
 
 

 

  
Abstract— Slip-flow convection heat transfer in thermal 

entry region of a rectangular microchannel is investigated. The 
wall heat flux is peripherally constant and varies exponentially 
with respect to the axis of the microchannel. The flow is assumed 
to be hydrodynamically fully developed. The three-dimensional 
energy conservation equation is solved numerically for different 
aspect ratios. Surface interaction parameters consist of 
momentum accommodation coefficient and thermal 
accommodation coefficient, are introduced to the simulation and 
their effects on heat transfer is investigated. The fully-developed 
Nusselt numbers are obtained for different values of the 
parameter defined in the exponential function of heat flux. For a 
special case, i.e., constant wall heat flux, the results are compared 
with those presented in literature. It was observed that two 
dimensionless variables that include rarefaction and surface 
interactions affect Nusselt number. For a specific value of thermal 
dimensionless variable, there is a transition region between 
continuum regime and slip-flow regime. Beyond this value, 
Nusselt number decreases as the momentum dimensionless 
variable increases. 

 
 

Index Terms—Microchannel, Numerical analysis, Nusselt 
number, Slip-flow convection 

I. INTRODUCTION 
As the size of the electronic devices reduces, the need for 

cooling equipments that dissipate maximum amount of heat per 
unit area increases. Along the development of 
micro-electro-mechanical systems (MEMS), microscale heat 
transfer has gained great interests in recent years. Among these, 
microchannels are of particular importance due to their high 
rates of heat dissipation and small size.  

As the size of a microchannel decreases, the continuum 
assumption of the flow is no longer valid and some deviations 
are observed when compared with macroscale flow. It is 
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demonstrated that rarefaction effects include velocity slip and 
temperature jump at the walls, must be considered. These 
effects occur in microscale flows or at low-pressure gas flows. 
For measuring of the degree of rarefaction, the Knudsen 
number is defined. Knudsen number is the ratio of the mean 
free path to the macroscopic length scale of the flow and is used 
for classifying the flow regimes. There is a specific range for 
Kn that one can still apply Navier-Stokes equations with 
appropriate modifications on the boundary conditions [2], [8]. 
The flow in this range is called slip flow. Beskok et al. [1] give 
the range 0.001< Kn < 0.1 for the Knudsen number in the 
slip-flow regime. Most microscale thermal systems have 
characteristic length of the order 1-100 µ m and the molecular 
mean free path of the order 100 nm. So the Knudsen number 
lies in the above range in most cases.  

Sparrow et al. [4] and Inman [14] were the first who 
analyzed laminar slip-flow heat transfer for tubes with uniform 
heat flux and a parallel plate channel or a circular tube with 
uniform wall temperature. They pointed out that slip 
characteristics of the flow decrease the Nusselt number. 
Rosenow et al. [18] suggested that the entrance condition 
should be assumed as being hydrodynamically fully developed 
and thermally developing. Ameel et al. [17] and Baron et al. 
[11], [12] studied the Graetz problem for slip flow with 
constant-heat flux or constant-wall-temperature boundary 
conditions. Their results showed that velocity slip tends to 
increase heat transfer while temperature jump has the opposite 
effect. Tunc and Bayazitoglu [6] investigated analytically 
slip-flow regime for both hydrodynamically and thermally 
fully-developed inlet conditions, but they do not consider the 
temperature jump effect in their solution. Yu and Ameel [15], 
[16] studied analytically the heat transfer for thermal entry 
region of a microchannel with constant-wall-temperature and 
isoflux boundary conditions. Further studies have been 
performed by several researchers; e.g., Kavehpour et al. [7], 
Larrode et al. [5], Hadjiconstantino and Simek [9], Asako [19].  

In all these studies the boundary conditions are to be met, 
include constant wall temperature or constant heat flux. No 
attempt has been observed for treating the case of 
exponential-varying wall heat flux boundary condition. In the 
present study, slip-flow heat transfer for thermal entry region of 
a microchannel is investigated under exponential heat flux 
boundary condition. The three-dimensional energy 
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conservation equation is solved numerically using a finite 
difference method for different aspect ratios. Rarefaction 
effects are also included.  Results for the case of isoflux wall 
are in good agreement with those presented by Yu and Ameel 
[15]. The temperature distribution and fully developed Nusselt 
number are also obtained for different values of the parameters 
introduced to the problem. 

II. ANALYSIS 
The geometry of the problem is shown in Fig. 1. The center 

of the coordinate system is located at the bottom left corner of 
the channel. The dimensions of the channel in y and z directions 
are a and b respectively and x coordinate is measured along the 
axis. 

