
 
 

 

  
Abstract— This paper presents an analytical model for 

calculating the deformation behavior of an elastic, composite strut 
comprising any number of materials, which are represented by an 
assembly of concentric hollow cylinder. The model is applicable 
for pure axial compression for short struts provided elastic 
instability, if any, is assessed to be of negligible effect. For a 
typical constituent cylinder, relationships are derived to describe 
the deformations along three cylindrical co-ordinate axes. Lateral 
interaction between adjacent cylinders is modeled based on the 
elastic theory, taking into account the equilibrium of individual 
cylinders and the elastic parameters: stress-strain modulus and 
Poisson’s ratio. The relationships are expressed in matrix notation 
and a computer program is developed to enhance rapidity of 
analysis. To assess the validity of the model, the program is used 
to analyze test data from an instrumented, steel-encased 
reinforced concrete column which had previously been loaded 
under controlled conditions in a laboratory. It is shown that the 
calculated and measured deformations of the column, at specified 
co-ordinates and along three cylindrical directions, agree to 
within 5%. Therefore the validity of the model is demonstrated.  
 

Index Terms—Elastic parameters, Stresses in cylindrical 
co-ordinate systems.  
 

I. INTRODUCTION 
  According to published [1],[2] experimental evidence, both 

the Young’s modulus and the Poisson’s ratio of concrete vary 
with radius on a cross-section of a cylindrical specimen. Both 
of these quantities could be 1.5 times greater at the centre than 
at the periphery of a concrete column. In the case of the 
composite strut analyzed here, the problem is further 
complicated by the presence of an external steel casing.  

In the present study, a mathematical model is developed to 
simulate the elastic behavior of a short composite strut, 
comprising steel, reinforced concrete and plain concrete. The 
strut was instrumented and subjected to compression testing in 
the laboratory. Displacements in the constituent materials were 
measured at selected radial distances from the centre of the 
short column, so that the variations in the values of elastic 
constants with position of measurement are taken into 
consideration. This provides an analytical capability that 
represents the composite nature of the column cross-section 
 

 
Dr J. R. Omer is a Research Scientist at the University of Glamorgan, 

Pontypridd, South Wales, CF37 1DL, United Kingdom. Telephone: +44 (0) 
1443 482162; Fax: +44 (0) 1443 482169; e-mail: jromer@ glam.ac.uk.  

 

better than the technique of modular ratio and transformed area 
of concrete.  

 
In order to minimize the effects of elastic instability, it is 

determined that a 0.9m in diameter by 2m long composite 
column would be an appropriate specimen for testing under 
pure compression behavior. The diameter of 0.9m is chosen to 
be large enough to allow measurement of strains at different 
radial distances from the centroidal axis of the column. The 
height of 2m gives a low slenderness ratio while 
simultaneously allowing space for installing strain gauges at 
the column mid height, which is sufficiently away from the 
ends where stress concentrations would inevitably occur.  

 
Strain gauges, of the vibrating wire type, and linear 

extensometers were installed in the column at selected known 
radial distances from the axis of the column. In the first 
compression test (test No.1) the short column was encased in a 
steel tube 10mm thick, which formed material number 1. 
Material number 2 was a 197mm thick annular zone of 
reinforced concrete (having 18 numbers of 32mm diameter 
high yield steel bars). Finally, material number 3 was a 253mm 
thick inner core of plain concrete. In the second compression 
test, the steel casing was cut out so that there were two 
remaining materials.  

  

II. DEVELOPMENT OF THE NUMERAL MODEL 

A. Mathematical idealization of the column cross-section 
Let the column cross-section be represented by a number of 

(say N), concentric hollow cylinders with different material 
properties. This is shown in Fig. 1. Let the dimensions and 
properties of the nth cylinder be: 

 rn-1 = internal radius 
 rn   = external radius 
 En  = Elastic modulus 
 νn  = Poisson’s ratio 
 An  = Cross-sectional area. 
For the innermost cylinder, n=1, and for the outermost, n=N. 

