

Abstract— This paper presents an energy back-propagation

algorithm (EBP). Learning and convergence processes of the
standard backpropagation algorithm (SBP) are based on the
energy function. The energy function is used with the convergence
process to extract the nearest image for the unknown tested image.
The EBP algorithm shows considerably better performance in
terms of time of learning, time of convergence, and size of input
image compared to the SBP algorithm.

Index Terms— Artificial neural networks, backpropagation
algorithm, energy function, pattern recognition.

I. INTRODUCTION
 Artificial neural networks have been successfully applied to
problems in pattern classification, function approximation,
optimization, pattern matching and associative memories [12].
One of the most popular neural networks is the layered
feedforward neural network with a backpropagation (BP)
least-mean-square learning algorithm [13]. Multilayer feed
forward networks trained using the backpropagation learning
algorithm [14]. The network edges connect the processing units
called neurons. With each neuron input there is associated a
weight, representing its relative importance in the set of the
neuron's inputs. The inputs' values to each neuron are
accumulated through the net function to yield the net value: the
net value is a weighted linear combination of the neuron's
inputs' values [15].

A backpropagation net can be used to solve problems in
many areas [5]. But, the backpropagation algorithm has the
limitation of slow convergence [17] and lengthy training cycles
[8]. In order to overcome those drawbacks of the standard
backpropagation (SBP) algorithm, the energy backpropagation
(EBP) algorithm is proposed in this research.

The EBP algorithm adapts the following principles: (1)
doing the learning and convergence processes for parts of the
image and not all, (2) using small size of net will reduce size of
learning weights matrices of the learning process, and (3) using
the energy function based on Hopfield neural network will help
converging to the correct image in high efficiency. Thus, the
EBP algorithm will be efficient and accurate.

Manuscript received April 2, 2007.
Ahmad Hashim Hussein Aal-Yhia is with the Post-Graduate Institute for

Accounting and Financial Studies, University of Baghdad, Baghdad, Iraq
(corresponding author to provide phone: 00964-1-7780170; fax:
00964-1-7780306; e-mail: fingerprint192003@yahoo.com).

Dr. Ahmad Sharieh, is dean of King Abdullah II School for Information
Technology, University of Jordan, Amman, Jordan (e-mail: sharieh@ju.edu.jo).

Fig. 1. Backpropagation neural network with one hidden layer [5].

A. Standard backpropagation algorithm
The feed forward backpropagation (FFBP) network is a very

popular model in neural networks. It does not have feedback
connections, but errors are backpropagated during training.
Least mean squared error (LMST) is used. Many applications
can be formulated for using (FFBP) network, and the
methodology has been a model for most multilayer neural
networks. Errors in the output determine measures of hidden
layer output errors, which are used as a basis for adjustment of
connection weights between the input and hidden layers.
Adjusting the two sets of weights between the pairs of layers
and recalculating the outputs is an iterative process that is
carried on until the errors fall below a tolerance level. Learning
rate parameters scale the adjustments to weights. A momentum
parameter can also be used in scaling the adjustments from a
previous iteration and adding to the adjustments in the current
iteration [16].

B. Architecture
A multilayer neural network with one layer of hidden units

(the Z units) is shown in Fig. 1. The output units (the Y units)
and the hidden units also may have biases as shown in Fig. 1.
The bias on a typical output unit Yk is denoted by wok; the Zj is
denoted voj. These bias terms act like weights on connections
from units whose output is always 1. Only the direction of
information flow for the feedforward phase of operation is
shown. During the backpropagation phase of learning, signals
are sent in the reverse direction [5].

