
 
 

 

  
  Abstract — A meshfree computational scheme is developed to 
study the compressive deformation of single-walled carbon 
nanotubes (SWCNTs).  The continuum constitutive relationship is 
based on an extended Cauchy-Born rule, the higher order 
Cauchy-Born rule, in which the atomic-scale deformed lattice 
vectors are calculated with both the first and second order 
deformation gradients.  The compression of CNTs is simulated, 
and the buckling behavior is displayed accurately.  A numerical 
simulation is also carried out with the application of the standard 
Cauchy-Born rule, and the comparison indicates that 
consideration of the second-order deformation gradient is 
necessary for the continuum simulation of CNTs. 
 

Index Terms— Carbon nanotubes; Higher order Cauchy-Born 
rule; Continuum simulation; Meshfree method; Compression 
buckling.  
 

I. INTRODUCTION 
  Due to the massive computational cost of the full atomistic 
simulation, the equivalent continuum models play an important 
role in understanding the properties of the nano-scale structures. 
The Cauchy-Born rule [1] is a fundamental kinematic 
assumption which establishes a connection between the 
deformation of the lattice vector of an atomistic system and that 
of a continuum displacement field.  The first use of this method 
at the nano-scale emerged from the quasi-continuum method [2] 
for two-dimensional problems. Later, Zhang et al. [3] and 
Zhang et al. [4] extended the approach to CNTs and proposed a 
nanoscale continuum theory by incorporating interatomic 
potentials into a continuum model.  However, as Arroyo and 
Belytschko [5,6] indicated, the application of the classical 
Cauchy-Born rule to CNTs may be not suitable because a CNT 
is essentially a curved crystalline sheet with of an atom’s 
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thickness, and the curvature effect has to be accounted for.  In 
[5,6], they systematically formulated an exponential 
Cauchy-Born rule for finite deformation membrane and CNTs.  
With the direct application of both the first and second 
deformation gradients, Guo et al. [7] and Wang et al. [8] 
recently proposed a higher order Cauchy-Born rule, in which 
no concept of curvatures is involved and the second 
deformation gradient is directly considered. By considering a 
CNT being formed by rolling a graphite sheet into a cylindrical 
shape, they [7,8] studied the elastic properties of single-walled 
CNTs.  

This paper concerns the computational validity of the 
constitutive model based on the higher order Cauchy-Born rule 
in the excellent works [7,8]. In the analysis, the 
Tersoff-Brenner [9,10] potential is employed as the interatomic  
potential, and the second set of parameters [9,10] for this 
potential function is used. A meshfree computational scheme is 
developed to implement the numerical computation of the 
constitutive model based on the higher order Cauchy-Born rule. 
As the second deformation gradient is involved in the present 
theory, the finite element method generally requires 
C1-continuity of the interpolation of displacements [11]. This 
leads to a challenging difficulty in the establishment of 
elements and the construction of the interpolation functions. 
Recently, researchers [11] applied the meshfree method [12-15] 
to simulate the materials with strain-gradients effects. A 
distinct advantage of this approach is that the meshfree 
approximations possess non-local properties and satisfy the 
higher order continuity requirement [11,13]. This intrinsic 
non-local property leads to real rotation-free approximation, 
and displacements can thus be used as the only nodal freedoms 
[11].  

The compression of carbon nanotubes is numerically 
simulated, and the buckling is studied. The numerical results 
show a good agreement with those obtained by the atomistic 
simulation. The obtained buckling pattern also agrees well with 
that obtained by atomistic simulation. In addition, the 
constitutive model based the Cauchy-Born rule (whereby no 
second-order gradient is used) is implemented with the 
meshfree method, and an unphysical buckling shape is obtained. 
The comparison reveals that the Cauchy-Born rule cannot 
accurately display the deformation behavior of CNTs because it 
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only considers the first-order deformation gradient and not the 
effect of bending stiffness. 

