

Individual

Collaborative

Figure 9. A performance comparison between multi-agent control and
individual-agent control of traffic lights.

VIII. CONCLUSION
We have proposed a multi-agent approach, based on a

rule-based system, for traffic light control which efficiently
manages the traffic according to the current traffic condition. It
employs a uniform inference of observe-think-act cycle as well
as communication and collaboration among agents.

REFERENCES
[1] H. Taale, “Comparing Methods to Optimise Vehicle Actuated Signal

Control,” in IEE conference publication Road Transport Information and
Control, 2002, 486, pp. 114-119.

[2] S. Mikami and Y. Kakazu, “Genetic reinforcement learning for
cooperative traffic signal control,” in Proc. IEEE World Congress
Computational Intelligence, 1994.

[3] L. Ying, M. Shoufeng, L. Wu and W. Huanchen, “Microscopic urban
traffic simulation with multi-agent system,” in Proc. of the Joint
Conference of the Fourth International Conference on Information,
Communications and Signal Processing, and the Fourth Pacific Rim
Conference on Multimedia, 2003, pp. 1835 - 1839.

[4] G. Nakamiti and F. Gomide, “Fuzzy sets in distributed traffic control,” in
Proc. 5th IEEE Int. Conf. Fuzzy Systems, 1996, pp. 1617–1623.

[5] S. Chiu and S. Chand, “Self-organizing traffic control via fuzzy logic,” in
Proc. 32nd IEEE Conf. Decision Control, 1993, pp. 1987–1902.

[6] W. Xiao Xiong, Y. Shu Shen and Z. Xue Feng, “Architecture of
Multi-agent System for Traffic Signal Control,” in Proc. of 8th IEEE Conf.
Control, Automation, Robotics and Vision, 2004, vol.3, pp. 2199–2204.

[7] F. D. Enrique, S. Eswaran and M. Dietrich, “Intelligent agents in
decentralized traffic control,” in Proc. of IEEE Conf. Intelligent
Transportation Systems, 2001, pp. 705–709.

[8] V. Hirankitti and J. Krohkaew, “An Agent Approach for Intelligent
Traffic-Light Control,” in Proc. of Asian Modelling Symposium AMS2007,
2007, pp. 496-501.

[9] Uri Wilensky., NetLogo User Manual version 3.0.2, Center for Connected
Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL, 2005. Available at: http://ccl.northwestern.edu/netlogo/.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

