
 
 

 

  
Abstract—The nonlinear vibration behavior of a multi-walled 

carbon nanotube is investigated based on an elastic multi-layer 
shell model with van der Waals interaction taken into 
consideration. The multi-walled carbon nanotube is described as 
an individual elastic shell and the interlayer friction is negligible 
between the inner and outer tubes in the proposed model. And the 
Donnell equations of cylindrical shells are employed to describe 
the nonlinear behavior of the multi-walled carbon nanotubes. The 
van der Waals interaction between each layer of the nanotubes is 
simulated based on a new model. Numerical analyses are carried 
out to simulate several nonlinear vibration processes of different 
nanotubes. Following results show that the presence of van der 
Waals interaction forces can strongly influence the buckling and 
nonlinear vibration of the multi-walled carbon nanotubes. 
 

Index Terms—Carbon nanotubes; Nonlinear vibration; 
continuum shell model; van der Waals interaction.  
 

I. INTRODUCTION 
  Carbon nanotubes (CNTs) possess novel physical properties, 
such as high stiffness-to-weight and strength-to-weight ratios 
and excellent electrical and thermal conductivities make them a 
very promising material in nanoelectromechanical systems. A 
lot of methods have been employed to investigate the 
mechanical behavior of the CNTs during the past decades. 
Among those methods, elastic shell models are relatively 
simple and cost-effective as compared to experiments and 
molecular dynamic simulations. So they can offer simple 
general formulas in some important cases to identify major 
factors affecting mechanical behavior of CNTs and to explain 
or predict new physical phenomena. Elastic shell models have 
been effectively used to study mechanical deformation of 
CNTs [1, 2], especially buckling of CNTs under axial 
compression [3-5], bending [6, 4], radial pressure [7], or 
combined loadings [8]. The potential of using multi-walled 
carbon nanotubes (MWCNTs) in practical nanomechanical 
resonators provides the necessity for the simulation of their 
performance. Hence the vibration behavior of CNTs is of great 
interests from many scientists and engineering researchers. 
Noncoaxial vibration modes of MWCNTs, predicted based on 
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a simple multiple beam model, have been confirmed by the 
molecular mechanics simulation. Moreover, the frequencies of 
CNTs for the radial breathing mode were obtained by using the 
multiple shell model and showed well agreement with the 
molecular dynamics (MD) simulation [9]. Thus, the 
effectiveness of dynamic simulation based on the multiple shell 
model was validated, and then many related investigations were 
performed. Yoon et al. [10] investigated the transverse sound 
wave propagation in CNTs by using Bernoulli-Euler theory of 
flexural beam, and the same work was also performed by 
Natsuki et al. [11] by using Flügge shell equations. Their 
results showed that the asymmetrical wave behavior of single- 
and double-walled CNTs was found to be significantly 
different. Further, Yoon et al. [12] reported the vibrational 
analysis of embedded MWCNTs by using the Bernoulli-Euler 
beam model. Their results showed that noncoaxial intertube 
resonance of CNTs was excited at higher natural frequency and 
would distort the otherwise concentric geometry of the 
MWCNTs. Li and Chou [13, 14] presented the vibrational 
analysis of single and double-walled CNTs using a truss rod 
model. They predicted that single-walled nanotubes (SWCNTs) 
could have fundamental frequency ranging from 10 GHz to 1.5 
THz and the frequency depends on the diameter and length of 
CNTs [13]. The fundamental frequency of double-walled 
nanotubes (DWCNTs) was about 10% lower than that of 
SWCNTs with the same length and outer diameter [14]. In 
addition, Wang et al. investigated the free beamlike vibration 
of MWCNTs in which the applicability and limitations of 
simplified elastic shell equations was analyzed for various 
CNTs [15]. However, almost all of above vibration studies 
were limited to linear vibration behavior of CNTs, while the 
nonlinear one is seldom investigated. On the other hand, studies 
in [16-21] showed that the van der Waals (vdW) forces have a 
crucial effect on mechanical behavior of CNT ropes and 
MWCNTs. Thus, for the continuum shell model, the major 
challenge is to consider the vdW forces between adjacent tubes 
comparing to traditional continuum models [3-5]. Ru [4, 5] 
proposed a continuum shell model considering vdW interaction. 
He assumed that the variation of the vdW force was 
proportional to the normal deflection and obtained a simple 
relationship for the vdW interaction coefficient. Wang et al. [22] 
used the relationship to the buckling analysis of MWCNTs. 
However, as was pointed out by He et al. [23] in which they 
proposed a new vdW model not only for the interaction 
between adjacent tubes but also for the interaction between all 
the tubes, the simple relationship can only be applied to the 
analysis of DWCNTs because only the vdW interaction 
between two adjacent tubes is considered.  

