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Abstract— This paper presents an important outcome of a 

research programme which focuses on the development of a 
method for synthesizing, under controlled conditions in the 
laboratory, the non-stationary random vibrations generated by 
road transport vehicles.  It addresses an important limitation of 
current methods used for synthesising random vehicle 
vibrations which assume that vibrations produced by wheeled 
vehicles can be approximated by a zero-mean, 
normally-distributed (Gaussian) random process and, 
therefore, fails to accurately reproduce the fluctuations in 
vibration levels that occur naturally during road 
transportation realizations [1].  The paper builds upon the 
observation that non-stationary random vehicle vibrations are 
composed of a sequence of zero-mean random Gaussian 
processes of varying standard deviations [2].  It discusses the 
important parameters that need to be addressed when dealing 
with the synthesis of random sequences.  The paper presents 
the development of a change-point detection algorithm that 
was used to determine the length of stationary segments within 
a large number of typical non-stationary random vibration 
records.  These include measured vibration records as well as 
numerically-generated records based on measured pavement 
profiles. The algorithm, based on the cum-sum / bootstrapping 
techniques, was developed and applied to the instantaneous 
magnitude of sample vibration records.  The statistical 
distribution of segment lengths for each vibration record was 
computed with the aim of identifying similarities and trends for 
the development of an overall statistical model for segment 
lengths to be used for synthesis purposes.  One outcome of note 
was that the shape of the segment length distributions 
computed from a wide range of vibration records are generally 
comparable and exhibit an asymptotic-like decrease in 
probability of occurrence as the segment length increases.  This 
behaviour was found to be adequately modelled with a 
hyperbolic trigonometric function which was found to be useful 
for characterising the general statistical behaviour of segment 
length for non-stationary random vibrations produced by road 
vehicles.  Finally, the significance and relevance of this outcome 
with respect to the synthesis of non-stationary vibrations for 
package evaluation and validation purposes is highlighted. 
 

Index Terms—Non-stationary vibrations, random 
vibrations, vehicle vibrations, change-points, segment lengths. 
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I. INTRODUCTION 
 It is self-evident that vehicle vibrations are caused, in the 

main, by uneven pavement surfaces.  These have been found 
to be random in nature which, in turn, causes the vehicle 
vibrations to be random.  Variations in pavement roughness 
and fluctuations in the vehicle’s speed within a particular 
journey combine to produce variations in the overall energy 
levels of the vehicle vibrations.  These variations make the 
process highly non-stationary [2, 3] and introduce a level of 
complexity that cannot be adequately dealt with using 
conventional methods that are used for Gaussian and 
stationary processes.  The most commonly-used technique 
for laboratory simulation of transport vibrations has been in 
place for some years.  The method assumes that the 
vibrations produced by wheeled vehicles can be 
approximated by a zero-mean, normally-distributed 
(Gaussian) random process.  In addition, the overall 
root-mean-square (rms) level of the process is often assumed 
to be constant thus implying stationarity.  It has been shown 
that vibration synthesis at a constant rms level fail to 
accurately reproduce the fluctuations in vibration levels that 
occur naturally during road transportation realizations [1].  
Most laboratories make use of a random vibration controller 
(RVC) which uses a feedback loop to synthesize and control 
random signals according to a PSD function.  When 
non-stationarity is taken into account, vibrations are 
synthesized at various rms levels for pre-determined 
durations.  However, the length and sequence of each 
constant rms synthesized segment is not known.  This is the 
outstanding issue addressed herein. 

One important aspect pertaining to the synthesis of 
non-stationary random vibrations is the issue of signal 
segmentation.  If the hypothesis that the process can be 
modelled statistically as a sequence of segments, each 
belonging to a family of Gaussian process with varying 
standard deviations, is valid [2 ] then there must exist 
identifiable boundaries (change-points) at which the 
transition from one segment to another occurs.  The 
detection of such change-points should make it possible to 
determine the segment lengths and their relationship with the 
segment standard deviation as well as their statistical 
characteristics.  Segmentation is critical when considered in 
the context of synthesis.  This will determine the statistical 
parameters upon which the length and sequence of each 
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Gaussian segment will be synthesized. 
 