 
Fig. 1. The schematic of the microchannel  

 

A. Streamwise Velocity Distribution 
For steady state, incompressible flow with constant fluid 

properties, momentum conservation equation in 
fully-developed region can be written as follows 
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dP
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where u is the streamwise velocity, P is the pressure and µ  is 
the dynamic viscosity. For slip-flow regime, the hydrodynamic 
boundary conditions are 

suu =   at  y = 0, a  and   z = 0, b,            (2) 
where us is the slip velocity at the walls. For example at y = 0, us 
is [3], [10] 
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where λ  is the molecular mean free path and 

v
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Fv, the tangential momentum accommodation coefficient, is 
a measure of degree of specular reflection and diffuse reflection 
for the fluid molecules that collide with the wall. This 
coefficient depends on several parameters such as surface 
roughness, but it is near unity for most engineering applications 
[3]. 

For nondimensionalizing the equations above, following 
variables are defined 
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where um is the mean streamwise velocity. The governing 
equation and the boundary condition; e.g. at y = 0, take the form 
below 
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where Kn is the Knudsen number and *P  is the dimensionless 
pressure wich defined as 
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 Tunc and Bayazitoglu [6] have solved (6) with its boundary 
conditions using the integral transform technique. Here, their 
results are used to solve the energy equation. 

B. Temperature Distribution 
The following assumptions have been made to solve the 

energy equation: 
- steady state flow, 
- constant fluid properties, 
- negligible viscous dissipation , 
- negligible axial conduction within the domain and at 

the walls. 
So, the energy equation takes the following form 
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where T is the fluid temperature and α  is the thermal 
diffusivity. Considering inwardly-imposed heat flux, the 
boundary conditions are 
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where Te is the entrance fluid temperature, k is the thermal 
conductivity, q ′′  is the wall heat flux and it can be written as 
follows 
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m is an arbitrary parameter that can be varied and  
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where Pe is the Peclet number and D is the hydraulic diameter 
Pe = RePr,                    (18) 
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Nondimensionalizing of (10)-(15) gives 
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where 
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is the dimensionless temperature and   
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where 

a
b=γ .                      (28) 

γ  is the aspect ratio. 
Equations (20)-(25) are solved numerically for different 

aspect ratios, rarefaction parameters and parameter m using 
finite-difference method. Temperature distribution is obtained 
for each case within the whole domain. An implicit method 
called ADI (Alternative Direction Implicit) is used in the 
present study. This method is implemented with some 
modifications in the nonslip case due to preventing the 
divergence that occurs on the boundaries. A computer program 
written in FORTRAN programming language is used here. 

C. Nusselt Number 
The Nusselt number is defined as below 
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where bθ  and wθ  are the dimensionless bulk and wall 
temperatures respectively. 

As mentioned earlier, velocity slip and temperature jump are 
two major effects of rarefaction. Velocity slip was introduced 

to the momentum equation via hydrodynamic boundary 
condition. Temperature jump is used to describe the thermal 
boundary conditions at the walls. As it is presented in literature 
[3], temperature jump; e.g. at y = 0, can be given as 
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where  Ts is the temperature of fluid adjacent to the wall and  
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where Pr is the Prandtl number and R is the specific heat ratio. 
Ft, the thermal accommodation coefficient, is a measure of ratio 
of specular and diffuse reflection again. This coefficient varies 
in a wide range from 0.01 to 1, but in most applications it is 
near unity [2]. Nondimensionalizing of (30) yields 
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where β  and β ′  are defined as below 
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Substituting (32) into (29) gives 
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bθ  is defined as 
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Alternatively, bulk temperature can be obtained by applying 
the conservation of energy principle within a differential 
control volume and integrating the wall heat flux. After 
nondimensionalizing, the following relation can be derived 
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Also, sθ  can be written as 

)1(2
0 0

1

0

1

0

*
),,(

*
)0,,(

*
),1,(

*
),0,( ********

γ

θθθθ

θ

γ γ

γ

+

+++

=
∫ ∫ ∫ ∫ dydydzdz yxyxzxzx

s  

(38) 

III. RESULTS AND DISCUSSION 
As it may be seen from (16), for the case m = 0, the 

constant-heat flux boundary condition is met at the walls. So at 
first, this special case may be implemented for validating the 
solution. As the (34) and (35) show, the nonslip Nusselt 
numbers can be gained by setting 0=Knβv  or 0=′β . In 
Table I, these values for different aspect ratios are compared 
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with those presented in literature. Good agreement is achieved 
between the results especially for smaller aspect ratios.  