In this paper, a theoretical model for nonlinear vibration 
analysis of MWCNTs is developed based on the refined vdW 
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interaction model [23] and the continuum elastic shell model. 
The influences of radius, length-radius ratio and vibration 
mode on the nonlinear vibration behavior are examined 
numerically. The key role played by the vdW interaction in 
such a nano-scale is also investigated. The results show that it 
can really change the vibration model of the MWCNTs.  

II. GOVERNING EQUATIONS 
In this section, a simply supported MWCNT is considered to be 
free of mechanical loads. The MWCNT consists of two or more 
single CNTs of radius iR . Using Donnell’s shallow-shell 
nonlinear theory, the governing equations of motion for large 
amplitude transverse vibrations of a circular cylindrical shell is 
given by [24]: 
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and the parameters for the vdW interaction are given by [23]: 
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where x and θ  are axial and circumferential angular 
coordinates, respectively,  w  is the radial (inward) deflection,  
pi is the net normal (inward) pressure due to the vdW 
interaction, 0

iN θ is the known uniform membrane forces (called 
“pre-stresses”), hρ is the mass density (per unit lateral area), D 
and h are the effective bending stiffness and thickness of the 

shell, and E is Young’s modulus. And 0
if  denotes the initial 

pre-stresses functions of the ith tube to account for the vdW 
interaction and can be written as 
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The subscripts , 1i j =  to N  denote the ith and jth tubes of 
the MWCNT. 

III. VIBRATION FREQUENCIES AND MODES 
The vibration mode of ith tube can be assumed as 
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which has been shown to give qualitative agreement with 
nonlinear vibration experiments and can be used for the 
nonlinear analysis, where nm  and denote the number of axial 
and circumferential waves, respectively. Substituting Eq (15) 
into the governing equations and solving for the particular 
solution, we have 
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which means that the response modes of the dynamic state do 
not satisfy the classical simply supported boundary conditions 
( xiN =0) exactly. The inaccuracy due to the violation of the 
boundary conditions is expected to be small for sufficiently 
long shells, since its effect is confined to a small edge zone. 
Although it does not satisfy the boundary conditions locally, it 
satisfies globally since 

02cos
2

0
=θθ∫

π
dn     on each edge        (18) 

The unknown time-dependent function Ai can be determined by 
using Galerkin’s method. By projecting the left-hand side of Eq 
(1), where Eqs (15) and (16) are used for expressing if  and iw  
in terms of Ai, and equating the result to zero, we have 
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This yields following non-linear ordinary differential equations 

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



 
 

 

for unknown functions )(tAi . In the nondimensional form, 
they are 
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where iζ  are vibration amplitudes defined by 

h
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and iΩ is the linear vibration frequency without the vdW 
interaction which is written as 
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The function )(τC represents the generalized forces on the 
mode and can be written as  
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And the parameter ( )22 / ii Rhn=ε is the basic nonlinear 
parameter in the problem and goes to zero when the vibrations 
become linear. The other parameters which influence the 
nonlinearities are iγ  and iδ  which are defined by 
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where iξ  is the aspect ratio, given by 
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Eqs (22) can be solved approximately by the method of 
averaging [25]. Substituting Eqs (26) into (22) yields 
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then applying the method of averaging leads to the approximate 
solution: 
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where the average amplitude iW  is computed from 
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The amplitude-frequency relation for free vibrations of a single 
mode can be written as 
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IV. NUMERICAL RESULTS AND DISCUSSIONS 
The CNT to be considered has the thickness of graphene sheet 
of 0.34 nm, bending stiffness of D  = 2 eV, elastic modulus of 
1.059 TPa and Poisson’s ratio of 0.19. The mass density of 
CNTs is assumed to be 1.3 g/cm3. The vdW parameters used in 
the Lennard-Jones potential are taken as ε  = 2.967 meV, σ  = 
0.34 nm [26], the in-plane stiffness is Eh = C = 360 J/m2 as 
presented in [3]. 

What follows is to analyze nonlinear vibration behavior of a 
DWCNT subjected to axial compressed pressure. The 
influences of radii, the number of tubes, the length and the 
wave numbers on the nonlinear vibration pattern are examined 
and the results are shown as follows. 
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Fig. 1 Free vibrations of a four-layer carbon nanotube 
 
 
Fig. 1 shows the free vibration response of a four-walled 

CNT. For the sake of simplicity, the nondimentional vibration 
frequency 1Ωω  is employed in which 1Ω denotes linear free 
vibration frequency of innermost tube.  The results indicate that 
all the four tubes of CNT vibrate in the same pattern. And little 
difference can be discriminated in their nonlinear vibration 
behaviors. This similarity is induced by the influence of the 
vdW interaction between any two tubes. If one tube vibrates, 
the existence of the vdW interaction will generate forces to 
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resist the relative movement between tubes and keep the space 
of them unchanged, which results in the companion vibration 
of the other tubes due to the driven force generated from the 
vdW interaction. So the amplitude and the frequency of all the 
tubes are similar to each other. Then in the following analysis 
of this section, only the vibration behavior of innermost tube is 
shown due to this similarity. 