C. Training Algorithm
The backpropagation training algorithm is an iterative

gradient algorithm designed to minimize the mean square error
(MSE) between the actual output of a multilayer feedforward
perceptron and the desired output. It requires continuous
differentiable non-linearities. The following assumes a sigmoid
logistic nonlinearity [10].
Step 1. Initialize weights and offsets

Set all weights and node offsets to small random

An Energy Backpropagation Algorithm
Ahmad Hashim Hussein Aal-Yhia, and Ahmad Sharieh, Member, IAENG

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

values.
Step 2. Present input and desired outputs

Present a continuous valued input vector x0, x1, . . . xN-1
and specify the desired outputs d0, d1, . . . d M-1. If the
net is used as a classifier then all desired outputs are
typically set to zero except for that corresponding to
the class the input is from. That desired output is 1.The
input could be new on each trial or samples from a
training set could be presented cyclically until weights
stabilize.

Step 3. Calculate actual outputs
Use the sigmoid nonlinearity and formulas as in Fig. 2
to calculate outputs y0, y1 ... y m-1.

Step 4. Adapt weights
Use a recursive algorithm starting at the output nodes
and working back to the first hidden layer. Adjust
weight by

Wij(t+1) = wij(t) + jηδ xi' (1)

In this equation, wij(t) is the weight from hidden node j
or from an input to node j at time t, xi' is either the
output of node j or is an input, η is a gain term, and

jδ is an error term for node j.

If node j is an output node, then

jδ = yj (1 - yj) (dj - yj) , (2)

where dj is the desired output of node j and yj is the
actual output.
If node j is an internal hidden node, then

jδ = xj' (1 – xj') ∑k jkk wδ , (3)

where k is over all nodes in the layers above node j.
Interval node thresholds are adapted in a similar
manner by assuming they are connection weights on
links from auxiliary constant-valued inputs.
Convergence is sometimes faster if a momentum term
is added and weight changes are smoothed by
Wij(t+1) = wij(t)+ jηδ xi' +α (wij(t)– wij (t - 1)) , (4)

where 0 < α < 1.
Step 5. Repeat by going to step 2.

Fig. 2. Calculation of output for backpropagation training algorithm [9]

This paper is an extended of the research in [2]. In Section 2,

the EBP algorithm will be introduced. In Section 3, the
performance of the EBP algorithm will be compared to the

performance of the SBP algorithm. Section 4 concludes the
work.

II. THE ENERGY BACKPROPAGATION ALGORITHM

A. The Energy Function
One system of updating is to update the units in sequence.

The update mechanism posed by Hopfield (1982) chooses the
unit randomly. Usually, all processing units must be updated
many times before the network reaches a stable state. Each state
of the network has an associated "energy" value, which is
defined as:

vvt ij

j jii
ji

E ∑∑
≠

−=
,

2/1
 (5)

When the network is in a stable state, the energy function is

at a minimum, which may be local or global [9]. The existence
of such function enables us to prove that the net will converge
to stable set of activation, rather than oscillating. The function
decreases as the system states change. Such a function needs to
be found and watched as the network operation continues from
one cycle to another. The least mean squared error is an
example of such function. Energy function usage assures a
stability of the system that cannot occur without convergence.
It is convenient to have one value, that of the energy function
specifying the system behavior [7].

The energy function is constant times the sum of products of
outputs of different neurons and the connection weight between
them, since pairs of neuron outputs are multiplied in each term
[16]. The network with two neurons can be represented by four
states: (00,01,10,11). The States of three-neuron network can
be represented by a cube. In general, a network with n neurons
has 2n states and can be represented by an n2-dimensional cube.
When a new input is applied, the network moves from vertex to
vertex until it stabilizes. If the input vector is partial or
incomplete, the network stabilizes to the closest vertex. A
number of binary vectors representing different patterns can be
stored in the network. Here, in order to store input vectors, the
energy equation is used to assign the weight values such that
each memory vector corresponds to a stable state or the
minimum energy equation of the network [9].