As it is observed from the Table I, Nusselt number decreases 
with decreasing aspect ratio, but this variation is not 
considerable. This is in contrast with the results obtained with 
peripherally-constant-wall temperature constraint in where the 
Nusselt number augments drastically as the aspect ratio 
decreases.  This is due to corner effects in the present study. 
The three-dimensional fully-developed temperature 
distributions for two aspect ratios; 4/1=γ and 1=γ , and 
isoflux boundary conditions are shown in Fig. 2. It can be seen 
that the fluid temperature near the corners of the channel 
increases and this is more considerable in the lower aspect ratio 
case. So the average fluid temperature adjacent to the wall is 
greater than its value in the case of peripherally-constant wall 
temperature. This leads to augment the temperature difference 
between bulk and wall temperature and consequently decrease 
the Nusselt Number. 

The three-dimensional temperature distribution for γ = 1 
and m = -1 is plotted at two x+ in Fig. 3.  In contrast to the Fig. 
2a, it is seen that the domain distribution tends to a constant 
temperature at large x+. 

For better investigations, effects of variation of parameter m 
on the bulk temperature and the average surface temperature 
along the axis of the microchannel are shown in Fig. 4. As 
expected, for m = 0, i.e. isoflux condition, the variations of bulk 
and average surface temperature are linear with slope of 2 
against x coordinate in fully-developed region. For m = -1, 
these two temperatures approach each other and to a constant 
value of -4/m because of diminishing wall heat flux. This is the 
case that occurs for all negative values of m. The same behavior 
is observed for other aspect ratios and slip coefficients. 

The fully-developed Nusselt numbers with respect to 
parameter m for various values of aspect ratio, β  and β ′  are 
presented in Figs. 5, 6 and 7. As it is seen from these figures, 
Nusselt number shows different behaviors depending on the 
parameters defined in the problem. A greater value of β ′  
results more momentum exchange between wall and fluid 
molecules, and consequently increases heat transfer. On the 
other hand, a greater value of β   makes Nusselt number 
decrease according to (35). It is worth noting that parameter β   

 
Table I. Comparison of nonslip fully-developed Nusselt number   

γ  1 1/2 1/3 1/4 1/6 1/8 

Present study 3.07 3.01 2.97 2.95 2.93 2.93 

Iqbal et al. [13] 3.09 3.02 2.97 2.94 2.93 2.94 

Yu and Ameel [15] 3.14 3.07 3.00 2.98 2.96 2.95 

 

 
Fig. 2. Temperature contours of nonslip flow with constant wall heat 

flux at x+=15 for (a) γ =1 and (b) γ =0.25 

 
is a measure of temperature jump at the walls. It has no 
influence on temperature distribution in the domain and also on 
Nusselt number in nonslip flow, but it affects the magnitude of 
Nusselt number when 0≠′β .  
Fig. 5 reveals that for β = 0.1 Nusselt number augments with 
increasing β ′  whereas for β = 1.667 the trend is reversed. 
This can be explained in such a way that increase in momentum 
exchange is dominant over increase in temperature jump due to 
small β  in the case β =0.1; however when β  is large, the 
temperature jump prevails, so Nusslet number diminishes. 

From the discussion above, one may result that there is a 
marginal value for β  called mβ  here. Beyond this value, 
Nusslet number always decreases as β ′  increases. Fig. 6 
reveals the same trend as the former case for variation of Nu 
except in the range m < -8 for β  = 0.1. As explained earlier β  
= 0.1 can be a marginal β  for 8-≈m  and γ = 0.5, so trend of  
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Fig. 3. Temperature contours of nonslip flow for m = -1 and γ =1 at  

(a) x+=0.1 and (b) x+=15 
 
 

Nu almost reverses at this point that means the temperature 
jump overrides the effect of velocity slip at the walls. 

Fig. 7 gives the similar results for γ = 0.25, but in this case, 
m is varied from -1 to 10. As Shah and London [13] have 
shown for a circular tube, there is a certain range for m in where 
the results for Nusslet number are valid. Here is the same for 
rectangular microchannel. Consequently the range of allowed 
values for m restricts the results.   

 

 
Fig. 4. Variations of sθ  and bθ  with longitudinal coordinate for 

three different values of m, γ =1 and β′ =0  

 
Fig. 5. Fully-developed Nusselt number for γ =1 as a function 

 of β′ , β  and m 

 
Fig. 6. Fully-developed Nusselt number for γ =0.5 as a function  

of β′ , β  and m 
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Fig. 7. Fully-developed Nusselt number for γ =0.25 as a function 

 of β′ , β  and m 

 

IV. CONCLUSION 
The slip flow convection heat transfer in a rectangular 
microchannel with exponential wall heat flux has been studied 
numerically using finite-difference method. The rarefaction 
effects introduced to the problem include slip velocity and 
temperature jump. β  and β ′  are considered as measures of 
these effects. It is found that Nusselt number does not change 
severely with aspect ratio when the peripherally-constant 
temperature hypothesis is not held. Furthermore, the variation 
of Nu against rarefaction parameters depends on the value of 
β . For large β , Nusselt number decreases as the velocity slip 
augments. In contrast for small β , Nusselt number increases as 
the velocity slip increases and dominates the temperature jump. 
This is true for all values of parameter m and there is a specific 
marginal β  for each m. 