II. HYPER-ELASTIC CONSTITUTIVE MODEL 

A. Higher order Cauchy-Born rule 
In general, the Cauchy-Born rule [1] rule describes the 
deformation of lattice vectors as 

aFb •= ,                                          (1) 
where F  is the two-point deformation gradient tensor, a  is 
the undeformed lattice vector, and b  is the corresponding 
deformed lattice vector.  
   The Cauchy-Born rule has also been used to study the 
properties CNTs [3,4]. However, as Arroyo and Belytschko 
[5,6] indicated, the direct application is not suitable to curved 
crystalline films of one or more atom in thickness. This is 
mainly because the deformation gradient tensor F  describes 
only the change of infinitesimal material vectors that emanate 
from the same point in tangential spaces of the undeformed and 
deformed curved manifolds. By incorporating the effect of the 
curvature, Arroyo and Belytschko [5,6] proposed an 
exponential Cauchy-Born rule. The numerical simulation of 
Arroyo and Belytschko [5,6] also indicated that the model 
based on the Cauchy-Born rule has zero bending stiffness and 
does not accurately display the buckling behavior of CNTs. 
From the higher deformation gradient theory, Guo et al. [7] and 
Wang et al. [8] proposed a higher order Cauchy-Born rule in 
which  the second deformation gradient is directly considered, 
and the deformed lattice vector is approximated as 

a)(a:F(0)aF(0)b ⊗∇+•≈
2
1 ,                        (2) 

where F(0)∇  is the second deformation gradient. 
   With the involvement of the second deformation gradient, the 
accuracy of approximation for the deformed lattice vectors is 
largely enhanced. In particular, the second term of (2) describes 
the effect of the bending stiffness, and the approximation is 
thus more reasonable 

B. The Constitutive relationship 
Considering a representative cell that corresponds to atom i  as 
shown in Fig. 1, the deformed bond vectors ijr  )3,2,1( =j , by 

using (2), can be calculated as 
)/2ηRηR(:GηRFr )()()( +⊗+++•= IJIJIJij ,        (3) 

where jiij eeF ⊗=F  and kjiijk eeeG ⊗⊗=∇= FG  are the 

first and second order deformation gradient tensors, 
respectively. IJR  is the undeformed bond vector. Moreover, 
an inner shift vector η  has been added to the undeformed bond 
vector due to the non-Centro symmetry of the CNT atomic 
structure [2-6]. This inner shift vector is a function of F  and G , 
and can be determined by minimizing the strain energy of atom 
i with respect to η  [2-6]. 

   The strain energy density in this representative cell can be 
expressed as 
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Fig. 1. A representative cell to an atom  i. 
   
where ijV  is Tersoff-Brenner  potential[9,10], and iΩ  the 

average area per atom. 
   The first Piola-Kirchhoff stress tensor P  and the higher 
order stress tensor Q  is given by 

F
P

∂
∂

= 0W ,  
G

Q
∂

∂
= 0W .                              (5) 

The tangential modulus tensors can be obtained   
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∂

= 0
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The calculations for these tangential modulus tensors are very 
lengthy [7,8], and their exact expressions are not given here. 

 

III. MEHSFREE METHOD  
Based on the constitutive relations in section 2, a computational 
scheme can be established to implement the numerical 
simulation of CNTs. A distinct characteristic of the present 
theory is that the energy is a function of both the first and 
second derivations of the deformation, and the interpolation of 
displacement generally requires C1-continuity. In the 
conventional finite element, this will lead to difficulties in the 
establishment of elements and the construction of the 
interpolation functions [11]. The meshfree method is a newly 
developed computational technique that has some excellent 
advantages over the classical finite element method. In 
particular, meshfree approximations have non-local properties, 
and satisfy the higher order continuity requirement [12]. This 
intrinsic non-local property of meshfree interpolation leads to 
real rotation-free approximation, and displacements can thus be 
used as the only nodal freedoms [11]. Here, the meshfree 
method is employed to implement the numerical simulation and 
test the validity of the higher order deformation gradient theory.  
Moving least squares approximation [12-14] is used to 
construct the meshfree interpolation 
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   In the computation, the displacements relative to the 
undeformed CNT are approximated as  

∑
=

=
N

i
i

1

ûu φ ,                                        (6) 

where iφ  is the meshfree shape function and û  is the nodal 
parameter. N is the number of nodes which impact domains 
involve the evaluated point.  
   Stable configurations of a CNT are identified with the 
minimization of the potential energy 

∫ ∫∫ ∂∂
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0 00
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P dSdSdVW tutuGF ,      (7) 

where 0B  is the domain of the reference configuration, and P
0t  

and Q
0t  are the traction and second-order stress traction on the 

surface of the domain 0B∂ , respectively. Moreover, the trial 
deformation u  should satisfy the essential boundary condition 

uu =  on the boundary 0B∂ . 
   Discretizing (7) in the meshfree framework and 
differentiating the discretized equation, we have 
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The Hessian can be derived as 
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                (9) 
Equilibrium configurations can be solved through the nonlinear 
Newton’s method [16], and the resulting incremental system of 
equations can be written as 

