
 
 

 

  
Abstract— This paper presents the initial results of a study 

aimed at improving the method by which the vibrations 
produced by transport vehicles are characterised and 
simulated. More specifically, this paper focuses on the rigid 
body vibrations generated by road transport vehicles in the 
context of distribution of packaged goods and produce. The 
research uses a variety of vibration data, collected from various 
vehicle types and routes in Spain and Australia with 
high-capacity vibration recorders. Vehicles used range from 
small transport vehicles to large truck-trailers with both 
airbags and steel spring suspensions while the routes travelled 
include suburban streets, main roads and motorways. The 
paper discusses the significance and limitations of the average 
power spectral density (PSD) and explains why the average 
PSD is not always adequate as the sole descriptor of road 
vehicle vibrations as the process generally tends to be 
non-stationary and non-Gaussian. The paper adopts an 
alternative analysis method, based on the statistical 
distribution of the moving root-mean-square (RMS) vibrations, 
as a supplementary indicator of overall ride quality. The 
measured data was used to compute the statistical distribution 
of each vibration record, the shape of which was compared for 
the entire set of records. The suitability of various 
mathematical models, based on the Weibull and Rayleigh 
distributions were investigated for describing the probability 
distribution function (PDF) of road vehicle vibration RMS time 
history. The paper proposes a single mathematical model that 
can accurately describe the statistical character of the random 
vibrations generated by road vehicles in general. It shows that 
the model can also effectively describe the statistical 
parameters of the process namely the mean, median, standard 
deviation, skewness and kurtosis. 
 

Index Terms— Random vibrations, RMS distribution, 
Weibull distribution.  
 

I. INTRODUCTION 
 In order to develop optimum packaging it is important 

that engineers are not only aware, but have a thorough 
understanding of the expected mechanical hazards to which 
packages are subjected during shipping and handling. This 
information allows them to engineer the optimum amount of 
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protective packaging needed to suitably protect the 
consignment against the risk of damage. To assist designers 
in reducing cost, either by avoiding wasting packaging 
materials due to over-packaging or avoiding damage due to 
under-packaging, distribution vibrations need to be 
simulated in the laboratory in order to test and validate 
protective package designs. Because verification of design 
by trial shipments have been shown to be both impractical 
and inadequate [1], performance testing of packaging 
systems in the laboratory has become increasingly the more 
adopted tool in the optimisation of package designs. Testing 
of package designs under controlled laboratory conditions 
usually involves the simulation of vibrations expected to be 
encountered during transportation. Assumptions regarding 
the nature and level of vibrations are sometimes adopted and 
make it difficult to optimise protective packaging without 
experimental verification. These unsophisticated and 
approximate simulation methodologies promote the 
adoption of a conservative approach to packaging design 
which, in many cases, lead to over packaging. 

Vibrations that occur in vehicles during transportation are 
complex and play a significant role in the level of damage 
experienced by products during shipment. Vehicle 
vibrations have a random nature and their character and level 
is dependent on the type of vehicle, suspension type, payload, 
vehicle speed and road condition. Because of these 
variabilities, it is not always possible to represent transport 
vibrations with a simple function such as the power spectral 
density (PSD) function. With the advent of sophisticated 
vibration recorders in the past decade, packaging engineers 
have been able to measure and analyze increasing volumes 
of vibrations that occur in commercial shipments. Recently, 
numerous studies have been undertaken with the aim of 
measuring and evaluating the vibrations in various 
distribution environments around the globe and using 
particular vehicle types to enable packaging engineers to 
develop packaging solutions to meet world-wide distribution 
challenges [2][3][4][5][6]. The main purpose of these 
exercised was to generate effective laboratory test schedules 
for evaluating the performance of package systems when 
subjected to vehicle vibrations during distribution. 
Unfortunately, the prevailing trend is to characterise these 
complex vibrations with a single function namely, the 
average power spectral density (PSD).  
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Figure 1. Typical road vehicle vibration record along with the RMS and crest factor time histories 

 
The now well-established and widely adopted procedure 

for the laboratory simulation of vehicle vibrations is to 
synthesize random vibrations from the average PSD of 
measured vibration data (which is assumed to wholly 
describe the transport environment) using random vibration 
controllers. These controllers synthesize normally-distributed 
vibrations by continually computing the Inverse Fourier 
Transform of the PSD coupled with a uniformly distributed 
random phase array. Unfortunately, by virtue of the fact that 
these systems use solely the average PSD to synthesize a 
normally-distributed random signal, the simulated vibrations 
turn out to be stationary hence not capable of emulating the 
excursions in vibration amplitude which are found to occur in 
the field. One interesting characteristic of road vehicle 
vibrations is that the shape of the PSD remains largely 
unchanged for the duration of each transport event [6]. In 
effect, the non-stationarity of the process is manifested 
through fluctuations in RMS level [7]. Most vibration 
controllers can be programmed so that the RMS level of the 
synthesised random signal is made to vary as a function of 
time. However, there is no established technique to determine 
how this modulation of amplitude should be implemented.  