II. CHANGE POINT DETECTION 
Change-point detection is a process that emerged out of a 

need to identify real changes in random processes such as 
economic indicators and the monitoring and control of 
quality in manufacturing processes.    Techniques range from 
cumulative sum (cum-sum) schemes first proposed by Page 
[4, 5, 6] and further developed by Hinkley [7] and Pettitt [8] 
to Singular-Spectrum Analysis [9].  The cumulative sum 
techniques are primarily geared toward detecting significant 
deviations in the mean of random processes.  The procedure 
is greatly enhanced by including a bootstrapping algorithm 
which is used to provide an estimate in the significance of 
the change-point.  Bootstrapping effectively rearranges the 
sequence or order of the sample in a random fashion a 
number of times while re-evaluating the sample (in this case 
using the cum-sum algorithm).  This gives a basis for 
determining whether the change is truly significant or merely 
apparent.  In this study, a change-point detection algorithm, 
based on the cum-sum / bootstrapping techniques was 
developed and applied to the instantaneous magnitude of the 
sample vibration records.  The argument for using the 
instantaneous magnitude are based on evidence which shows 
that level type non-stationarities in random signals are well 
manifested through changes in the instantaneous magnitude 
and are not reliant on subjective parameters such as the 
window width required to compute the moving RMS [10]. 

The instantaneous magnitude accounts for the 
deficiencies with the moving RMS method in detecting short 
duration fluctuations in the magnitude of vehicle vibrations 
which are typically induced when the vehicle encounters 
sudden changes in the roughness of pavements and when 
severe and localised pavement surface defects are present 
[11].  The method presented here makes use of the Hilbert 
transform to compute the instantaneous magnitude of the 
record.  In its original form, the Hilbert Transform is used to 
produce the imaginary component, ã(t), of a measured, real 
signal, a(t), thus enabling the creation of an analytical signal 
â(t) [12]: 

 
( ) ( ) ( )â t a t i a t= +       (1) 

 
where the Hilbert transform is defined as: 
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Executing the convolution in equation (2), it can be shown 

that the Hilbert transform is equivalent to a 90o phase shift of 

the real signal.  This is significant in that it allows the 
computation of the Hilbert transform to be performed in the 
frequency domain via the Fourier transform as follows: 
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where A(f) is the spectrum of a(t) This operation where the 
positive and negative frequency components of the signal 
are given a phase shift of –90o (multiplied by –j) and +90o 
(multiplied by j) respectively.  Once the analytical signal is 
created, the instantaneous magnitude of the vibration, 
M[a(t)], signal is easily computed: 
 

( ) ( ) ( )2 2M a t a t a t⎡ ⎤ = +⎣ ⎦       (4) 

 
The instantaneous magnitude of the signal is manifested 

as the envelope of the signal as illustrated in Fig. 1 which 
shows a typical vibration record together with its 
instantaneous magnitude computed from the Hilbert 
Transform.  It demonstrates how the instantaneous 
magnitude is useful to describe short-term and rapid 
variations in the amplitude of the signal.  The main benefit is 
that there is no averaging process employed and the true 
magnitude-based non-stationary character of the signal is 
revealed.  

The change-point detection algorithm was developed 
specifically to deal with the amplitude type 
non-stationarities that are prevalent in road vehicle 
vibrations.  In order to test and validate the algorithm, a 
number of vehicle vibration samples were collected from a 
variety of vehicle types, routes and payload conditions as 
shown in Table 1.  In addition, the vertical acceleration 
responses of various linear quarter-car numerical models, 
made available in the literature, were computed for a range 
of pavement profiles (Table 2).  These vibration records 
were generated to supplement and complement the 
collection of measured vibration records with data simulated 
from different vehicle types and pavement surfaces.  
Although it is acknowledged that the rudimentary nature of 
the simulation model (only linear elements were modelled) 
produces vibration estimates that are not necessarily 
accurate, the simulation is sufficiently realistic to reproduce 
the random non-stationarities that occur in reality and are, 
therefore, deemed adequate to the purpose of this study.  The 
simulation was carried out with a purposed-design program 
coded in Matlab® and Simulink®.  The boundary conditions 
were accounted for by introducing a vehicle velocity ramp at 
a constant forward acceleration until the target cruise speed 
was reached.  The vertical vibrations of the quarter-car 
model were then computed at constant vehicle velocity for 
the entire pavement profile. 
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Figure 1.  Example of the manifestation of a vibration signal’s instantaneous magnitude (dark line). 