)ˆ(ˆ 1n11n1n ++++ Δ=Δ ufuK n ,                    (10)                               
where the stiffness matrix 1n+K  needs to be determined from 
(9), 1n+Δf  is the non-equilibrium force to be determined from 
(8), 1nˆ +Δu is the incremental solution, and 1nˆ +u  is the solution 

at the iterative step 1+n . 
u
F
ˆ∂

∂  and
u
G
ˆ∂

∂  can be calculated after 

the first and second derivatives of the meshfree interpolation 
shape are determined. 
  When computing the energy, force, and tangent modulus 
tensors, the first and second gradients for an evaluated point are 
computed using the following formulas: 

aprini FFF +=  ,                                           (11) 

aprini GGG +=  ,                                        (12) 

where iniF  and iniG  are the gradients of the evaluated point 
when no loading is applied, and aprF  and aprG  are calculated 

through the interpolation formulas 
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,apr ûG XXφ ,                                    (14) 

with X,iφ and XX,iφ  being the first and second order derivations 

of meshfree shape function iφ . Moreover, an imaginative 
representative cell needs to be used for the evaluated points.  
   The aforementioned algorithm is a standard 
Newton-Raphson method [16]. The method is highly efficient 
before the buckling, but often fails to simulate the buckling 
behavior of structures because the stiffness matrix becomes 
non-positive definite around the buckling. As described in Ref. 
16, the simplest way to remedy the defection of the 
non-positive definition of the stiffness matrix is to replace 

1n+K  with IK α++1n , where I  is the identity matrix and α  
is a positive number that is slightly larger than the magnitude of 
the most negative eigenvalue of 1n+K . This approach is used 
here. 
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Fig. 2. Comparison of average energy per atom between the 

continuum and atomistic simulation. 
 

IV. COMPRESSIVE BUCKLING OF SWCNTS  
Using the present meshfree method, we have simulated the 

compression of a (18, 0) SWCNT. The initial length of the CNT 
is chosen as 8.7 nm. The problem is treated as quasi-static, and 
the surface of the undeformed CNT is discretized with 640 
particles. The load is imposed through uniformly reducing the 
length of the CNT by 0.1 nm per loading step at the initial stage 
and 0.01 nm per loading step near to the buckling. Fig. 2 plots 
the average energy per atom versus the compression ratio along 
with the results of molecular dynamic simulation. A distinct 
energy jump appears at about the compression ratio of 0.065, 
which corresponds to the buckling. The comparison indicates 
that the calculated energy before the buckling occurs is in good 
agreement with that obtained by molecular dynamics 
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simulation. After buckling the energy calculation becomes less 
accurate, but this is expectable because the deformation 
becomes drastically unhomogeneous and it is difficult to obtain 
a fine simulation with the coarse method.  

 

 
Fig. 3. The buckling patter of a (18,0) CNT of 8.7 nm length 

using higher order gradient theory. 

   
Fig. 4. The buckling patter of a (18,0) CNT of 8.7 nm length 

using classic Cauchy-Born rule. 
 
Fig. 3 shows the buckling pattern. The numerical simulation 

displays a true buckling pattern for the CNTs with such a ratio 
of length to radius [5].  Employing the meshfree method, we 
also simulated the compression of the same CNT with the 
constitutive relations based on the Cauchy-Born rule [3,4]. Fig. 
4 shows the buckling shape obtained: a series of ridges are 
scattered on the surface of the CNT. This result has no physical 
meaning because the Cauchy-Born rule only considers the first 
deformation gradient (the stretch factor) and does not involve 
the second deformation gradient (the bending factor). 

V. CONCLUSIONS 
   SWCNTs are studied in this paper by considering the effects 
of the second-order deformation gradient. The meshfree 
method is employed to implement the numerical computation 
of the hyper-elastic constitutive model derived from higher 
order Cauchy-Born rule. Meshfree approximations have 
non-local properties, and satisfy the requirement of higher 
order continuity. The meshfree method is thus particularly 
suitable for problems that involve the higher order deformation 
gradient (or strain gradient). Good numerical results are 
obtained for the compression of CNTs, and the buckling 
behavior is displayed truly. The numerical computation shows 
that the constitutive model based on higher order Cauchy-Born 
rule is also computationally efficient. 
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