
 
 

 

  
Abstract—This paper presents one of the outcomes of a 

research project concerned with the development of a method for 
synthesizing, under controlled conditions in the laboratory, the 
random vibrations generated by road transport vehicles. It 
addresses some of the deficiencies and limitations of current 
random vibration synthesis methods used for evaluating and 
validating the performance of packaging systems.  The paper 
deals with the development of a technique for decomposing 
non-stationary random vibration signals into constituent 
Gaussian elements.  The hypothesis that random non-stationary 
vehicle vibrations are essentially composed of a sequence of 
zero-mean random Gaussian processes of varying standard 
deviations is tested and the paper reveals that the variations in the 
magnitude of the vibrations are the cause of the leptokurtic, 
non-Gaussian nature of the process.  It is shown how 
non-stationary vibration signals can be systematically 
decomposed into these independent random Gaussian elements by 
means of a numerical curve-fitting procedure.  The paper 
describes the development of the algorithm which is designed to 
automatically extract the parameters of each constituent 
Gaussian process namely the RMS level and the Vibration Dose.  
The validity of the Random Gaussian Sequence Decomposition 
(RGSD) method was tested using a set of road vehicle vibration 
records and was found to be capable of successfully extract the 
Gaussian estimates as well as the corresponding Vibration Doses.  
Validation was achieved by comparing the sum of these Gaussian 
estimates against the PDF of the original vibration record.  All 
validation cases studied show that the RGSD algorithm is very 
successful in breaking-down non-stationary random vibration 
records into their constituent Gaussian processes.  Finally, the 
significance and relevance of this technique with respect to the 
synthesis of non-stationary vibrations for package evaluation and 
validation purposes is highlighted 
 

Index Terms—Gaussian vibrations, non-stationary vibrations, 
random vibrations,  vehicle vibrations.  
 

I. INTRODUCTION 
  It is self-evident that the primary source of vertical 

vibrations generated by road vehicles can be attributed to the 
unevenness of pavement surfaces.  When wheeled vehicles 
traverse irregular surfaces, the interaction between the vehicle 
and the terrain give rise to a dynamic process that produces 
complex forces and motions within the vehicle.  Because 
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pavement surface irregularities are generally random in nature, 
the resulting vehicle vibrations are also random.  Furthermore, 
the levels of vibrations are not solely dependent on the 
pavement roughness but are also a function of vehicle type, 
payload and vehicle speed.   The effect of these parameters tend 
make the complex mechanical interactions between the vehicle 
and pavement surface difficult to characterise and predict.  It is 
therefore widely acknowledged that the analysis and synthesis 
of road-related vehicle vibrations demand some level of 
sophistication.  As the importance and significance of 
optimising protective packaging designs intensifies, the need 
for closer and more accurate monitoring and understanding of 
hazards in the distribution environment increases. 

Although vibrations generated by road vehicles have been 
thoroughly studied on numerous occasions, because of their 
inherent complexity, variability and unpredictability, there 
does not exist a definitive method to predict, analyse or 
synthesize them.  There have been, however, a number of 
attempts in characterising some aspects of the process.  By far 
the most common approach is to compute the average Power 
Spectral Density (PSD) of the vibrations.  The technique is 
useful in many ways, such as identifying prevalent frequencies 
and the overall (RMS) vibration level, and is still widely used 
today to characterise ride quality.  One major drawback of the 
average PSD is that it effectively describes the average energy 
level (in this case acceleration) for each frequency band within 
the spectrum.  It does not contain information on time-variant 
parameters such as possible variations in amplitude or 
frequency or the time at which these variations occur.  
Furthermore, the temporal averaging process inherent to the 
PSD cannot separate the effects of transients within the signal.  
This is of no consequence if the process is both Gaussian and 
stationary.   In such cases the nature of the signal is well defined 
by the normal distribution and its higher-order moments.  
However, as it has repeatedly been shown, road vehicle 
vibrations can often be significantly non-stationary and non 
Gaussian mainly due to variations in pavement roughness and 
vehicle speed [1][2].  One such example is illustrated in Fig. 1.   