B. The EBP Algorithm
The EBP algorithm consists of two stages: the learning stage

and the convergence stage. In the proposed method, we will use
a net, which contains two nodes of input layer, hidden layer and
output layer as shown in Fig. 3. The size of this net will be the
same. This representation of the net enables the learning and
convergence processes of parts of the image under
consideration.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Fig. 3. Net of small size

The learning stage consists of learning algorithm. In this

algorithm, we will divide the image into rows. Each row is
divided into number of parts of two pixels, to be considered as a
vector (V). This means there are four states for these vectors as
shown in Fig. 4.

1 2 3 4

0 0 1 1

0 1 0 1

Fig. 4. The four states for the vectors.

Therefore, the learning process in the EBP algorithm for any

image will result in four sets of learning weights matrices at
maximum. Each set consist of two matrices: W1 and W2. The
W1 represents the weights from input layer to hidden layer, and
the W2 represents the weights from hidden layer to output layer.
There are four sets of biases arrays at maximum. Each set
consists of two arrays, which are called Wh and Wo. The Wh
represents the biases of nodes of hidden layer, and Wo
represents the biases of nodes of output layer. Each matrix of
W1 and W2 will be of size 2x2, and each array of Wh and Wo
will be of size 2x1.

Hence, each vector V, as shown in Fig. 4, will represent its
own net. Each net has (W1 and W2, Wh and Wo). Therefore,
we have only four nets as shown in Fig. 5.

Each vector V will be replaced by a number. This means we
will replace all the parts (the vectors) in the image with
numbers. These numbers represent the net.

Fig. 5. The four vectors with its own nets and numbers of nets.

The learning process of the proposed method for all vectors
in the image will pass through two steps:

1. Testing whether the system has learned current vector
before or not: The binary vector is examined. If it is
saved with its learning weights matrices, then it is
learned. Therefore, we will replace this vector by the
number of its own net; otherwise, the vector is not
learned.

2. Learning the vector: If the vector is not learned, it is
entered to the backpropagation learning algorithm, then
save its learning weights matrices, and save the number
of net instead of vector.

The following steps present the learning algorithm:
Step1: For x=1 to N {N: length of image}
Step2: For y=1 to M step 2 {M: width of image}
Step3:
 IF binary vector is learned

 Then Save the number of net for this vector and
return to take the other vector.

 Else enter the vector to the backpropagation learning
algorithm, save learning weights matrices W1 &
W2, and save number of net for this vector.

C. The convergence stage
The convergence stage consists of two algorithms: the

algorithm of identification and the algorithm of convergence.
The identification algorithm extracts the nearest image for the
unknown input image using the energy function, depending on
the learning weight matrix W2 for both vectors of unknown
input image and vectors of images in the database. Notice that
the learning weight matrix W1 is similar to some of its
parameters. Therefore, we use only the learning weight matrix
W2 in identification algorithm. This similarity makes the
identification process not active. The identification process is
showed in Fig. 6.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Fig. 6. Operation of identification the nearest image by energy
function.

The identification process consists of the following steps:

1. Use the learning weights matrix W2 for current vector in
the unknown input image, with each W2 for the vectors in
the images saved in the database, and extracts the Energy
function (EV) between them. Thus, each image in the
database will have value of its own Energy function.
Therefore, extract the value of the first minimum energy
function and the value of the second minimum Energy
function. Then, extract the value of difference between
them (Difference Next Close (DNC)).

2. Examine whether the system has learned the unknown
input image before or not using the DNC value. If it is
large value, then the unknown input image is learned.
Therefore, the stored image with the minimum energy
function, representing the nearest image for the unknown
input image, is converged. However, if the DNC is small
value, the unknown input image is not learned. Therefore,
exit from the system. The DNC value depends on the
image density and size.

