
 
 

 

  
Abstract— This paper presents an energy back-propagation 

algorithm (EBP). Learning and convergence processes of the 
standard backpropagation algorithm (SBP) are based on the 
energy function. The energy function is used with the convergence 
process to extract the nearest image for the unknown tested image. 
The EBP algorithm shows considerably better performance in 
terms of time of learning, time of convergence, and size of input 
image compared to the SBP algorithm. 
 

Index Terms— Artificial neural networks, backpropagation 
algorithm, energy function, pattern recognition.  
 

I. INTRODUCTION 
  Artificial neural networks have been successfully applied to 
problems in pattern classification, function approximation, 
optimization, pattern matching and associative memories [12]. 
One of the most popular neural networks is the layered 
feedforward neural network with a backpropagation (BP) 
least-mean-square learning algorithm [13]. Multilayer feed 
forward networks trained using the backpropagation learning 
algorithm [14]. The network edges connect the processing units 
called neurons. With each neuron input there is associated a 
weight, representing its relative importance in the set of the 
neuron's inputs. The inputs' values to each neuron are 
accumulated through the net function to yield the net value: the 
net value is a weighted linear combination of the neuron's 
inputs' values [15].  

A backpropagation net can be used to solve problems in 
many areas [5]. But, the backpropagation algorithm has the 
limitation of slow convergence [17] and lengthy training cycles 
[8]. In order to overcome those drawbacks of the standard 
backpropagation (SBP) algorithm, the energy backpropagation 
(EBP) algorithm is proposed in this research.  

The EBP algorithm adapts the following principles: (1) 
doing the learning and convergence processes for parts of the 
image and not all, (2) using small size of net will reduce size of 
learning weights matrices of the learning process, and (3) using 
the energy function based on Hopfield neural network will help 
converging to the correct image in high efficiency. Thus, the 
EBP algorithm will be efficient and accurate. 
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Fig. 1. Backpropagation neural network with one hidden layer [5]. 

A. Standard backpropagation algorithm 
The feed forward backpropagation (FFBP) network is a very 

popular model in neural networks. It does not have feedback 
connections, but errors are backpropagated during training. 
Least mean squared error (LMST) is used. Many applications 
can be formulated for using (FFBP) network, and the 
methodology has been a model for most multilayer neural 
networks. Errors in the output determine measures of hidden 
layer output errors, which are used as a basis for adjustment of 
connection weights between the input and hidden layers. 
Adjusting the two sets of weights between the pairs of layers 
and recalculating the outputs is an iterative process that is 
carried on until the errors fall below a tolerance level. Learning 
rate parameters scale the adjustments to weights. A momentum 
parameter can also be used in scaling the adjustments from a 
previous iteration and adding to the adjustments in the current 
iteration [16]. 

B.  Architecture 
A multilayer neural network with one layer of hidden units 

(the Z units) is shown in Fig. 1. The output units (the Y units) 
and the hidden units also may have biases as shown in Fig. 1. 
The bias on a typical output unit Yk is denoted by wok; the Zj is 
denoted voj. These bias terms act like weights on connections 
from units whose output is always 1. Only the direction of 
information flow for the feedforward phase of operation is 
shown. During the backpropagation phase of learning, signals 
are sent in the reverse direction [5].  

C.  Training Algorithm 
The backpropagation training algorithm is an iterative 

gradient algorithm designed to minimize the mean square error 
(MSE) between the actual output of a multilayer feedforward 
perceptron and the desired output. It requires continuous 
differentiable non-linearities. The following assumes a sigmoid 
logistic nonlinearity [10]. 
Step 1. Initialize weights and offsets  

Set all weights and node offsets to small random 
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values. 
Step 2. Present input and desired outputs  

Present a continuous valued input vector x0, x1, . . . xN-1 
and specify the desired outputs d0, d1, . . . d M-1. If the 
net is used as a classifier then all desired outputs are 
typically set to zero except for that corresponding to 
the class the input is from. That desired output is 1.The 
input could be new on each trial or samples from a 
training set could be presented cyclically until weights 
stabilize. 

Step 3. Calculate actual outputs 
Use the sigmoid nonlinearity and formulas as in Fig. 2 
to calculate outputs y0, y1 ... y m-1. 