The main consequence of ignoring the non-Gaussian nature 
of vehicle vibrations becomes critical when the average PSD of 
the vibration sample is used to synthesize these vibrations using 
laboratory vibration generators.  In such cases, the 
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Figure 1.  Example of the non-stationary, leptokurtic nature of road vehicle vibrations. 

 
resulting synthesized vibrations are unavoidably Gaussian 
and, consequently, fail to reproduce the fluctuations in 
amplitudes that are inherent to the process. 

One approach that is sometimes used to (partially) 
compensate for the amplitude non-stationary of vehicle 
vibrations is the peak-hold spectrum.  In effect, instead of 
averaging the signal amplitude for each narrow frequency 
band, the peak-hold spectrum uses the largest amplitude 
within each frequency band.  Typically, given a suitably 
large sample, the peak-hold spectrum is an amplified version 
of the average PSD and is often used to reveal the 
relationship between the mean and peak spectral values 
which are related by the crest factor.  In reality, the 
interpretation of the peak-hold spectrum is difficult 
especially when the vibrations are time dependent 
(non-stationary) and contain transients.  Further uncertainty 
arises due to the fact that statistical uncertainties between the 
average and peak-hold spectral density estimates are not 
consistent.  In general, the use of peak-hold spectra for 
establishing the severity of vibration tests can lead to 
conservative results [1].  This is especially so if the process 
is highly non-stationary and the peak-hold spectral values 
are the results of severe but short-lived excursions in 
vibration levels.  While such statistically unlikely events can 
dramatically distort the peak-hold spectrum, they have little 
or no effect on the average PSD. 

A variant on the peak-hold spectrum is the method 
developed by the US Army at its Aberdeen Proving Ground 
for inclusion in its Mil Std 810D [3].  The analysis was based 
on vibration data collected from a range of road surface 

types and vehicle speeds.  The data is analysed in 1 Hz 
frequency bands where both the mean RMS vibration value 
and one standard deviation are calculated.  This method is 
advantageous over the peak-hold spectrum in that the 
statistical confidence of the mean and standard deviation is 
consistent [1].  The Aberdeen Proving Ground method, like 
the peak-hold method, is significantly affected when the 
vibrations are non-stationary [1].  

An alternative approach, described by Murphy [4], 
involves the use of the rainflow count algorithm to determine 
the frequency of occurrence (amplitude density in cycles per 
mile) for a predetermined set of acceleration ranges 
(rainflow amplitude).  Data, collected from a typical tractor – 
trailer travelling over a wide range of pavements including 
freeways, secondary roads and urban routes, were used to 
propose an exponential relationship between the amplitude 
density and acceleration range: 

 
    bxN a e=            (1) 

 
where N is the amplitude density in cycles per unit length, x 
is the acceleration range while a and b are empirical 
constants.  This method does provide some information on 
the amplitude non-stationary of the vibrations and may be 
useful when used in conjunction with the PSD.  

The non-stationary nature of road vehicle vibrations was 
discussed by Richards [1] who attributed it to variations in 
vehicle speed.  He produced data showing the variations in 
RMS acceleration levels as a function of vehicle speed for a 
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typical 40-minute journey.  Richards also identified that the 
dynamic response of road vehicles contain both continuous 
(steady-state) and transient components.  Richards [1] 
recognised the difficulties in identifying transients given that 
they occur at random intervals with large variations in 
amplitudes.  It was also acknowledged that, although 
desirable for establishing test requirements, the separation of 
transients from the underlying vibrations is, in reality, 
arbitrary and almost always difficult to achieve. 

Charles [5] was one among many to recognize that there 
existed problems relating to the interpretation of vertical 
vibration data from road vehicles for use to generate 
laboratory test specifications.  He also acknowledged that 
wheeled vehicle vibrations are “unlikely to be stationary” 
due to variations in road surface quality and vehicle speed.  
He also showed that the statistical distribution of vehicle 
vibrations is more likely to contain larger extrema than that a 
true Gaussian process as illustrated in Fig. 2. 