The main objective of this paper is to establish whether a 
single mathematical model can be used to describe the 
statistical distribution of the moving RMS of vibrations 
generated by road vehicles in general, and whether the model 
can be used to characterise the overall ride quality as well as 
be of use in determining laboratory test schedules that include 
the generation of random vibrations of varying RMS levels. 

 

II. MODELLING THE RMS DISTRIBUTION 
Rouillard & Sek [8], studied the non-stationary behaviour 

of road vehicle vibrations and proposed a statistical model for 
characterising what they term the “vibration intensity”. Their 
model is a modified version of the Rayleigh distribution that 
includes an exponent parameter and a scale parameter. Their 
model applied to the vibration intensity which can only be 
computed by an elaborated algorithm based on the Hilbert 
transform. Further work aimed at using the RMS distribution 

of vehicle vibrations to design laboratory tests schedules was 
undertaken by Rouillard & Sek [7]. This work shows how 
more realistic vibrations can be synthesized by recognizing 
that road vehicle vibrations are non-stationary and by making 
use of the RMS distribution. One of the most elementary 
approaches to characterising non-stationarities is to compute 
the RMS (or mean-square) of the vibration record over 
relatively short segments [9]. The length of the segments and 
the incremental step for computing the moving RMS are 
critical to the analysis. The moving RMS of a function x(t) 
can be written as: 
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Where w is the segment length, δ is the incremental step 

and N is the total number of segments in the sample. 
The effects of the window width and the incremental step 

(overlap) on the moving RMS of non-stationary vibration 
signals have been illustrated by Rouillard [10]. It shows that 
care must be taken in selecting the parameters for computing 
the RMS time history of non-stationary signals.  

In order to validate the proposed model, a number of 
sample vibration records were collected from a wide range of 
vehicles and routes. The vibration data were collected using 
self-contained data recorders (Saver® by Lansmont) 
configured to record vibrations for predetermined sub-record 
lengths of 8 seconds at a sampling rate of 1024 Hz. The 
recorders were configured to initiate recording at specific 
periods varying from 9 seconds to one minute. A total of 
thirteen measurements were undertaken using various 
vehicles including small utility, vans, rigid trucks and 
semi-trailers with various suspension types and payloads. 
Routes included poorly maintained local roads, country 
roads, urban roads, and highways located in Victoria, 
Australia and Spain as shown in Table 1. The RMS time 
history of each vibration record was computed using (1) with 
w = 8 seconds and no overlap (δ = w + 1/fs, where fs = 
sampling frequency in Hz). A typical example of a vibration 
record along with the moving RMS is shown in Fig. 1. It also 
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includes a plot the moving crest factor which indicates the 
non-stationary character of the process; for a Gaussian 
process of 8192 samples, the likelihood that the crest factor 
exceeds 3.65 is 0.012%. This is a strong indication that the 
data recorded are non-Gaussian and non-stationary [10]. 

 
Table 1.  Summary of measured vibration record parameters. 

Record ID Vehicle type & load Country Route Type 
DATA A Utility vehicle (1 Tonne cap.).  Load: 

< 5% cap. 
Australia Suburban streets 

DATA B Prime mover + Semi trailer (Air ride 
susp.).  Load: 90% cap. 

Australia Country roads 

DATA C Transport van (700 kg cap.).  Load: 
60% cap. 

Australia Suburban streets 

DATA D Transport van (700 kg cap.).  Load: 
60% cap. 

Australia Main suburban 
hwy 

DATA E Transport van (700 kg cap.).  Load: 
60% cap. 

Australia Motorway 

DATA F Prime mover + Semi trailer (Leaf 
spring susp.).  Load: < 5% cap. 

Australia Country roads 

DATA G Tipper truck (16 Tonnes cap., Air 
ride susp.).  Load: 25% capacity. 

Australia Country roads 

DATA H Small flat bet truck (1 Tonne cap., 
Leaf spring susp.).  Load <5% cap. 

Australia Suburban streets 

DATA J Flat bed truck (5 Tonnes cap., Leaf 
spring susp.).  Load >95% cap. 

Australia Country roads 

DATA K Sedan car.  Load: 1 passenger Australia Suburban streets 
DATA L Prime mover + Semi trailer (Air ride 

susp.).  Load: 60% cap. 
Spain Motorway 

DATA M Prime mover + Semi trailer (Air ride 
susp.).  Load: 20% cap. 

Spain Motorway 

DATA N Prime mover + Semi trailer (Leaf 
spring susp.).  Load: 10% cap. 

Spain Motorway 

DATA O Prime mover + Semi trailer (Leaf 
spring susp.).  Load: < 1% cap. 

Spain Motorway 

 
The Probability Density Function (PDF) of the RMS time 

history of each of the thirteen vibration records was 
computed with the aim of developing a generic mathematical 
model that can be used to characterise the statistical 
characteristics of the process regardless of vehicle type, 
payload or route.  

