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Abstract—The dynamics of reciprocal transducer
systems is modelled accounting for a nonlinear con-
stitutive relation between the electric displacement
and the electric field as reported in Refs. [1, 2, 3] us-
ing an efficient nonlinear numerical scheme. The two
transducers are assumed connected in series with a
general electrical impedance. Particular emphasis is
given to transmitter and receiver temporal responses
in the cases with and without nonlinearities and dif-
ferences between the two model cases are highlighted.
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1 Introduction

Mathematical modelling of piezoelectric transducer sys-
tems is widely used in, e.g., optimizing transducer ma-
terial choices, geometry and dimensions of material lay-
ers, electrode configuration, electrical impedances con-
nected to the transducer [4, 5, 6, 7, 8]. Many modelling
activities rely on the use of linear constitutive relation-
ships between elastic and electric parameters such that
equivalent electric circuit (EEC) diagrams and standard
Fourier analysis apply. Linear constitutive relations are
adequate as long as the transducer is operated near a
specified working point such that approximative linear
dependences between variables exist. However, in appli-
cations with large-amplitude electric fields and/or elas-
tic strains, nonlinear effects are inevitable and impor-
tant. The general hysteresis curve between, e.g., polar-
ization and electric field serves as a well-known evidence
that nonlinear effects are important in the general case
of transducer operation [7, 9].

In this work, we consider reciprocal one-dimensional
transducer systems consisting of a piezoceramic material
layer in series with a general electrical impedance. The
transmitter is electrically excited by a voltage generator
and the transmitter voltage response is the voltage signal
across the transmitter electrodes while the receiver volt-
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Figure 1: Schematics of reciprocal transducer system

age response is the voltage across the receiver electrodes
(also equal to the voltage over the electrical impedance
connected to the receiver) refer to Figure 1. We con-
sider one-layer PZT5 piezoceramic transducers. A dy-
namic nonlinear model based on an efficient nonlinear
numerical scheme is proposed accounting for nonlinear-
ities in the electric field/electric displacement (E − D)
relation which is one important cause of nonlinearities in
transducer systems [1, 2, 3]. We examine and discuss the
importance of the E −D nonlinear constitutive relation
for transmitter and receiver dynamic responses subject
to two kinds of voltage-generator signals: (a) a 23-period
sinus burst with driving frequency at 1 MHz and (b) a
step-input signal. Although the nonlinearity is assumed
to stem from the E − D relation solely we stress that
any type of nonlinearity can be handled with the present
numerical model.

2 Nonlinear E −D Relation

The governing equations for a one-dimensional piezoelec-
tric transducer are Newton’s Second Law and the strain-
particle velocity relation [8]:

ρ
∂u

∂t
=

∂T

∂z
, (1)
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Figure 2: Schematics of the nonlinear E −D relation.

∂u

∂z
=

∂S

∂t
, (2)

where u, T , S, ρ, z, and t are the particle velocity, stress,
strain, mass density, position, and time, respectively. In
addition, we employ the constitutive relations:

T = −hD + dDS, (3)
E = βSD + K2D

3 − hS, (4)

where D, E, h, cD, βS , and K2 are the electric displace-
ment, electric field, the piezoelectric h constant, the stiff-
ness, the inverse permittivity, and the nonlinear coeffi-
cient in the E −D relation responsible for the superlin-
ear dependence of the absolute value of E with incresing
value of D [refer to Figure 2].

As mentioned above, we assume that the transmitter –
consisting of a single layer of PZT5 – is connected in series
with an electrical impedance Zel and a voltage generator
V (t), i.e., Ohm’s Law reads:

V (t) = ZelI +
∫

Edz, (5)

where I is the electric current and the spatial integration
is performed from transmitter electrode 1 to electrode 2.
Since drift currents in piezoelectric transducers are in-
significant as compared to displacement currents at MHz
frequencies, it is a good approximation to write for the
current:

I = A
∂D

∂t
, (6)

with A the cross-sectional area of the the transducer.

Next, employing Equations (3),(4), and (6) in Equa-
tion (5), the following differential equation is obtained:

∂D

∂t
=

1
ZelA

[
V (t)−

(
βSD + K2D

3 − h2

cD
D

)
L

+
∫

h

cD
T (z)dz

]
, (7)

with L the length of transducer. Equation (7) in addition
to Equation (1) and:

∂T

∂t
= cD ∂u

∂z
− h

∂D

∂t
, (8)

where the latter equation is obtained by combining Equa-
tion (2) and Equation (3) constitute the full set of dy-
namic equations modelled numerically. Thus, the prob-
lem involves solving three dynamic equations for u, T ,
and D.