 

 
Figure 2.  Illustration of the non-Gaussian nature of 

vehicle vibrations (after Charles [5]). 
 
Charles [5], who studied a variety of road types, stated:  

“even for a good classified road, a whole range of surface 
irregularities may be encountered”.  He acknowledged that 
there exist difficulties associated with distinguishing shocks 
from vehicle vibrations.  Charles [5] suggested that the 
analysis method for characterising non-stationary vehicle 
vibrations should include the identification of stationary 
sections using the “RMS time histogram (sic)” (presumably 
meaning time history), the examination of vibration severity 
in terms of RMS and peak amplitude as a function of vehicle 
speed and verification of the normality of the data by 
computing the amplitude probability analysis. 

Despite the manifest non-stationarity and non Gaussian 
nature of road vehicle shocks and vibrations, they are not 
taken into account by most analysis methods in use today.  
However, more recently, attempts have been made to 
account for the non Gaussian characteristics of vehicle 
vibrations by applying a non-linear transformation to a 
Gaussian function by means of a Hermite polynomial thus 

enabling control of the skewness and kurtosis parameters 
[6,7,8].  The main limitation of this technique is that it fails 
to recognise that the primary cause of the leptokurtic nature 
of road vehicles vibrations is the result of the 
non-stationarity of the process rather than an inherent 
non-Gaussian character.  Consequently, it does not succeed 
in reproducing the variations in the processes’ amplitude that 
are considered essential if realistic simulations are to be 
achieved. 

This paper builds on Charles’ proposition that 
non-stationary random vehicle vibrations consist of 
Gaussian segments and introduces a method by which 
measured and numerically-simulated road vehicle vibration 
data can be decomposed into its constituent Gaussian 
components. 

 

I. RANDOM GAUSSIAN SEQUENCE DECOMPOSITION 

The Probability Distribution Function of a signal composed 
of a sequence of random Gaussian processes can be 
expressed as the sum of the individual distribution functions 
each weighted by, what will here be termed, the Vibration 
Dose.  The Vibration Dose effectively describes the time 
fraction for which a Gaussian process of a particular 
standard deviation exists.  The decomposition method 
described here relies on the fact that the distribution function 
of a sequence of zero-mean Gaussian processes can be 
described intrinsically as a function of two parameters, 
namely the vibration dose, Di, and the standard deviation, σi, 
as follows: 
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In this form the function produces a linear relationship 
between x|x| and ln{p(x)} represented by the slope 21/ 2σ−  
and the ordinate intercept ln{D/√2π σ}.  This shows that the 
distribution parameters of a Gaussian process can be 
determined by fitting a straight line through one half (or side) 
the distribution estimates to obtain the Vibration Dose and 
standard deviation as follows: 
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Where mi and Ci are, respectively, the ith slope and 

ordinate intercept of the linear regression fit.    
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Determine the index, ip , of 
the first element where 
ln{p(x)} ≥ 0 ( p(x) ≥1 )

Set the first boundary bln=ip

Initialise the loop counter 
n=1

Is ln{p(x)}|min in the
range {bln – brn } < 0?

Dn=0
Y

N

Compute the Gaussian 
estimate standard deviation 

and vibration dose.

Compute the slope (m) and 
ordinate intercept (C) of the 

linearised PDF in the    
range { bln – brn }

*

Determine the PDF 
remainder by subtracting the 
Gaussian estimate from the 
PDF of the original record.

Increment the loop counter 
n=n+1

GOTO *

Compute and plot sum of 
Gaussian estimates

Tabulate σn and Dn for all 
values of n

Y

N

Algorithm commentary

The PDF of the record is computed 
between limits determined from the 
absolute minimum and maximum of the 
entire vibration record.  This section of 
the algorithm deals with determining the 
optimum region at the ‘tail’ of the 
distribution function to determine the 
first Gaussian estimate which, by 
design, will represent the Gaussian 
element with the largest standard 
deviation.