 
 

Table I.  Summary of measured vibration record 
parameters. 

ID Vehicle type & load Route 
Type 

MA Utility vehicle (1 Tonne capacity).  Load: 
< 5% cap. 

S'urban 
streets 

MB Prime mover + Semi trailer (Air ride 
susp.).  Load: 90% cap. 

Country 
roads 

MC Transport van (700 kg capacity).  Load: 
60% cap. 

Suburban 
streets 

MD Transport van (700 kg capacity).  Load: 
60% cap. 

Suburban 
hwy. 

ME Transport van (700 kg capacity).  Load: 
60% cap. 

Motorway 

MF Prime mover + Semi trailer (leaf spring 
susp.).  Load: < 5% cap. 

Country 
roads 

MG Tipper truck (16 Tonnes capacity, Air ride 
susp.).  Load: 25% capacity. 

Country 
roads 

MH Small flat bet truck (1 Tonne capacity, leaf 
spring susp.).  Load <5% cap. 

Suburban 
streets 

MJ Flat bed truck (5 Tonnes capacity, leaf 
spring susp.).  Load >95% cap. 

Country 
roads 

MK Sedan car.  Load: 1 passenger Suburban  
 

Table II.  Summary of routes used for 
numerically-generated vibration records. 

ID Route (Victoria, Australia) 
SA Murray Valley Highway (Major county road)  
SB Bendigo – Maryborough road (Major county road) 
SC Princess Highway (Freeway) 
SD Timboon Road, Victoria, Australia (Major county road) 
SE Road sequence: Timboon Road – Princess Hwy and 

Murray Valley Hwy, Victoria, Aust. 
 

The change-point algorithm developed for this study and 
associated statistical analysis is described hereunder. 

 The instantaneous magnitude (envelope) of 
vibration is computed using the Hilbert Transform 

 Compute the cumulative sum (cum-sum) of the 
instantaneous magnitude vector normalised with 
respect to the mean magnitude. 

 Apply the bootstrap algorithm sequence whereby 
the entire instantaneous vibration vector is 
randomly re-samples (shuffled) a number of times 
and the cum-sum re-computed for each re-sampled 
vector 

 The maximum and minimum envelopes from the 
bootstrap (shuffled) samples are computed 

 The largest extremum of the original record is 
detected and identified as a change-point.  Its value 
is compared with that of the bootstrap sample as 
illustrated in Fig. 2. 

 The change point is identified as significant or valid 
if the ratio of the largest extremum to the bootstrap 
extremum exceeds a pre-determined value.  In all 
cases studied, the ratio threshold of 5.5 was 
identified as adequate.  The ratio threshold 
effectively controls the sensitivity of the algorithm.  
Large ratio threshold values results in low 
sensitivity whereby small changes in instantaneous 
magnitude will not be detected.  Small ratio 
threshold values will enable the algorithm to detect 
small changes in instantaneous magnitude.  Given 
the stochastic nature of the processes under 
consideration coupled with the relatively broad 
range of frequencies present, too small a ratio 
threshold is problematic in that the algorithm will 
identify a large number of fictitious change-points 
within the natural fluctuations in a stationary 
segment.  

 If the change point is identified as real or 
significant, the instantaneous magnitude record is 
bisected about the change-point and the resulting 
two segments are subjected to the same cum-sum / 
bootstrap algorithm until no more change-points 
are identified or the segment length reaches a 
pre-determined limit known here as the “Minimum 
Segment Length”.  In the case of road vehicle 
vibration, a compromise needs to be arrived at 
when determining a suitable Minimum Segment 
Length.  For synthesis purposes, a Minimum 
Segment Length of 0.5 seconds was deemed 
sufficiently small to include the vast majority 
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stationary segments within the process.  Fig.3 
shows an example of the outcome of the algorithm 
for a typical vibration record. 

 
 

 
 
 

Original record

Change point

Extremum

Bootstrap extremum

Bootstrap cum-sum maximum envelope

Bootstrap cum-sum minimum envelope

 
Figure 2. Determination of a change-point using the cum-sum / bootstrap algorithms. 

 

 
Figure 3.  Identification of stationary segments (change-points shown in dark) using the cum-sum / bootstrap algorithm for a 

section from a typical vibration record. 
 