Boundary conditions imposed everywhere are continuity
of stress and particle velocity. At the transducer aperture
interfaces facing air and water, respectively, the following
boundary conditions hold for the transmitter:

T tra
air

Zair
= +utra

air , (9)

T tra
water

Zwater
= −utra

water, (10)

since stresses are measured positive under compression of
the material. The output pressure wave from the trans-
mitter is assumed to impinge on the receiver front face
(facing water) neglecting damping in the transmitting
medium (water). Hence, continuity of pressure and par-
ticle velocity at the receiver interface (facing water) can
be formulated as:

pi
water + pr

water = T rec
water, (11)

pi
water

Zwater
− pr

water

Zwater
= urec

water, (12)

where pi
water, pr

water, T rec
water, and urec

water are the imping-
ing pressure wave, the reflected pressure wave, the result-
ing stress at the receiver aperture interface with water,
and the particle velocity at the water-receiver interface,
respectively. The latter two equations can be used to
augment pr

water (an unknown quantity) so as to obtain:

T rec
water

Zwater
+ urec

water = 2
pi

water

Zwater
, (13)

being the boundary condition for the receiver expressed
in terms of the known quantity pi

water. Next, following
an analogous procedure for the receiver as compared to
the transmitter one obtains the voltage signal generated
over the receiver electrodes. Additional details for de-
termining the receiver voltage signal (in the linear-case
approximation) can be found in Ref. [8].

3 Differential Algebraic Approach

Because of the nonlinearity in the E − D relationship,
the system given by Equations (1), (7), and (8) cannot
be solved by transformation methods which is the usual
and efficient way for the analysis of linear transducers.
Numerical methods, in this case, have to be employed for
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the nonlinear dynamic analysis instead of linear transfor-
mations. Because of its higher accuracy with a relatively
smaller number of discretization nodes, the Chebyshev
pseudo-spectral method is applied for the numerical anal-
ysis presented here. In order to analyse the dynamical be-
havior of a system given by partial differential equations,
a popular approach is the so called ”methods of lines”. By
this method, the whole system is firstly semi-discretized
spatially while keeping all derivatives with respect to time
unchanged. Obviously, this semi-discretization will con-
vert the original partial differential equations system to
a set of ordinary differential equations. The number of
ordinary differential equations depends on the number of
discretization nodes in space.

In the process of obtaining a unified numerical treat-
ment for both the transmitter and receiver, equations for
boundary nodes are replaced by algebraic equations re-
sulting from given boundary conditions. This will convert
the ordinary differential equations system into a Differen-
tial Algebraic Equations (DAE) system. For the Cheby-
shev pseudo-spectral approximation, a set of Chebyshev
points {xi} are chosen along the thickness direction as
follows:

xi = L

(
1− cos(

πi

N
)
)

/2, i = 0, 1, . . . , N. (14)

Using these nodes, the stress and velocity distributions in
the transducer can be expressed in terms of the following
linear approximation:

f(x) =
N∑

i=0

fiφi(x), (15)

where f(x) is the stress distribution or velocity distri-
bution, respectively, and fi is the function value at xi.
φi(x) is the ith interpolating polynomial which has the
following property:

φi(xj) =
{

1, i = j,
0, i 6= j.

(16)

It is easy to see that the well known Lagrange interpolants
satisfy the interpolating requirements. Having obtained
f(x) approximately, the derivative ∂f(x)/∂x can be eas-
ily obtained by taking the derivative of the basis functions
φi(x) with respect to x:

∂f

∂x
=

N∑

i=1

fi
∂φi(x)

∂x
. (17)

Following the same idea as given in Ref [12], Equation
(17) can be written in a matrix form as:

~Fx = ~D ~F , (18)

and the differentiation matrix ~D becomes:

Dij =





2N2 + 1
6

i = j = 0,

−2N2 + 1
6

i = j = N,

− xj

2(1− x2
j )

i = j = 1, 2, . . . , N − 1,

ci

cj

(−1)i+j

(xi − xj)
i 6= j, i, j = 1, 2, . . . , N − 1,

(19)
where

ci =





2, i = 0, N,

1, otherwise.
(20)

Obviously, ~Dij is an (N + 1)× (N + 1) matrix. Here Fx

and F are vectors collecting all values of the derivative
∂f/∂x and the function f at xi, respectively.

In Equation (7), an integral operator acting on the stress
distribution is also involved. This fact makes it neces-
sary to construct a quadrature rule using the same set of
points as chosen for the derivative approximation. For
the currently chosen discretization nodes, the quadra-
ture can be done by using the Chebyshev-Lobatto rule,
which is exact for any polynomials with an order less than
2N − 1. The quadrature rule could be written as:

∫ b

a

f(x) =
N∑

i=0

wif(xi), (21)

where weight coefficients wi for the quadrature can be
easily obtained using the idea given in [10, 13].