Step 4. Adapt weights 
Use a recursive algorithm starting at the output nodes 
and working back to the first hidden layer. Adjust 
weight by  

Wij(t+1) = wij(t) + jηδ xi'                                     (1) 

In this equation, wij(t) is the weight from hidden node j 
or from an input to node j at time t,  xi' is either the 
output of node j or is an input, η is a gain term, and 

jδ is an error term for node j.  

If node j is an output node, then  

jδ  = yj (1 - yj) (dj - yj) ,                                         (2) 

where dj is the desired output of node j and yj is the 
actual output. 
If node j is an internal hidden node, then  

jδ  = xj' (1 – xj') ∑k jkk wδ ,                               (3) 

where k is over all nodes in the layers above node j. 
Interval node thresholds are adapted in a similar 
manner by assuming they are connection weights on 
links from auxiliary constant-valued inputs. 
Convergence is sometimes faster if a momentum term 
is added and weight changes are smoothed by  
Wij(t+1) = wij(t)+ jηδ xi' +α (wij(t)– wij (t - 1)) ,    (4) 

where  0 < α < 1. 
Step 5. Repeat by going to step 2. 
 

 

 
Fig. 2. Calculation of output for backpropagation training algorithm [9] 

 
This paper is an extended of the research in [2]. In Section 2, 

the EBP algorithm will be introduced. In Section 3, the 
performance of the EBP algorithm will be compared to the 

performance of the SBP algorithm. Section 4 concludes the 
work.  

 

II. THE ENERGY BACKPROPAGATION ALGORITHM 

A. The Energy Function 
One system of updating is to update the units in sequence. 

The update mechanism posed by Hopfield (1982) chooses the 
unit randomly. Usually, all processing units must be updated 
many times before the network reaches a stable state. Each state 
of the network has an associated "energy" value, which is 
defined as:  
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When the network is in a stable state, the energy function is 

at a minimum, which may be local or global [9]. The existence 
of such function enables us to prove that the net will converge 
to stable set of activation, rather than oscillating. The function 
decreases as the system states change. Such a function needs to 
be found and watched as the network operation continues from 
one cycle to another. The least mean squared error is an 
example of such function. Energy function usage assures a 
stability of the system that cannot occur without convergence. 
It is convenient to have one value, that of the energy function 
specifying the system behavior [7]. 

The energy function is constant times the sum of products of 
outputs of different neurons and the connection weight between 
them, since pairs of neuron outputs are multiplied in each term 
[16]. The network with two neurons can be represented by four 
states: (00,01,10,11). The States of three-neuron network can 
be represented by a cube. In general, a network with n neurons 
has 2n states and can be represented by an n2-dimensional cube. 
When a new input is applied, the network moves from vertex to 
vertex until it stabilizes. If the input vector is partial or 
incomplete, the network stabilizes to the closest vertex. A 
number of binary vectors representing different patterns can be 
stored in the network. Here, in order to store input vectors, the 
energy equation is used to assign the weight values such that 
each memory vector corresponds to a stable state or the 
minimum energy equation of the network [9]. 

B. The EBP Algorithm 
The EBP algorithm consists of two stages: the learning stage 

and the convergence stage. In the proposed method, we will use 
a net, which contains two nodes of input layer, hidden layer and 
output layer as shown in Fig. 3. The size of this net will be the 
same. This representation of the net enables the learning and 
convergence processes of parts of the image under 
consideration. 
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Fig. 3. Net of small size 

 
The learning stage consists of learning algorithm. In this 

algorithm, we will divide the image into rows. Each row is 
divided into number of parts of two pixels, to be considered as a 
vector (V). This means there are four states for these vectors as 
shown in Fig. 4. 

 
1 2 3 4 

0 0 1 1 

0 1 0 1 

 
Fig. 4. The four states for the vectors. 

 
Therefore, the learning process in the EBP algorithm for any 

image will result in four sets of learning weights matrices at 
maximum. Each set consist of two matrices: W1 and W2. The 
W1 represents the weights from input layer to hidden layer, and 
the W2 represents the weights from hidden layer to output layer. 
There are four sets of biases arrays at maximum. Each set 
consists of two arrays, which are called Wh and Wo. The Wh 
represents the biases of nodes of hidden layer, and Wo 
represents the biases of nodes of output layer. Each matrix of 
W1 and W2 will be of size 2x2, and each array of Wh and Wo 
will be of size 2x1.  

Hence, each vector V, as shown in Fig. 4, will represent its 
own net. Each net has (W1 and W2, Wh and Wo). Therefore, 
we have only four nets as shown in Fig. 5. 