A range of statistical distributions were studied and a 
model given in (3) was developed, based on the 
three-parameter Weibull distribution given in (2).  
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The proposed modified Weibull distribution model was 

developed to afford additional control over various aspects of 
the shape of the distribution function. It includes an exponent 
parameter, β, which enables the control of the slope of the 
right-hand tail of the distribution and increases the scope of 
the model for characterising a wider range of distribution 
functions. The model, given in (3), was found to be generic 
enough to be able to produce a range of well-known 
distributions for which the parameters are given in Table 2. 
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    (3) 

Where x is the moving RMS, α, β, γ  and x0 are the modified 
Weibull parameters and xi is the left hand domain limit.  
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Figure 2. Influence of parameters on the proposed 

four-parameter modified Weibull distribution. 
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Table 2. Parameters values for typical distributions. 

 
The single-parameter statistics for the model, namely, the 

mean, µ, the median, mdn, the standard deviation, σ, the 
skewness, ν (Sk) and the kurtosis, Kt, were derived and are 
given as: 
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In the case of the RMS distribution, the left hand domain 

limit, xi, was chosen as greater than zero since the RMS time 
history is, by definition, always positive. For the purpose of 
this study, in which only rigid body vibrations are of interest, 
xi = xo.  This has the effect of discounting the sustained, 
residual low level vibrations that are not caused by road – 
pavement interactions [10]. Therefore (3) can be written as 
follows, to characterise the moving RMS PDF of road vehicle 
vibrations: 
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The influence of each of the four parameters on the shape 

of the distribution function are illustrated in Fig. 2 which 
shows that each parameter alters different aspects of the 
distribution shape.  

Further analyses, undertaken to investigate the 
cross-correlation between the parameters, showed that there 
is no significant inter-parameter dependence. 
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Figure 3. Algorithm for optimisation of the fit based on the errors of the five statistics parameters. 
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III. RESULTS 
A computer program (coded in Matlab®) was developed 

to determine the optimum parameter values that yield the 
best fit for the proposed model with respect to the PDF of 
measured vibration data. Results using the sum-of-squared 
error (least squares) optimisation were found to produce 
unstable results. This was attributed to the relatively large 
number (four) of independent parameters which was found 
to achieve least square errors for several combinations of 
parameter values. In order to address this difficulty, code 
was modified (Fig. 3) to include optimisation based on the 
mean and standard deviation of the errors between the fitted 
and measured data for five statistical parameters namely the 
mean, median, standard deviation, skewness, and kurtosis. 

This curve fitting algorithm was used to subject the 
proposed four-parameter modified Weibull model to 
validation tests using all thirteen vibration records (Table 1) 
and was found to offer good agreement as shown in Fig. 4 
which shows four typical examples.  

The goodness of fit between the distribution of the 
measured data and the model are best revealed graphically as 
shown in Fig. 5 which shows plots of the main statistical 
parameters for all thirteen cases. It can be seen that very 
good agreement is achieved (R2 = 0.99) for the first and 
second order statistics (mean, median and standard 
deviation) while reasonably good agreement is achieved (R2 
= 0.96) for the third and fourth order statistics, represented 
here by the skewness and Kurtosis. 

The analysis of all thirteen vibration records show that the 
model is capable of representing RMS distributions 
consisting of various values of kurtosis, skewness and 
standard deviations as shown in Fig. 5. 

 

IV. CONCLUSIONS 
This paper has presented the initial results of a study 

aimed at improving the method by which the rigid body 
vibrations produced by road transport vehicles are 
characterised. Vibration data, collected from various vehicle 
types and routes in Spain and Australia, was used to develop 
and validate a mathematical model, based on the Weibull 
distribution, to describe the probability density function of 
the moving RMS time histories of the process. The paper has 
addressed the limitations of the average power spectral 
density (PSD) and explains why the average PSD is not 
always adequate as the sole descriptor of road vehicle 
vibrations as the process generally tends to be non-stationary 
and non-Gaussian. 
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Figure 4. Validation of four-parameter modified Weibull 

model for four typical cases 
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The paper adopts an alternative analysis method, based on 
the statistical distribution of the moving root-mean-square 
(RMS) vibrations, as a supplementary indicator of overall 
ride quality. The paper proposes a single mathematical 
model that can accurately describe the statistical character of 
the random vibrations generated by road vehicles in general. 
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Figure 5. Goodness of fit plots for the main statistical 

parameters. 
 
The proposed modified Weibull distribution model was 

developed to afford additional control over various aspects 
of the shape of the distribution function. The model was 
found to be generic enough to be able to produce a range of 
well-known distributions. Curve fitting results using the 
sum-of-squared error (least squares) optimisation were 
found to produce unstable results which required inclusion 
of the mean, median, standard deviation, skewness, and 
kurtosis in the optimisation algorithm. Validation tests using 
all thirteen sample vibration records and was found to offer 
good agreement in general. The paper also shows how the 
model is capable of accurately describing the statistical 
parameters of the process namely the mean, median, 
standard deviation, skewness and kurtosis. 

 

This result is relevant not only for the characterisation of 
ride quality but also for the accurate synthesis of road vehicle 
vibrations in the laboratory. The results can be used to assist 
in developing a novel method for simulating non-stationary 
(modulated) vibration in the laboratory. The RMS 
distribution function can be used to create an RMS level 
schedule that will enable the synthesis of random vibrations 
with varying RMS level to better represent the road transport 
vibration process. 
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