The following algorithm presents the identification
algorithm:

For x=1 to N {N: length of image}
 For y=1 to M {M: width of image}
 BEGIN
 For all stored images do
 Begin
 For all rows of stored images do

 For the vector in the input image and learning weight
matrix W2 do

Begin

 EVk = -1/2 (∑∑
= =

2

1

2

1i j
W2ij

k
(input)* W2ij

k
 (stored))

 {Energy function for each vector}
End;

 E = ∑
=

VN

k 1

EVk {Energy function for each image}

 End;
 END
DNC = E1 – E2 {E1: first minimum energy function,
 E2: second minimum energy function}
IF DNC is large value
Then unknown input image is learned; therefore the stored

image with the minimum Energy function (E)
representing the nearest image for the unknown input
image is converged.

IF DNC is small value
Then unknown input image is not learned, therefore exit from

the system.

In the convergence algorithm, if unknown input image is

learned, then converge the stored image with the minimum
energy function (E). This is the nearest one for the unknown
input image. In the same way of the learning algorithm, we
divide the image into rows. Each row is divided into number of
parts of two pixels size to be considered as a vector (V).
Depending on the number of net and the backpropagation
convergence algorithm, the vector (V) is converged. If the
vector is converged by the backpropagation convergence
algorithm before, it is converged using number of net.

The convergence algorithm is presented by following
algorithm:

For x=1 to N {N: length of image}
 For y=1 to M step 2 {M: width of image}

For i=1 to NC {NC: the counter of the array (No
Net) is contained n*m/2 of
numbers of net saved instead of
the vectors}

 IF the current vector is not converged by the
backpropagation convergence algorithm before,

Then enter the current vector into the
backpropagation convergence algorithm and
save the produced vector into the array of
Converged Image (CI).
 CI(x,y) = V(1,1)
 CI(x,y+1) = V(1,2)

Else the vector is obtained by the number of net.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Then, save the produced vector into the
Converged Image (CI).

 CI(x,y) = V(1,1)
 CI(x,y+1) = V(1,2)

 Endfor;
 Endfor;
Endfor.

III. EXPERIMENTS AND RESULTS
This section will be devoted to demonstrate the

implementation of the EBP with experimental results and
discussions. The experimental results are implemented on a
Pentium IV, 2400 MHz using programs written in MATLAB.
In our experiments, some samples of images are captured using
database of fingerprint images [3, 11] and images of Baghdad
city from space [6]. These images are of BMP and JPEG format.
Fig. 7 shows some samples images, which are used in the
experiments.

Fig. 7. Samples of fingerprint images and images of Baghdad city
from space, which are used in the experiments.

The time of learning and converging processes of both the

SBP and the EBP by using images with different sizes was
measured. The net has only learned two images. The time
averages of learning and converging processes were taken for
five different readings. Table 1 shows the times of learning
process when running the SBP and the EBP. Table 2 shows the
times of convergence process of the SBP and the EBP. The
SBP failed when the input array (input image) size was large.
Therefore, we do not test images that have sizes 50x50,
128x128, 256x256 and 600x600 pixels on the SBP.

Table 1. The times of learning process on the SBP and the EBP
algorithms.

Size of
image
(Pixel)

The average time of
learning process in SBP

(Second)

The average time of
learning process in EBP

(Second)
4x4 0.33 0.26
6x6 0.6 0.25

50x50 - 0.63
128x128 - 3.58
256x256 - 39.8
600x600 - 1118.4

The results show the process of learning process using the

EBP algorithm is faster than the SBP algorithm. The results
show that the converging process using the EBP algorithm is
better than the SBP algorithm, when the image is larger.

Table 2. The times of converging processes in SBP and EBP
algorithms.

Size of
image

(Pixel)

SBP EBP
Time

average of
convergin
g process
(Second)

Time
average of

identification
process

 (Second)

Time
average of
converging

process
(Second)

Time of
entire

converging

(Second)
4x4 0.006 0.009 0.015 0.024
6x6 0.006 0.006 0.024 0.03

50x50 - 0.62 0.07 0.69
128x128 - 4.57 0.47 5.04
256x256 - 19.1 2.07 21.17
600x600 - 85.93 11.62 97.55

IV. CONCLUSION
A backpropagation net can be used to solve problems in

many areas. However, backpropagation algorithm has the
drawback of slow convergence and lengthy training cycles. In
order to overcome those drawbacks of the standard
backpropagation (SBP) algorithm, the energy backpropagation
(EBP) algorithm is proposed in this research.