Each vector V will be replaced by a number. This means we 
will replace all the parts (the vectors) in the image with 
numbers. These numbers represent the net. 

 

 

Fig. 5. The four vectors with its own nets and numbers of nets. 
 

The learning process of the proposed method for all vectors 
in the image will pass through two steps: 

1. Testing whether the system has learned current vector 
before or not: The binary vector is examined. If it is 
saved with its learning weights matrices, then it is 
learned. Therefore, we will replace this vector by the 
number of its own net; otherwise, the vector is not 
learned.  

2. Learning the vector: If the vector is not learned, it is 
entered to the backpropagation learning algorithm, then 
save its learning weights matrices, and save the number 
of net instead of vector. 

The following steps present the learning algorithm:  
Step1: For x=1 to N                     {N: length of image} 
Step2: For y=1 to M step 2           {M: width of image} 
Step3: 
          IF   binary vector is learned           

    Then  Save the number of net for this vector and 
return to take the other vector. 

      Else enter the vector to the backpropagation learning 
algorithm, save learning weights matrices W1 & 
W2, and save number of net for this vector. 

C. The convergence stage   
The convergence stage consists of two algorithms: the 

algorithm of identification and the algorithm of convergence. 
The identification algorithm extracts the nearest image for the 
unknown input image using the energy function, depending on 
the learning weight matrix W2 for both vectors of unknown 
input image and vectors of images in the database. Notice that 
the learning weight matrix W1 is similar to some of its 
parameters. Therefore, we use only the learning weight matrix 
W2 in identification algorithm. This similarity makes the 
identification process not active. The identification process is 
showed in Fig. 6.  
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Fig. 6. Operation of identification the nearest image by energy 
function. 

 
The identification process consists of the following steps: 

1. Use the learning weights matrix W2 for current vector in 
the unknown input image, with each W2 for the vectors in 
the images saved in the database, and extracts the Energy 
function (EV) between them.  Thus, each image in the 
database will have value of its own Energy function. 
Therefore, extract the value of the first minimum energy 
function and the value of the second minimum Energy 
function. Then, extract the value of difference between 
them (Difference Next Close (DNC)). 

2. Examine whether the system has learned the unknown 
input image before or not using the DNC value. If it is 
large value, then the unknown input image is learned. 
Therefore, the stored image with the minimum energy 
function, representing the nearest image for the unknown 
input image, is converged. However, if the DNC is small 
value, the unknown input image is not learned. Therefore, 
exit from the system. The DNC value depends on the 
image density and size. 

The following algorithm presents the identification 
algorithm:  
 
 

For x=1 to N                    {N: length of image} 
   For y=1 to M                {M: width of image} 
   BEGIN 
      For all stored images do 
      Begin 
         For all rows of stored images do 

 For the vector in the input image and learning weight 
matrix W2 do 

Begin  

       EVk = -1/2 (∑∑
= =

2

1

2

1i j
W2ij

k
(input)* W2ij

k
 (stored))    

                              {Energy function for each vector} 
End; 

      E = ∑
=

VN

k 1

EVk    {Energy function for each image} 

      End; 
    END 
DNC = E1 – E2          {E1: first minimum energy function,     
                                    E2: second minimum energy function} 
IF  DNC is large value   
Then  unknown input image is learned; therefore the stored 

image with the minimum Energy function (E) 
representing the nearest image for the unknown input 
image is converged.  

IF  DNC is small value     
Then unknown input image is not learned, therefore exit from 

the system. 
 
In the convergence algorithm, if unknown input image is 

learned, then converge the stored image with the minimum 
energy function (E). This is the nearest one for the unknown 
input image. In the same way of the learning algorithm, we 
divide the image into rows. Each row is divided into number of 
parts of two pixels size to be considered as a vector (V). 
Depending on the number of net and the backpropagation 
convergence algorithm, the vector (V) is converged. If the 
vector is converged by the backpropagation convergence 
algorithm before, it is converged using number of net.  

The convergence algorithm is presented by following 
algorithm: 
 
For x=1 to N                   {N: length of image} 
   For y=1 to M      step 2    {M: width of image} 

For i=1 to NC           {NC: the counter of the array (No 
Net) is contained n*m/2 of 
numbers of net saved instead of 
the vectors} 

          IF the current vector is not converged by the 
backpropagation convergence algorithm before,  

Then enter the current vector into the 
backpropagation convergence algorithm and 
save the produced vector into the array of 
Converged Image (CI). 
                  CI(x,y) = V(1,1) 
                  CI(x,y+1) = V(1,2) 

Else  the vector is obtained by the number of net. 
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Then, save the produced vector into the 
Converged Image (CI). 