The change-point detection algorithm, written in Matlab® 
(available from the author on request), was used to 
determine the length of stationary segments within a large 
number of typical non-stationary random vibration records.  
These include measured vibration records as well as 
numerically-generated records based on quarter-car models 

and measured pavement profiles.  The statistical distribution 
of segment lengths for each vibration record was computed 
with the aim at identifying similarities and trends for the 
development of an overall statistical model for segment 
lengths to be use for synthesis purposes.  Examples of the 
segment length distribution for one typical measured 
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vibration record and one typical numerically-generated 
record are shown in Fig. 4 and 5 respectively. 

 

 
Figure 4.  Statistical distribution of stationary segment 

lengths for a typical measured vibration record along with 
the hyperbolic line (dark) of best fit. 

 

 
Figure 5.  Statistical distribution of stationary segment 

lengths for a typical numerically-generated vibration record 
along with the hyperbolic line (dark) of best fit. 

The statistical distributions of the segment lengths for all 
nine measured vibrations records and all thirteen 
numerically-generated records are shown separately in Fig. 

6.  It is interesting to note that the shape of the segment 
length distributions are generally comparable and exhibit an 
asymptotic – like decrease in probability of occurrence as the 
segment length increases.  This behaviour was found to be 
competently modelled with a hyperbolic function in the form 
 

( ) (p s C / sinh ks= )       (5) 

 
where C and k are empirical constants obtained by a 
non-linear least squares regression method.  This model was 
applied to the measured and numerically-generated vibration 
data sets separately yielding lines of best fit shown in Fig. 7. 

 
Measured Data (C = 2.5,  k = 0.19) 

0

5

10

15

20

25

30

35

40

0 5 10 15 20
Segment length [s]

P(
s)

  [
%

]  
    

  

DATAMA
DATAMB
DATAMC
DATAMD
DATAME
DATAMF
DATAMG
DATAMH
DATAMK
Hyperbolic fit

Numerically generated Data (C = 5.0,  k = 0.31)
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Figure 6.  Statistical distributions of stationary segment 

lengths for all 9 typical measured vibration records (top) and 
13 typical numerically-generated vibration records (bottom) 

long with the hyperbolic curve of best fit. 
Given that the primary purpose of this analysis is to 

determine an overall rule by which the variations in segment 
lengths are distributed, there is no requirement to distinguish 
between measured and numerically-generated vibration 
data.  In fact, when both sets are combined, there is little to 
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distinguish one from the other as shown in Fig. 7 which 
shows that a single probability density function in the form 
of Eqn. (4) with C ≈ 4  and k ≈ 1/4 is sufficient for describing 
the collective expected occurrence of stationary segment 
lengths for road vehicle vibrations. 

 
Combined Data (C = 4.1,  k = 0.27)
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Figure 7.  Statistical distributions of stationary segment 
lengths for all sample vibration records long with the 

hyperbolic curve of best fit.  (Left: Linear scales, Right: 
semi-logarithmic scales for clarity). 

 
 

III. CONCLUSIONS 
The effectiveness of a novel approach to detect significant 
change-points within records of non-stationary random 
vibrations produced by wheeled vehicles has been 
demonstrated.  The paper has shown that the instantaneous 
magnitude, easily computed by means of the Hilbert 

transform, can be used to apply the cumulative cum (cum 
sum) /bootstrapping algorithm to detect statistically 
significant change pints within the process.  The main 
relevance of the results is the ability to determine the length 
of stationary segments within the process segment as well as 
their statistical distribution.  The similarity of form between 
the segment length probability densities obtained from a 
wide variety of conditions (routes and vehicles as well as 
experimentally measured and numerically-generated data 
from measured pavement topographies) is unexpected.  This 
demonstrates that, in terms of analysis methodology, there is 
no need to differentiate between measured and numerically 
generated vibration data.  Finally, the paper proposed a 
simple hyperbolic distribution model that quite satisfactorily 
characterises the probability density of segment lengths.  
This outcome is relevant when attempting to synthesize 
realistic, non-stationary random vibrations in the laboratory.  
This technique, to be reported at a later date, makes use of 
the segment length distribution function to create a 
modulation function which is then used to alter the overall 
root-mean-square of a synthesized Gaussian signal to 
reproduce the amplitude fluctuations that are manifest in the 
process. 
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