The EBP algorithm deals with part of the image in
performing the learning and convergence processes, uses small
size of net to reduce the size of learning weights matrices of the
learning process, and employees an energy function based on
Hopfield neural network to speed converging to the correct
image.

The energy function is computed from the sum of products
of outputs of different neurons and the connection weight
between them. The energy equation is used to assign the weight
values such that each memory vector corresponds to a stable
state or the minimum energy equation of the network.

The EBP algorithm consists of two stages: the learning stage
and the convergence stage. The convergence stage consists of
two algorithms: the algorithm of identification and the
algorithm of convergence. The identification algorithm extracts
the nearest image for the unknown input image using the
energy function. For more details, see [2].

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Both the EBP and the SBP algorithms were implemented and
tested on images of different sizes. The samples of the images
were taken from a database of fingerprint images and images of
Baghdad city. The images are of BMP and JPEG format. The
time of learning and converging processes of both the SBP and
the EBP algorithms were measured. The results indicate the
superiority of the EBP algorithm over the SBP. However, the
current results are encouraging for continuation of our work.
We plan to make more experiments and practical
implementations of the EBP algorithm.

REFERENCES
[1] R. Abdul Abbas, Fingerprint Classification Using Neural Network.

Unpublished master dissertation, University of Technology, Baghdad,
Iraq, 1996.

[2] A. H. Aal-Yhia, TITLE of YOUR THESIS, Master Thesis, Computer
Science Department, University of Jordan, Amman-Jordan, 2004.

[3] Biometrix 8th WWW Fp-images. (2nd ed.) Retrieved August 10, 2003.
Available:

 http://www.biometrix.at/fp-images.zip
[4] R. Duda and P. Hart, Pattern Classification and Scene Analysis. New

York: Wiley, 1973.
[5] L. Fausett, Fundamentals of Neural Networks. (1st ed.), USA:

Prenice-Hall, 1994.
[6] Image@2005 DigitalGlobe 8th HTTP sample.JPEG. (n. d.) Retrieved

August 15, 2005. Available:
 http://earth.google.com/
[7] W. Kinnebrock, Neural Network. Fundamentals, Applications, Examples.

USA: Prentice-Hill, Inc, 1995.
[8] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence. USA: Prentice-Hall international,
1992.

[9] A. Kulkarni, Computer Vision and Fuzzy-Neural Systems. USA: Prentice
Hall, 2001.

[10] R. Lippmann, “An introduction to computing with neural nets,” in IEEE.
April 1987, 4-22.

[11] Neurotchnologija 3th WWW Fingercell_Sample_DB. (n. d.) Retrieved
May 25, 2004. Available:

 www.neurotchnologija.com/download/fingercell_sample_DB.zip.
[12] R. Parekh, J. Yang, and V. Honavar, “Constructive neural-network

learning algorithms for pattern classification,” IEEE Transactions on
Neural Networks. March 2000, Vol. 11, No.2.

[13] R. Rojas, “Neural networks, a systematic introduction,” in Springer.
Berlin, 1996.

[14] D. Rumelhart, G. Hinton, and R.Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing:
Explorations into the Microstructure of Cognition. Cambridge, MA: MIT
Press, 1986, vol. 1.

[15] S. Stoeva, A. Nikov, “A fuzzy backpropagation algorithm,” Fuzzy Sets
and Systems. 2000, 112, pp. 27–39.

[16] B. Vallurn, and V. Hayoriva, C++ Neural Network and Fuzzy Logic. (2nd
ed.), USA: M&T publishing, 1996.

[17] J. Wu, Neural Networks and Simulation Methods. New York: Marcel
Dekker, 1994.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