It is assumed that the deformation of the column comprises the 
deformations of the individual constituent cylinders. The 
following three loading stages are considered: 

1) A unit applied longitudinal load, 
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Fig. 1: Theoretical modeling of multi-material column as a number of concentric annuli 
 
 
2) Artificially introduced lateral pressures on the contact 

surfaces of the cylinders to correct the incompatible radial 
displacements arising from load case (1) above, and  

3) Superposition of above load cases to produce the final 
state of stress and deformation 

 
The following assumptions are made: 
 (a) Each cylinder is free to displace radially in isolation. 
 (b) Load is applied and transmitted concentrically along 
            the column. 
 (c) Shear stresses (τrz and τzr in Fig. 1) on boundary 
            surfaces may be neglected. 
 (d) The material of each cylinder is linearly elastic and  
 (e) There is a small but essential cavity of radius ro at the 
            centre of the column (the cavity can be 
            mathematically set to zero). 

 

B. Representation of stresses and strains 
Stresses and strains in the three cylindrical directions (z, r, θ) 

are considered (Fig. 1). Since loading is applied in the z-direction, 
it is assumed that the shear stresses τrz and τzr (on the r-θ and z-θ 
surfaces respectively) are negligible. In load case (1), elasticity 
relationships [3] from elementary mechanics are used to derive the 
axial, radial and circumferential stresses, σ σ σ θnz nr n

' ' ', ,  in the 
nth cylinder due to unit applied axial load. Taking tensile stresses 
as positive, the stresses for load case (i) can be expressed in 
matrix form as follows: 
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Therefore the resulting axial, radial and circumferential strains 
ε ε ε θnz nr n

' ' ', ,  in the nth cylinder due to load case (i) are given by: 
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In load case (ii), let contact pressures pn-1 and pn be imposed on 
the inner and outer surfaces of the nth cylinder.  For radial force 
equilibrium, the contact pressure on the outer surface of the 
(n-1)th cylinder must equal pn-1.  Similarly the pressure on the 
inner surface of the (n+1)th next cylinder must equal pn. There is 
no pressure on the inner surface of the first cylinder as well as on 
the outer surface of the last cylinder. 

 
The stresses induced at any radial co-ordinate r (measured 

from the centre of the column) within the nth cylinder, may be 
derived from established formulae from the theory of “thick 
cylinders” [4]. Hence the axial, radial and circumferential stresses 
σ σ σ θnz nr n

'' '' '', ,  in the nth cylinder for load case (ii), which now 
vary with radial distance, are given by:  
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where 
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The ensuing strains ε ε ε θnz nr n

'' '' '', ,  are again given in terms of 
the stresses and elastic constants as follows: 
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The stresses and strains in load cases (i) and (ii) can be 
superimposed, since the problem is assumed to be linearly elastic. 
So the final stresses1 σ σ σ θnz nr n, , for the nth cylinder are 
defined as follows: 
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   Similarly, the final strains ε ε ε θnz nr n, , in the nth cylinder 
are given by: 
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C. Boundary conditions to be satisfied 
The final state of stress and strain may be applied to satisfy the 

boundary conditions for force equilibrium and displacement 
compatibility. Once these conditions are satisfied, the cylinders 
are “assembled” to form the final state of stress and deformation 
of the column. 

 
1) At the outside surface of the outermost cylinder (i.e the Nth 
cylinder), the pressure is atmospheric. Hence the net radial 
stress there is zero, thus 

 ( )σ Nr r
D

=
=

2
0                                                                 (8)                     

where D= column diameter. 
2) The radial stresses at the interfaces of the cylinders must be 
in equilibrium. Consider the nth and the (n+1)th cylinders. Let 
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the radial stress at the outside face of the nth cylinder be 

( )σnr outside
while that at the inside face of the (n+1)th cylinder 

be ( )( )σ n r inside+1 . For equilibrium, we have 

 ( )( ) ( )σ σn r inside nr outside+ =1                                            (9)                                                                          