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

10

20

30

40

50

60

3

2

1

A
ve

ra
ge

 A
m

pl
itu

de

Nondimentional Frequency (ω /Ω1)

1  RI=1.7nm
2  RI=3.4nm
3  RI=6.8nm

(m=1, n=1)

 
Fig. 2 Influence of large amplitudes on vibration frequency 

for several two-walled carbon nanotubes with different radii 
and the length-radius ratio ORL =10. 
 
The free vibration response curves of DWCNTs shown in Fig. 
2-5 illustrate a nonlinearity of the softening type. This behavior 
is typical for a vibration mode that involves low values of ε  
and ξ . For larger values of ε , the nonlinearity is stronger and 
for some values of ξ the nonlinearity is of the hardening type. 

The manner in which the parameter ε  controls the strength 
of the nonlinearity is shown in Figs. 2 and 5. An increase in the 
value of  ε   will increase the nonlinearity of vibration. This 
result is apparent from Eqs (30) and (32), which show that ε  is 
a multiplying factor in every nonlinear term. From a physical 
viewpoint, small values of ε  correspond to CNTs with bigger 
radii and/or a small number of circumferential waves, whereas 
large ε  signifies CNTs with smaller radii or a high number of 
circumferential waves. Another important parameter is the 
aspect ratio ξ, which governs the character of nonlinearity. The 
way in which the type of nonlinearity varies with the aspect 
ratio is shown in Figs. 3-5. Actually, the parameters ε  , γ  and 
δ  in Eqs (30) and (32) can be used to predict the type of 
nonlinearity which may occur; but both γ  and δ are closely 
related to ξ . Small values of ξ  result in small values γ  and δ , 
and the corresponding terms in Eq (32) are relatively 
insignificant for small vibration amplitudes. In this case, the 
vibrations exhibit a softening nonlinearity for small vibration 
amplitudes. As the amplitude continues to increase, however, 
the term 52 Aδε  in Eq (32) finally dominates the other terms 
and causes an eventual hardening nonlinearity. And note that 
from its definition, small values of the aspect ratio ξ  

correspond to short circumferential and long axial wavelengths, 
whereas the reverse is true for large values of ξ . 
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Fig. 3 Influence of large amplitudes on vibration frequency for 
several two-walled carbon nanotubes with different 
length-radius ratios and IR =3.4nm 
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Fig. 4 Influence of large amplitudes on vibration frequency for 
several two-walled carbon nanotubes with different axial wave 
numbers and ORL =10, IR =3.4nm. 
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Fig. 5 Influence of large amplitudes on vibration frequency for 
several two-walled carbon nanotubes with different 
circumferential wave numbers and ORL =10, IR =3.4nm. 
 
Fig.6 shows the nonlinear vibration behavior of single-, 
double- and triple-walled CNTs. The results indicate that the 
increase of the number of the walls results in a less nonlinear 
vibration response. Due to the influence of the vdW interaction, 
all the walls of the CNT vibrate as a whole. Then the frequency 
can be approximated by the properties of the middle tube only. 
As the number of tubes increases, the effective radius of the 
MWCNT becomes bigger too, and thus the nonlinearity of its 
vibration decreases. Also, it can be seen that as the number of 
tubes increases, the free vibration frequency of the innermost 
tube increase as well. This results in the increase of the vdW 
forces. And the influence of vdW interaction on the vibration 
frequency can also be seen from the above results. Almost all 
the frequencies are different with the natural free vibration 
without the vdW interaction. 
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Fig. 6 Influence of amplitudes on frequency for several 
multi-walled carbon nanotubes with ORL = 10, IR  = 3.4nm. 

V. CONCLUSION 
Explicit formulas have been derived for predicting the 
nonlinear vibration behavior of MWCNTs under axial 
compression combining the continuum shell model and a 
refined vdW interaction model. Based on the proposed 
formulas, the nonlinear vibration behavior of a MWCNT, in 
which each tube is treated as an individual cylindrical shell, 
was analyzed numerically. The influences of radii, the number 
of tubes, the length and the wave numbers on the nonlinear 
vibration pattern are also examined. Their effects on the 
nonlinear vibration behavior are discussed in above sections. 
Then the influence of the vdW interaction between tubes on the 
nonlinear vibration behavior is investigated in detail. The 
results show that the vdW interaction plays a critical role in 
nano-scale mechanics. It can change the nonlinear vibration 
mode of the inner tubes by forcing them vibrate with a similar 
pattern as the outer ones. At the same time it can also influence 
the vibration frequency of the MWCNTs. 
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