 

V. REFERENCES 
[1] A. Beskok, G.E. Karniadakis, Simulation of heat and 
momentum transfer in complex micro geometries, J. Ther. Heat 
Transfer 8 (4) (1994) 647-653. 
[2] E.B. Arkilic, K.S. Breuer, M.A. Schmidt, Gaseous flow in 
microchannels, in: Application of microfabrication to Fluid 
Mechanics, ASME FED, 197, 1994, pp. 57-66. 
[3] E.G.R. Eckert, R.M. Drake, Jr., Analysis of Heat and Mass 
Transfer, McGraw-Hill, New York, 1972,pp. 467-486. 
[4] E.M. Sparrow, S.H. Lin, Laminar heat transfer in tubes 
under slip-flow conditions, ASME J. Heat Transfer 84 (4) 
(1962) 363-639. 
[5] F.E. Larrode, C. Housiadas, Y. Drossinos, Slip-flow heat 
transfer in circular tubes, Int. J. Heat Mass Transfer 43 (2000) 
2669-2680. 
[6] G. Tunc, Y. Bayazitoglu, Heat transfer in rectangular 
microchannels, Int. J. Heat Mass Transfer 45 (2002) 765-773. 

[7] H.P. Kavehpour, M. Faghri, Y. Asako, Effects of 
compressibility and rarefaction on gaseous flows in 
microchannels, Numer. Heat Transfer Part A 32 (1997) 
677-696. 
[8] J.C. Shih, C. Ho, J. Liu, Y. Tai, Monatomic and polyatomic 
gas flow through uniform microchannels, in: 1996 National 
Heat Transfer Conference, Micro Electro Mechanical Systems 
(MEMS), Atlanta, GA, DSC 59 (1996) 197-203. 
[9] N.G. Hadjiconstantinou, O. Simek, 
Constant-wall-temperature Nusselt number in micro and 
nano-channels, J. Heat Transfer 124 (2002) 356-364. 
[10] R. Goniak, G. Duffa, Corrective term in wall slip 
equations for Knudsen layer, J. Thermophys. 9 (1995) 383-384. 
[11] R.F. Barron, X.M. Wang, R.O. Warrington, T.A. Ameel, 
Evaluation of the eigenvalues for the Graetz problem in slip 
flow, Int. J. Heat Mass Transfer 23 (4) (1996) 563-574. 
[12] R.F. Barron, X.M. Wang, T.A. Ameel, The Graetz 
problem extended to slip flow, Int. J. Heat Transfer 40 (8) 
(1997) 1817-1823. 
[13] R. K. Shah, A. L. London, Laminar Flow Forced 
Convection in Ducts, Advances in Heat Transfer, Academic 
Press, New York, 1978. 
[14] R.M. Inman, Heat transfer for laminar slip flow of a 
rarefied gas in a parallel plate channel or a circular tube with 
uniform wall temperature, NASA TN, 1964, D-2213. 
[15] S.P. Yu, T.A. Ameel, Slip-flow convection in isoflux 
rectangular microchannel, ASME J. Heat Transfer 124 (2002) 
346-355. 
[16] S.P. Yu, T.A. Ameel, Slip-flow low Peclet number thermal 
entry problem within a flat microchannel subject to constant 
wall temperature, in: Proc. Heat Transfer and Transport 
Phenomena in Microsystems, Banff, Alberta, Canada, 2000. 
[17] T.A. Ameel, R.F. Barron, X.M. Wang, R.O. Warrington, 
Laminar forced convection in a circular tube with constant heat 
flux and slip flow, Microscale Thermophys. Eng. 1 (4) (1997) 
303-320. 
[18] W.M. Rohsenow, J.P. Hartnett, E.N. Ganic, Handbook of 
Heat Transfer Applications, McGraw-Hill, New York, 1985. 
[19] Y. Asako, Heat Transfer characteristics of gaseous flow in 
a micro-tube, in: Second International Conference on 
Microchannels and Minichannels, June 17-19, Rochester, New 
York, USA, 2004, pp. 305-311. 

 

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007