First the element containing the 
maximum, p(x)max is identified.  Then, 
elements within the distribution function 
which contain ‘-inf’ values are detected.  
These represent elements where p(x) →
0.   The very adjacent element toward 
the centre of the distribution (the mean) 
is identified and represents the ultimate 
boundary of the distribution function, 
bln .  The other boundary of the region, 
brn , is defined as half way between bln
and the distribution peak element, ip.  
This coefficient of ½ was arrived at by 
experimentation and was found to yield 
the most consistent and accurate results. 
The coordinates ln{p(x)} and x|x| within 
the domain { bln - brn } are used as the 
first set of values to determine the 
parameters of the first Gaussian 
estimate.  This is best illustrated in Fig. 
4.

Linear regression by the method of least 
squares is used to determine the line of 
best fit through the data and estimates 
of the slope and ordinate intercept.  The 
Gaussian estimate’s standard deviation 
(σn) (or RMS for a zero-mean process)  
and vibration dose (Dn) are computed 
from estimates of the slope and ordinate 
intercept.   A numerical vector for the 
Gaussian estimate is generated for the 
entire range (shown in Fig. 5).

The difference between the original 
PDF and the Gaussian estimate is 
computed and used to fit the next 
Gaussian estimate.  The PDF remainder 
is linearised and any negative value is 
truncated to zero as a necessity for 
computing the natural log. 

The next range for regression is 
established by moving the starting point 
(left boundary, bln) by one and 
computing the end point (the right 
boundary, brn) as half way between bln
and the PDF peak ip.  If the number of 
elements in the range {bln - brn} is less 
than 5, it is deemed that there is no 
longer a sufficient number of points to 
accurately extract a line of best fit by 
regression.  The programme is 
terminated and the results displayed as 
shown in Fig. 6. 

Set the other boundary brn to
brn=ceiling[ bln+(ip – bln)/2 ]

Set the other boundary brn to
brn=ceiling[ bln+(ip – bln)/2 ]

Generate Gaussian estimate

Compute the linearised 
remainder PDF by 

evaluating x|x| and ln{p(x)}.

Increment the regression 
domain starting point:         

bln = brn-1 + 1

Is (bln – brn ) < 5

 Figure 3.  Random Gaussian Sequence Decomposition 
algorithm flow chart. 

 

The challenge in developing an automated algorithm to 
extract a number of Gaussian parameters from a 
non-Gaussian distribution are related to the data range (or 
boundary) for each Gaussian element, determining a suitable 
number of Gaussian elements in the sequence and the effect 
of fluctuation in the distribution estimates, especially in the 
high standard deviation, low count region.  A description of 
the algorithm developed in this study is given in Fig. 3 along 
with illustrations of its operation and the results it generates. 
 

Region for determining the initial 
Gaussian estimate parameters by 

linear regression. 

index = bln index = brn

Figure 4.  Identification of the region to determine the initial 
Gaussian estimate parameters by linear regression 

 

PDF of original record
Gaussian estimate (n =1)

Gaussian 
estimate No. 1

σ1 = 2.71
D1 =1.1% 

 
Figure 5.  First Gaussian estimate along with PDF of 

original record.  Note the relatively small dose that makes 
the estimate difficult to distinguish in linear scales. 

 
The validity of the Random Gaussian Sequence 

Decomposition (RGSD) method was tested using a broad set 
of typical of vibration records collected from a variety of 
vehicle types, routes and payload conditions (Table I).  In 
addition, the vertical acceleration responses of various linear 
quarter-car numerical models, made available in the 
literature, were computed for a range of pavement profiles a 
(Table II) to supplement and complement the collection of 
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measured vibration records.  Although it is acknowledged 
that the rudimentary nature of the simulation models (only 
linear elements were used) produces vibration estimates that 
are not necessarily accurate, the simulation is sufficiently 
realistic to reproduce the random non-stationarities that 
occur in reality and are, therefore, deemed adequate to the 
purpose of this study.  The simulation was carried out with a 
purposed-design program coded in Matlab® and Simulink®.  
The boundary conditions were accounted for by introducing 
a vehicle velocity ramp at a constant forward acceleration 
until the target cruise speed was reached.  The vertical 
vibrations of the quarter-car model were then computed at 
constant vehicle velocity for the entire pavement profile. 