3) For compatibility of radial displacements at boundaries, the 
radial displacement of the outer surface of the nth cylinder must 
equal the radial displacement of the inner surface of the (n+1)th  
cylinder. Hence 

 ( ) ( )( )u unr outside n r inside
= +1                                           (10)                                                                                   

4) Assuming that there is a small cavity at the centre of the 
column (the radius ro of which can be mathematically set to 
zero), the radial stress at the inner surface of the first cylinder is 
zero, hence  

 ( )σ1 0r r ro=
=                                                                 (11)                                                                                                

 

D. Solution of the stresses and strains 
Equation 10 may be considered in a slightly different form by 

expressing boundary radial displacements in terms of 
circumferential strains. The circumferential strain at the outer 
surface of the nth cylinder is given by  

 ( ) ( )
ε θn outside

nr outside

outside

u
r

=                                             (12)                                                                              

The circumferential strain at the inner surface of the (n+1)th 
can be expressed in a similar way. Therefore, the necessary and 
sufficient condition for displacement compatibility at boundaries 
is for the corresponding hoop strains to match. In addition, 
equating hoop strains rather than radial displacements eliminates 
the need for an integration process. For N number of cylinders, 
there are (N-1) boundaries.  Thus, there will be (N-1) equations 
of compatibility containing an equal number of unknown radial 
pressures.  These pressures can then be solved if the material 
properties are known.   

 

III. APPLICATION OF THE MODEL TO A 
TRI-ANNULAR MATERIAL (STEEL-ENCASED, 

REINFORCED CONCRETE COLUMN) 
In order to represent accurately the loaded behavior of the 

short column and to account for the variation of elastic properties 
with radial distance, a three-annulus configuration was proposed. 
The steel-encased column is divided into concentric cylinders of 
three materials as shown in Fig. 2.  

(a) an inner core of plain concrete,  
(b) a zone of reinforced concrete, and  
(c) the steel casing. 
There is also a central cavity which is mathematically set to 

“zero”. For stress and strain predictions for the column tested 
without steel casing, there are only two constituent cylinders. 

Parallel with the load test, the foregoing method has been used to 
calculate the deformations of the column.   

 
The elastic modulus of steel and concrete were determined 

from laboratory tests on samples as 205kN/mm2 and 38kN/mm2 
respectively.  The Poisson's ratio for steel and plain concrete 
were taken as 0.3 [5] and 0.2 [6] respectively. The elastic 
modulus value for the reinforced concrete zone is initially 
estimated using an "equivalent area" approach, which gives a 
value of 43kN/mm2. Therefore, trial values of Poisson’s ratio for 
reinforced concrete are then taken in the range 0.15-0.4. 

 
Legend: ♀Extensometers, ╩Axial strain gauges,  
              ☼Circumferential strain gauges, ┬Radial strain 
              gauges,  ●Steel reinforcing bars . 
 
Fig. 2: Representation of the composite steel-encased column 

by 3 concentric cylinders 
 
  
Graphs of applied load versus the average axial (average of 

extensometer value εz1 and vibrating wire strain gauge value εz2), 
radial (εr) and circumferential (εθ) strains were plotted from the 
results of both tests 1 (tri-material steel-encased column) and 2 
(no casing and hence a two-material column). The gradients of 
the graphs represent strain per unit (1 kN) applied load and are 
called “normalized strains”. The normalized strain values from 
all the gauges are presented in Tables 1 (test no. 1) and 2 (test no. 
2). The normalized strain values shown have been calculated by 
linear regression on at least 15 test data points. 
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 Test 1-column with 10mm steel casing
 εz1  εz2  εr εθ 
Cycle 1 
Loading 
Unloading 