Using the approximations to the derivatives and integral
operators, and taking into account the boundary condi-
tions, the system given by partial differential equations
will be recasted into the following DAE system:

~M
d ~X

dt
+ ~N

(
t, ~X, ~U

)
= ~0, (22)

where ~X is a vector with a length of 2 × (N +
1) + 1 collecting all the unknowns we are seeking for,
including u(xi), T (xi), and D. The matrix ~M =
diag(a1, a2, ..., a2N+3) is a (2N + 3) × (2N + 3) matrix
having entries “one” for all the differential equations as-
sociated with those internal nodes and “zero” for all al-
gebraic equations associated with boundary conditions.
Vector ~N is a collection of all the algebraic functions de-
fined by the spatial discretization of the system (linear or
nonlinear), and ~U is the input (output) for the transmit-
ter (receiver).

The above system is a stiff system (because matrix ~M is
singular), and should be solved by an implicit algorithm.
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Here the second order backward differentiation formula
method [11] is employed for the purpose. By discretizing
the time derivative using a second order approximation,
the DAE system becomes the following algebraic system:

~M
(

3
2

~Xn − 2 ~Xn−1 + 1
2

~Xn−2
)

+∆t ~N
(
tn, ~Xn, ~Un

)
= 0, (23)

where n denotes the current computational time layer.
For each computational time layer, iterations should be
carried out using Newton’s method for ~Xn by use of ~Xn−1

and ~Xn−2. Starting from the initial value, the vector of
unknowns ~X can be solved for all specified time instances
employing this algorithm.

Table 1: Computational parameters for the PZT5 trans-
mitter and receiver
Parameter Value Unit
ω0/(2π) (driving frequency) 1 · 106 Hz
N (number of periods) 13
Thickness (piezoceramic) 1.96 mm
Transducer area 380 mm2

h (piezoceramic) 1.42 · 109 F2V/m3

εS (piezoceramic) 1440ε0 F/m
cD (piezoceramic) 1.19 · 1011 Pa
cD (water) 2.25 · 109 Pa
cD (air) 1.24 · 105 Pa
ρ (piezoceramic) 7750 kg/m3

ρ (water) 1000 kg/m3

ρ (air) 1.29 kg/m3

Zel 50 Ohm
K2 1.3 · 105 m/F

4 Numerical Results and Discussions

In this Section, results are computed for the case where
the transmitter and receiver are connected to a 50 Ohm
resistor (Zel = 50 Ohm). In Figure 3, we show the trans-
mitter response to an input voltage amplitude of 100 V
for a 23-period sinus burst corresponding to a driving fre-
quency of 1 MHz employing the nonlinear E−D relation
in the computation. The computational parameters for
the PZT5 transducer are given in Table 1. Notice that
after 13 periods the output signal is almost equivalent to
that of a steady-state output signal as the signal ampli-
tude does not change with the further increase in burst
periods. This response is similar to what has been re-
ported elsewhere [8]. Our calculations show that despite
the high voltage amplitude of 100 V, changes in signal
responses caused by nonlinearity in the E − D relation
(i.e., caused by changing K2 from 0 to 1.3·105) are hardly
visible (except in the signal phase).

The corresponding receiver voltage signal is shown in Fig-
ure 4. Again, the conclusion is that significant changes
in the response caused by the K2D

3 nonlinearity term in
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Figure 3: Transmitter voltage signal subject to a gener-
ator voltage sinus burst with driving frequency 1 MHz
(nonlinear E − D relation is employed in the computa-
tion but changes due to the nonlinearity are insignificant).
Parameters are given in Table 1

the constitutive relation are hardly visible. Next, we com-
puted the transmitter response to a 100 V step-response
signal generated by the voltage generator [Figure 5]. Lin-
ear (solid) and nonlinear (dashed) E−D relations are em-
ployed in the computations. It is now easily observable
that amplitude as well as phase changes in the transmit-
ter voltage signal as a result of the presence of the non-
linear term: K2D

3 in the E −D relation. In actual fact,
the K2D

3 term is responsible for a significant reduction
in the signal amplitude indicating that nonlinear effects
are very important at voltages near 100 V.

Finally, we plot in Figure 6 the ratio between the peak-
receiver and peak-transmitter voltage signals over time
subject to the same sinus burst considered in Figures 3
and 4. Apparently, the response is nonlinear although
only slightly since the ratio only changes from approxi-
mately 0.11 to 0.115 as the input voltage changes from 0
to 100 V.

Conclusions

A mathematical model for reciprocal transducer systems
accounting for nonlinearity in the constitutive relation
between the electric field and electric displacement is
presented. The model allows for connecting in series a
general electrical impedance to the transmitter and the
receiver. The transmitter and receiver apertures are as-
sumed coupled to semi-infinite layers of air (one side) and
water (other side) such that their influence on the system
response is entirely due to their mechanical impedance.
Special emphasis is given to differences in transmitter
and receiver electrical responses in cases with and with-
out E −D nonlinearity in the model.
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Figure 4: Receiver voltage signal subject to a generator
voltage sinus burst with driving frequency 1 MHz (non-
linear E−D relation is employed in the computation but
changes due to the nonlinearity are insignificant). Pa-
rameters are given in Table 1.
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