The Random Gaussian Sequence Decomposition method 
was found to be capable of successfully extracting the 
Gaussian estimates as well as the corresponding vibration 
doses for every single test record.  Validation was achieved 
by comparing the sum of these Gaussian estimates against 
the PDF of the original vibration record.  A number of 
typical results are presented in Fig. 7. 

 
Table I.  Summary of measured vibration record 

parameters. 
ID Vehicle type & load Route 

Type 
MA Utility vehicle (1 Tonne capacity).  Load: 

< 5% cap. 
S'urban 
streets 

MB Prime mover + Semi trailer (Air ride 
susp.).  Load: 90% cap. 

Country 
roads 

MC Transport van (700 kg capacity).  Load: 
60% cap. 

Suburban 
streets 

MD Transport van (700 kg capacity).  Load: 
60% cap. 

Suburban 
hwy. 

ME Transport van (700 kg capacity).  Load: 
60% cap. 

Motorway 

MF Prime mover + Semi trailer (leaf spring 
susp.).  Load: < 5% cap. 

Country 
roads 

MG Tipper truck (16 Tonnes capacity, Air ride 
susp.).  Load: 25% capacity. 

Country 
roads 

MH Small flat bet truck (1 Tonne capacity, leaf 
spring susp.).  Load <5% cap. 

Suburban 
streets 

MJ Flat bed truck (5 Tonnes capacity, leaf 
spring susp.).  Load >95% cap. 

Country 
roads 

MK Sedan car.  Load: 1 passenger Suburban  
 

Table II.  Summary of routes used for 
numerically-generated vibration records. 

ID Route (Victoria, Australia) 
SA Murray Valley Highway (Major county road)  
SB Bendigo – Maryborough road (Major county road) 
SC Princess Highway (Freeway) 
SD Timboon Road, Victoria, Australia (Major county road)
SE Road sequence: Timboon Road – Princess Hwy and 

Murray Valley Hwy, Victoria, Aust. 

PDF of original record
Sum of Gaussian estimates

 
Figure 6.  Typical plot of the decomposed Gaussian 

estimates (blue lines) along with the sum of the Gaussian 
estimates (red line) and the PDF of the original record. 

 

II. CONCLUSIONS 

Results from the Random Gaussian Sequence 
Decomposition method are important in that they yield a 
series of normal random processes which are completely 
characterized by the second-order statistic (the 
root-mean-square for zero-mean processes).  The results 
confirm that it is the variation in the standard deviation of the 
process that causes it to exhibit highly non-Gaussian 
characteristics as seen in the overall Probability Density 
estimates.  This is very significant in that it affords great 
simplicity for the synthesis of road vehicle vibrations which 
can be achieved without much difficulty when the process is 
Gaussian or, as is has been shown to be the case, a sequences 
of Gaussian events.  All validation cases presented here 
show that the Random Gaussian Sequence Decomposition 
algorithm is very successful in breaking-down 
non-stationary random vibration records into their 
constituent Gaussian processes.  One exception is in the case 
where there is a significant occurrence of vibratory energy at 
very low RMS level as is the case for sample record 
DATAMK shown in Fig. 7.  This low level component is 
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attributed to engine vibrations and, although persistent, is 
insignificant in terms of level and falls below the detection 
threshold of the algorithm. 
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Figure 7.  Validation results for the Random Gaussian Sequence Decomposition method for a range of typical vibration records. 

(Red line: sum of Gaussian segments, Grey: PDF of actual record) 
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