 
33.64 
33.17 

 
29.90 
27.58 

 
7.95 
7.95 

 
8.96 
8.53 

Cycle 2 
Loading 
Unloading 

 
29.63 
27.38 

 
28.21 
27.87 

 
7.95 
7.95 

 
7.26 
7.26 

Cycle 3 
Loading 
Unloading 

 
29.85 
28.88 

 
27.81 
26.63 

 
7.78 
7.78 

 
7.31 
7.74 

Mean 30.43 28.00 7.89 7.39 
Calculated 31.41 7.74 7.35 

 
Table 1: Measured and calculated strains (x 10-9)  

per kN applied load – test no. 1 
 

 Test 2-column without steel casing
 εz1  εz2  εr εθ 
Cycle 1 
Loading 
Unloading 

 
35.45 
34.79 

 
30.35 
30.45 

 
8.60 
8.36 

 
8.20 
8.35 

Cycle 2 
Loading 
Unloading 

 
35.45 
35.12 

 
30.66 
30.56 

 
8.58 
8.49 

 
8.24 
8.31 

Cycle 3 
Loading 
Unloading 

 
35.85 
35.47 

 
30.42 
30.89 

 
8.63 
8.40 

 
8.37 
8.44 

Mean 35.36 30.56 8.51 8.32 
Calculated 38.44 8.38 8.80 

 
Table 2: Measured and calculated strains (x 10-9)  

per kN applied load – test no. 2 
 
A back analysis process was devised to assess the elastic 

constants from actual measured strains. The procedure involved 
determining the influence of selected E and ν values, of the plain 
and reinforced concrete annuli, on the predicted axial, radial and 
circumferential strains. In all trial cases, the following values were 
kept constant: {Es=205,000 N/mm2, νs=0.3, νc=0.2} subscripts s 
and c refer to steel and concrete annuli respectively. Various 
incremental values of the elastic constants Ec, Eb and νb (subscript 
b refers to the reinforced concrete annulus) were input into a 
purpose written computer program so that stresses and strains 
could be generated at required increments of radius. It was also 
imperative to generate the strain values at radial co-ordinates 
corresponding to the locations of the embedded strain gauges. 

 
The results of this parametric study are summarized in Table 3, 

which represents the closest match between calculated and 
measured strain values in all three directions. The measured 
strains are compared with the theoretically calculated strains 

listed at the bottom of the Tables 1 and 2. It is seen that the 
predicted strains are accurate to within 5% of the measured 
values and are remarkably consistent throughout. 

Constituent material Elastic 
modulus 

 (kN/mm2) 

Poisson’s 
ratio  

Steel casing 
(r=450-460mm) 

205 0.30 

Stiffened concrete 
zone (r=253-450mm) 

42 0.25 

Plain concrete core 
(r=0-253 mm) 

38 0.20 

 
Table 3: Appropriate values of E and ν for constituent materials 
of the test column 

IV. CONCLUSIONS 
A mathematical model was successfully developed for 

elastic analysis of a compound column comprising any number 
annuli having different elastic parameters. Using the model, the 
material characteristics of the composite reinforced concrete 
short column were assessed accurately. The stiffening effect of 
steel on concrete has been realistically assessed by projecting 
the effective elastic modulus and Poisson’s ratio of the 
reinforced zone of concrete at a given cross-section. The 
validity of the model was demonstrated by comparing predicted 
strains with measured values in three mutually perpendicular 
directions. An excellent agreement, to within 5% was observed 
between the measured and the predicted strain values at several 
locations. The results indicate the following: 

a) The change in material properties due to reinforcing 
of concrete was found to affect the effective Poisson’s 
ratio more than the Young’s modulus.  

b) For a specific amount of reinforcement, it was 
found that the Poisson’s ratio of concrete increased by 
25% whilst the Young’s modulus increased by 10.5%.  

c) There was demonstrated evidence that the elastic 
constants for plain concrete were position sensitive, which 
support previous observations by other researchers. The 
evidence arose from the fact that lower strain values were 
recorded near the central axis of the column. This 
suggested that there was compression of concrete 
centrally. 
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