                    CI(x,y) = V(1,1) 
                    CI(x,y+1) = V(1,2) 

        Endfor; 
     Endfor; 
Endfor. 
 

III. EXPERIMENTS AND RESULTS 
This section will be devoted to demonstrate the 

implementation of the EBP with experimental results and 
discussions. The experimental results are implemented on a 
Pentium IV, 2400 MHz using programs written in MATLAB. 
In our experiments, some samples of images are captured using 
database of fingerprint images [3, 11] and images of Baghdad 
city from space [6]. These images are of BMP and JPEG format. 
Fig. 7 shows some samples images, which are used in the 
experiments. 

 

 
 

Fig. 7. Samples of fingerprint images and images of Baghdad city 
from space, which are used in the experiments. 

 
The time of learning and converging processes of both the 

SBP and the EBP by using images with different sizes was 
measured. The net has only learned two images. The time 
averages of learning and converging processes were taken for 
five different readings. Table 1 shows the times of learning 
process when running the SBP and the EBP. Table 2 shows the 
times of convergence process of the SBP and the EBP. The 
SBP failed when the input array (input image) size was large. 
Therefore, we do not test images that have sizes 50x50, 
128x128, 256x256 and 600x600 pixels on the SBP. 

 

Table 1. The times of learning process on the SBP and the EBP 
algorithms. 

 
Size of 
image 
(Pixel) 

The average time of 
learning process in SBP 

(Second) 

The average time of 
learning process in EBP

(Second) 
4x4 0.33 0.26 
6x6 0.6 0.25 

50x50 - 0.63 
128x128 - 3.58 
256x256 - 39.8 
600x600 - 1118.4 
 
The results show the process of learning process using the 

EBP algorithm is faster than the SBP algorithm. The results 
show that the converging process using the EBP algorithm is 
better than the SBP algorithm, when the image is larger. 
 

Table 2. The times of converging processes in SBP and EBP 
algorithms. 

 
 

Size of 
image 

 
 

(Pixel) 

SBP EBP 
Time 

average of 
convergin
g process
(Second)

Time 
average of 

identification 
process 

 (Second) 

Time 
average of 
converging 

process 
(Second) 

Time of 
entire 

converging
 

(Second) 
4x4 0.006 0.009 0.015 0.024 
6x6 0.006 0.006 0.024 0.03 

50x50 - 0.62 0.07 0.69 
128x128 - 4.57 0.47 5.04 
256x256 - 19.1 2.07 21.17 
600x600 - 85.93 11.62 97.55 

 

IV. CONCLUSION 
A backpropagation net can be used to solve problems in 

many areas. However, backpropagation algorithm has the 
drawback of slow convergence and lengthy training cycles. In 
order to overcome those drawbacks of the standard 
backpropagation (SBP) algorithm, the energy backpropagation 
(EBP) algorithm is proposed in this research.  

The EBP algorithm deals with part of the image in 
performing the learning and convergence processes, uses small 
size of net to reduce the size of learning weights matrices of the 
learning process, and employees an energy function based on 
Hopfield neural network to speed converging to the correct 
image.   

The energy function is computed from the sum of products 
of outputs of different neurons and the connection weight 
between them. The energy equation is used to assign the weight 
values such that each memory vector corresponds to a stable 
state or the minimum energy equation of the network. 

The EBP algorithm consists of two stages: the learning stage 
and the convergence stage. The convergence stage consists of 
two algorithms: the algorithm of identification and the 
algorithm of convergence. The identification algorithm extracts 
the nearest image for the unknown input image using the 
energy function. For more details, see [2]. 
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Both the EBP and the SBP algorithms were implemented and 
tested on images of different sizes. The samples of the images 
were taken from a database of fingerprint images and images of 
Baghdad city. The images are of BMP and JPEG format. The 
time of learning and converging processes of both the SBP and 
the EBP algorithms were measured. The results indicate the 
superiority of the EBP algorithm over the SBP.  However, the 
current results are encouraging for continuation of our work. 
We plan to make more experiments and practical 
implementations of the EBP algorithm. 
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